Advertisement

Biochemistry (Moscow)

, Volume 84, Issue 5, pp 491–508 | Cite as

Regulation of Chlorophyll Biogenesis by Phytochrome A

  • V. A. SineshchekovEmail author
  • O. B. BelyaevaEmail author
Review
  • 1 Downloads

Abstract

The photosynthetic apparatus accomplishes two major functions in plants — solar energy conversion and protection of the plant from photodestruction. Its highly orchestrated formation includes coordinated biosynthesis of chlorophyll (Chl) and of its binding to matrix proteins. Light plays here the central role driving both metabolic and regulatory processes. The regulation is achieved via operation of sophisticated photoreceptor machinery with the phytochrome system as its main component. This review concentrates on Chl a biosynthesis and the role of phytochrome A (phyA) in this process. The mechanism of action of phyA and the specificity of its state in the plant has been described, in particular, the existence of two native types with different modes of action. This review touches upon the dependence of the effects of phyA on tissues and organs of the plant and its species, genetic modifications, and hormonal status.

Keywords

(proto)chlorophyll(ide) biosynthesis photosynthesis photomorphogenesis regulation photoreceptors phytochrome A hormones 

Abbreviations

ALA

δ-aminolevulinic acid

ALAD

ALA dehydratase

BRs

brassinosteroids

Chl

chlorophyll

Chlide

chlorophyllide

CS

chlorophyll synthase

ERS

endogenous regulation signals

ET

ethylene

FHY1

FHY3 and FHL, partner proteins of phytochrome A (far-red elongated hypocotyl 1 и

3

FHY1-like)

FR

far red light

FRc

continuous FR

FRp

pulsed FR

Glu TR

Glu tRNA reductase

HIR

high irradiance responses

JA

jasmonic acid

LFR

low fluorescence responses

MC

Proto IX MME cyclase

MgCh

Mg-chelatase

MgPPMT

Mg-Proto IX methyltransferase

Mg-Proto IX

Mg-protoporphyrin IX

Mg-Proto IX MME

Mg-protoporphyrin IX monomethyl ester

NTE

N-terminal extension

PBG

porphobilinogen

Pchl

protochlorophyll

Pchlide

protochlorophyllide

phyA(B,C)

phytochrome A(B,C)

phyA′ and phyA″

native pools of phyA

PIFs

phytochrome-interacting factors

PLB

prolamellar bodies

PORA(B,C)

protochlorophyllide oxidoreductase A(B,C)

Proto IX

protoporphyrin IX

Pr and Pfr

phytochrome forms absorbing red and far-red light respectively

PSI(II)

photosystem I(II)

R light

red light

RS

retrograde signal

VLFR

very low fluorescence responses

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We are grateful to our teacher Prof. F. F. Litvin for his constant interest in our research and support and to Profs. P. Galland, T. Lamparter, and M. Terry for their critical reading of the manuscript and valuable comments.

