Advertisement

Biochemistry (Moscow)

, Volume 84, Issue 5, pp 562–569 | Cite as

Stable G-Quadruplex Structures of Oncogene Promoters Induce Potassium-Dependent Stops of Thermostable DNA Polymerase

  • G. V. Chashchina
  • A. D. Beniaminov
  • D. N. KaluzhnyEmail author
Article
  • 3 Downloads

Abstract

Amplification of GC-rich regions of genomic DNA is hindered either by high stability of DNA double helix or as a result of alternative structure formation by a guanine-rich DNA strand. Such potential G-quadruplex (G4) sequences are fairly common in promoters of the human genome. The efficiency of PCR amplification of promoter sequences for several human oncogenes (MYC, NRAS, TERT, KRAS, KIT) was studied. We demonstrate that the efficiency of DNA polymerase is reduced in the presence of potassium ions. The primer-extension technique localized DNA polymerase stops at the 3′-ends of potential quadruplex sequences. The structural and thermodynamic properties of short G-rich oligonucleotides corresponding to the stops of DNA polymerase were analyzed. These oligonucleotides formed stable parallel G4 in the presence of potassium ions. Correlation between the stability of G4 structure and efficiency of DNA polymerase stops was revealed. The results provide a method for detecting new G4 structures in extended genomic sequences and also clarify the mechanism of inhibition of DNA polymerase in G-rich regions of DNA.