References

  1. 1.
    Armstrong, G. A., Apel, K., and Rudiger, W. (2000) Does a light-harvesting protochlorophyllide a/b-binding protein complex exist? Trends Plant Sci., 5, 40–44, DOI:  https://doi.org/10.1016/S1360-1385(99)01513-7.CrossRefPubMedGoogle Scholar
  2. 2.
    Mathews, S. (2010) Evolutionary studies illuminate the structural-functional model of plant phytochromes, Plant Cell, 22, 4–16, DOI:  https://doi.org/10.1105/tpc.109.072280.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Casal, J. J., Candia, A. N., and Sellaro, R. (2013) Light perception and signalling by phytochrome A, J. Exp. Bot., 65, 2835–2845, DOI:  https://doi.org/10.1093/jxb/ert379.CrossRefPubMedGoogle Scholar
  4. 4.
    Van Tuinen, A., Kerckhoffs, L. H. J., Nagatani, A. R., Kendrick, E., and Koornneef, M. (1995) Far-red light-insensitive, phytochrome A-deficient mutants of tomato, Mol. Gen. Genet., 246, 133–141, DOI:  https://doi.org/10.1007/BF00294675.CrossRefPubMedGoogle Scholar
  5. 5.
    Barnes, S. A., Nishizawa, N. K., Quaggio, R. B., Whitelam, G. C., and Chua, N. H. (1996) Far-red light blocks greening of Arabidopsis seedlings via a phytochrome A-mediated change in plastid development, Plant Cell, 8, 601–615, DOI:  https://doi.org/10.1105/tpc.8.4.601.PubMedPubMedCentralGoogle Scholar
  6. 6.
    McCormac, A. C., and Terry, M. J. (2002) Loss of nuclear gene expression during the phytochrome A-mediated farred block of greening response, Plant Physiol., 130, 402–414, DOI:  https://doi.org/10.1104/pp.003806.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Meyer, G., Bliedung, H., and Kloppstech, K. (1983) NADPH-protochlorophyllide oxidoreductase: reciprocal regulation in mono- and dicotyledonean plants, Plant Cell Rep., 2, 26–29, DOI:  https://doi.org/10.1007/BF00269229.PubMedGoogle Scholar
  8. 8.
    Sineshchekov, V., Belyaeva, O., and Sudnitsin, A. (2004) Phytochrome A positively regulates biosynthesis of the active protochlorophyllide in dicots under far-red light, J. Photochem. Photobiol. B Biol., 74, 47–54, DOI:  https://doi.org/10.1016/j.jphotobiol.2004.02.001.CrossRefGoogle Scholar
  9. 9.
    Takano, M., Inagaki, N., Xie, X., Yuzurihara, N., Hihara, F., Ishizuka, T., and Shinomura, T. (2005) Distinct and cooperative functions of phytochromes A, B, and C in the control of deetiolation and flowering in rice, Plant Cell, 17, 3311–3325, DOI:  https://doi.org/10.1105/tpc.105.035899.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Sineshchekov, V. A., Loskovich, A. V., Riemann, M., and Nick, P. (2004) The jasmonate-free rice mutant hebiba is affected in the response of phyA′/phyA″ pools and protochlorophyllide biosynthesis to far-red light, Photochem. Photobiol. Sci., 3, 1058–1062, DOI:  https://doi.org/10.1039/B406795A.CrossRefPubMedGoogle Scholar
  11. 11.
    Sineshchekov, V. A. (2019) Two molecular species of phytochrome A with distinct modes of action, Funct. Plant Biol., 46, 118–135, DOI:  https://doi.org/10.1071/FP18156.CrossRefGoogle Scholar
  12. 12.
    Sineshchekov, V. A., Koppel, L. A., and Bolle, C. (2018) Two native types of phytochrome A, phyA′ and phyA″, differ by the state of phosphorylation at the N-terminus as revealed by fluorescence investigations of the Ser/Ala mutant of rice phyA expressed in transgenic Arabidopsis, Funct. Plant Biol., 45, 150–159, DOI:  https://doi.org/10.1071/FP16261.CrossRefGoogle Scholar
  13. 13.
    Terry, M. J., and Smith, A. G. (2013) A model for tetrapyrrole synthesis as the primary mechanism for plastid-to-nucleus signaling during chloroplast biogenesis, Front. Plant Sci., 4, 1–14, DOI:  https://doi.org/10.3389/fpls.2013.00014.CrossRefGoogle Scholar
  14. 14.
    Jarvis, P., and Lopez-Juez, E. (2013) Biogenesis and homeostasis of chloroplasts and other plastids, Nat. Rev. Mol. Cell Biol., 14, 787–802, DOI:  https://doi.org/10.1038/nrm3702.CrossRefPubMedGoogle Scholar
  15. 15.
    Hsieh, H. L., and Okamoto, H. (2014) Molecular interaction of jasmonate and phytochrome A signaling, J. Exp. Bot., 65, 2847–2857, DOI:  https://doi.org/10.1093/jxb/eru230.CrossRefPubMedGoogle Scholar
  16. 16.
    Leivar, P., and Quail, P. H. (2011) PIFs: pivotal components in a cellular signaling hub, Trends Plant Sci., 16, 19–28, DOI:  https://doi.org/10.1016/j.tplants.2010.08.003.CrossRefPubMedGoogle Scholar
  17. 17.
    Brzezowski, P., Richter, A. S., and Grimm, B. (2015) Regulation and function of tetrapyrrole biosynthesis in plants and algae, Biochim. Biophys. Acta, 1847, 968–985, DOI:  https://doi.org/10.1016/j.bbabio.2015.05.007.CrossRefPubMedGoogle Scholar
  18. 18.
    Kobayashi, K., and Masuda, T. (2016) Transcriptional regulation of tetrapyrrole biosynthesis in Arabidopsis thaliana, Front. Plant Sci., 7, 1811–1828, DOI:  https://doi.org/10.3389/fpls.2016.01811.PubMedGoogle Scholar
  19. 19.
    Kreslavski, V. D., Los, D. A., Schmitt, F. J., Zharmukhamedov, S. K., Kuznetsov, V. V., and Allakhverdiev, S. I. (2018) The impact of the phytochromes on photosynthetic processes, Biochim. Biophys. Acta, 1859, 400–408, DOI:  https://doi.org/10.1016/j.bbabio.2018.03.003.CrossRefGoogle Scholar
  20. 20.
    Mochizuki, N., Tanaka, R., Grimm, B., Masuda, T., Moulin, M., Smith, A. G., Tanaka, A., and Terry, M. J. (2010) The cell biology of tetrapyrroles: a life and death struggle, Trends Plant Sci., 15, 488–498, DOI:  https://doi.org/10.1016/j.tplants.2010.05.012.CrossRefPubMedGoogle Scholar
  21. 21.
    Litvin, F. F., and Stadnichuk, I. N. (1980) Long-wavelength precursors of chlorophyll in etiolated leaves and a system of native forms of protochlorophyll, Fiziol. Rast., 27, 1024–1031.Google Scholar
  22. 22.
    Boddi, B., Ryberg, M., and Sundqvist, C. (1992) Identification of four universal protochlorophyllide forms in dark-grown leaves by analyses of the 77 K fluorescence emission spectra, J. Photochem. Photobiol., 12, 389–401, DOI:  https://doi.org/10.1016/1011-1344(92)85043-T.CrossRefGoogle Scholar
  23. 23.
    Stadnichuk, I. N., Amirjani, M. R., and Sundqvist, C. (2005) Identification of spectral forms of protochlorophyllide in the region 670–730 nm, Photochem. Photobiol. Sci., 4, 230–238, DOI:  https://doi.org/10.1039/B403170A.CrossRefPubMedGoogle Scholar
  24. 24.
    Valter, G., Belyaeva, O. B., Ignatov, N. V., Krasnovsky, A. A., and Litvin, F. F. (1982) Photoconversions of various protochlorophyll(ide) forms in Phaseolus coccineus, Biol. Nauki, 9, 35–39.Google Scholar
  25. 25.
    Franck, F., and Strzalka, K. (1992) Detection of the photoactive protochlorophyllide—protein complex in the light during the greening of barley, FEBS Lett., 309, 73–77, doi:  https://doi.org/10.1016/0014-5793(92)80742-Y.CrossRefPubMedGoogle Scholar
  26. 26.
    Seyyedi, M., Timko, M. P., and Sundqvist, C. (1999) Protochlorophyllide, NADPH-protochlorophyllide oxidoreductase, and chlorophyll formation in the lip1 mutant of pea, Physiol. Plant., 106, 344–354, DOI:  https://doi.org/10.1034/j.1399-3054.1999.106313.x.CrossRefGoogle Scholar
  27. 27.
    Amirjani, M. R., Sundqvist, K., and Sundqvist, C. (2006) Protochlorophyllide and POR development in dark-grown plants with different proportions of short-wavelength and long-wavelength protochlorophyllide spectral forms, Physiol. Plant., 128, 751–762, DOI:  https://doi.org/10.1111/J.1399-3054.2006.00789.x.CrossRefGoogle Scholar
  28. 28.
    Sundqvist, C., and Dahlin, C. (1997) With chlorophyll pigments from prolamellar bodies to light-harvesting complexes, Physiol. Plant., 100, 748–759, DOI:  https://doi.org/10.1111/j.1399-3054.1997.tb00002.x.CrossRefGoogle Scholar