Keywords

DNA G-quadruplex promoter sequences PCR DNA polymerase 

Abbreviations

G4

G-quadruplex

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lam, E. Y. N., Beraldi, D., Tannahill, D., and Balasubramanian, S. (2013) G-Quadruplex structures are stable and detectable in human genomic DNA, Nat. Commun., 4, 1796–1796.CrossRefGoogle Scholar
  2. 2.
    Todd, A. K., Johnston, M., and Neidle, S. (2005) Highly prevalent putative quadruplex sequence motifs in human DNA, Nucleic Acids Res., 33, 2901–2907.CrossRefGoogle Scholar
  3. 3.
    Verma, A., Halder, K., Halder, R., Yadav, V. K., Rawal, P., Thakur, R. K., Mohd, F., Sharma, A., and Chowdhury, S. (2008) Genome-wide computational and expression analyses reveal G-quadruplex DNA motifs as conserved cis-regulatory elements in human and related species, J. Med. Chem., 51, 5641–5649.CrossRefGoogle Scholar
  4. 4.
    Bochman, M. L., Paeschke, K., and Zakian, V. A. (2012) DNA secondary structures: stability and function of G-quadruplex structures, Nat. Rev. Genet., 13, 770–780.CrossRefGoogle Scholar
  5. 5.
    Biffi, G., Tannahill, D., McCafferty, J., and Balasubramanian, S. (2013) Quantitative visualization of DNA G-quadruplex structures in human cells, Nat. Chem., 5, 182–186.CrossRefGoogle Scholar
  6. 6.
    Biffi, G., Tannahill, D., Miller, J., Howat, W. J., and Balasubramanian, S. (2014) Elevated levels of G-quadruplex formation in human stomach and liver cancer tissues, PLoS One, 9, e102711.CrossRefGoogle Scholar
  7. 7.
    Balasubramanian, S., Hurley, L. H., and Neidle, S. (2011) Targeting G-quadruplexes in gene promoters: a novel anticancer strategy? Nat. Rev. Drug Discov., 10, 261–275.CrossRefGoogle Scholar
  8. 8.
    Tauchi, T., Shin-ya, K., Sashida, G., Sumi, M., Okabe, S., Ohyashiki, J. II., and Ohyashiki, K. (2006) Telomerase inhibition with a novel G-quadruplex-interactive agent, telomestatin: in vitro and in vivo studies in acute leukemia, Oncogene, 25, 5719–5725.CrossRefGoogle Scholar
  9. 9.
    Ilyinsky, N. S., Varizhuk, A. M., Beniaminov, A. D., Puzanov, M. A., Shchyolkina, A. K., and Kaluzhny, D. N. (2014) G-quadruplex ligands: mechanisms of anticancer action and target binding, Mol. Biol., 48, 778–794.CrossRefGoogle Scholar
  10. 10.
    Haeusler, A. R., Donnelly, C. J., Periz, G., Simko, E. A. J., Shaw, P. G., Kim, M.-S., Maragakis, N. J., Troncoso, J. C., Pandey, A., Sattler, R., Rothstein, J. D., and Wang, J. (2014) C9orf72 nucleotide repeat structures initiate molecular cascades of disease, Nature, 507, 195–200.CrossRefGoogle Scholar
  11. 11.
    Woodford, K. J., Howell, R. M., and Usdin, K. (1994) A novel K(+)-dependent DNA synthesis arrest site in a commonly occurring sequence motif in eukaryotes, J. Biol. Chem., 269, 27029–27035.Google Scholar
  12. 12.
    Kumari, R., Nambiar, M., Shanbagh, S., and Raghavan, S. C. (2015) Detection of G-quadruplex DNA using primer extension as a tool, PLoS One, 10, e0119722.CrossRefGoogle Scholar
  13. 13.
    Han, H., Hurley, L. H., and Salazar, M. (1999) A DNA polymerase stop assay for G-quadruplex-interactive compounds, Nucleic Acids Res., 27, 537–542.CrossRefGoogle Scholar
  14. 14.
    Qin, Y., and Hurley, L. H. (2008) Structures, folding patterns, and functions of intramolecular DNA G-quadruplexes found in eukaryotic promoter regions, Biochimie, 90, 1149–1171.CrossRefGoogle Scholar
  15. 15.
    Klenow, H., and Henningsen, I. (1969) Effect of monovalent cations on the activity of the DNA polymerase of Escherichia coli B, Eur. J. Biochem., 9, 133–141.CrossRefGoogle Scholar
  16. 16.
    Abu Al-Soud, W., and Radstrom, P. (1998) Capacity of nine thermostable DNA polymerases to mediate DNA amplification in the presence of PCR-Inhibiting samples, Appl. Environ. Microbiol., 64, 3748–3753.Google Scholar
  17. 17.
    Ramos-Aleman, F., Gonzalez-Jasso, E., and Pless, R. C. (2018) Use of alternative alkali chlorides in RT and PCR of polynucleotides containing G quadruplex structures, Anal. Biochem., 543, 43–50.CrossRefGoogle Scholar
  18. 18.
    Palumbo, S. L., Ebbinghaus, S. W, and Hurley, L. H. (2009) Formation of a unique end-to-end stacked pair of G-quadruplexes in the hTERT core promoter with implications for inhibition of telomerase by G-quadruplex-interactive ligands, J. Am. Chem. Soc., 131, 10878–10891.CrossRefGoogle Scholar
  19. 19.
    Chaires, J. B., Trent, J. O., Gray, R. D., Dean, W. L., Buscaglia, R., Thomas, S. D., and Miller, D. M. (2014) An improved model for the hTERT promoter quadruplex, PLoS One, 9, e115580.CrossRefGoogle Scholar
  20. 20.
    Phan, A. T., Modi, Y. S., and Patel, D. J. (2004) Propellertype parallel-stranded G-quadruplexes in the human c-myc promoter, J. Am. Chem. Soc., 126, 8710–8716.CrossRefGoogle Scholar
  21. 21.
    Hsu, S. T., Varnai, P., Bugaut, A., Reszka, A. P., Neidle, S., and Balasubramanian, S. (2009) A G-rich sequence within the c-kit oncogene promoter forms a parallel G-quadruplex having asymmetric G-tetrad dynamics, J. Am. Chem. Soc., 131, 13399–13409.CrossRefGoogle Scholar
  22. 22.
    Cogoi, S., and Xodo, L. E. (2006) G-quadruplex formation within the promoter of the KRAS proto-oncogene and its effect on transcription, Nucleic Acids Res., 34, 2536–2549.CrossRefGoogle Scholar
  23. 23.
    Kumari, S., Bugaut, A., and Balasubramanian, S. (2008) Position and stability are determining factors for translation repression by an RNA G-quadruplex-forming sequence within the 5′ UTR of the NRAS proto-oncogene, Biochemistry, 47, 12664–12669.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • G. V. Chashchina
    • 1
    • 2
  • A. D. Beniaminov
    • 1
  • D. N. Kaluzhny
    • 1
    Email author
  1. 1.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Physics and TechnologyState UniversityDolgoprudny, Moscow RegionRussia

Personalised recommendations