  29. 29.
    Schoefs, B., and Franck F. (2008) The photoenzymatic cycle of NADPH: protochlorophyllide oxidoreductase in primary bean leaves (Phaseolus vulgaris) during the first days of photoperiodic growth, Photosynth. Res., 96, 15–26, DOI:  https://doi.org/10.1007/s11120-007-9274-x.CrossRefPubMedGoogle Scholar
  30. 30.
    Sundqvist, C., Ryberg, H., Boddi, B., and Lang, F. (1980) Spectral properties of a long-wavelength absorbing form of protochlorophyll in seeds of Cyclanthera explodens, Physiol. Plant., 48, 297–301, DOI:  https://doi.org/10.1111/j.1399-3054.1980.tb03258.x.CrossRefGoogle Scholar
  31. 31.
    Ignatov, N. V., and Litvin, F. F. (1996) Photoconvertion of longer-wavelength protochlorophyll native form Pchlide 682/672 into chlorophyll Chl715/696 in Chlorella vulgaris B-15, Photosynth. Res., 50, 271–283, DOI:  https://doi.org/10.1007/BF00033125.CrossRefPubMedGoogle Scholar
  32. 32.
    Ignatov, N. V., and Litvin, F. F. (2002) A new pathway of chlorophyll biosynthesis from long-wavelength protochlorophyllide Pchlide 686/676 in juvenile etiolated plants, Photosynth. Res., 71, 195–207, DOI:  https://doi.org/10.1023/A:1015595426181.CrossRefPubMedGoogle Scholar
  33. 33.
    Belyaeva, O. B. (2009) Light-Dependent Chlorophyll Biosynthesis [in Russian], BINOM. Laboratoriya Znanii, Moscow.Google Scholar
  34. 34.
    Artus, N. N., Ryberg, M., Lindsten, A., Ryberg, H., and Sundqvist, C. (1992) The Shibata shift and the transformation of etioplasts to chloroplasts in wheat with clomazone (FMC 57020) and amiprofos-methyl (Tokunol M), Plant Physiol., 98, 253–263, DOI:  https://doi.org/10.1104/pp.98.1.253.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Kowalewska, L., Mazur, R., Suski, S., Garstka, M., and Mostowska, A. (2016) Three-dimensional visualization of the tubular—lamellar transformation of the internal plastid membrane network during runner bean chloroplast biogenesis, Plant Cell, 28, 875–891, DOI:  https://doi.org/10.1105/tpc.15.01053.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Belyaeva, O. B., Karneeva, N. V., Stadnichuk, I. N., and Litvin, F. F. (1975) Dynamics of biosynthesis of native chlorophyll forms from initial stages up to the completion of the greening process in etiolated leaves, Biochemistry (Moscow), 40, 951–961.Google Scholar
  37. 37.
    Litvin, F. F., and Sineshchekov, V. A. (1975) Molecular organization of chlorophyll and energetics of the initial stages in photosynthesis, in Energetics of Photosynthesis (Govindjee, ed.) Academic Press, New York- San Francisco-London, pp. 619–661.CrossRefGoogle Scholar
  38. 38.
    Litvin, F. F., Sineshchekov, V. A., and Shubin, V. V. (1976) Investigation of energy migration between native forms of chlorophyll at −196°C by the method of sensitized fluorescence, Biofizika, 21, 669–675.PubMedGoogle Scholar
  39. 39.
    Griffiths, W.T. (1978). Reconstitution of chlorophyllide formation by isolated etioplast membranes, Biochem. J., 174, 681–692, DOI:  https://doi.org/10.1042/bj1740681.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Wilks, H. M., and Timko, M. P. (1995) A light-dependent complementation system for analysis of NADPH:protochlorophyllide oxidoreductase: identification and mutagenesis of two conserved residues that are essential for enzyme activity, Proc. Natl. Acad. Sci. USA, 92, 724–728, DOI:  https://doi.org/10.1073/pnas.92.3.724.CrossRefPubMedGoogle Scholar
  41. 41.
    Meskauskiene, R., Nater, M., Goslings, D., Kessler, F., op den Camp, R., and Apel, K. (2001) FLU: a negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana, Proc. Natl. Acad. Sci. USA, 98, 12826–12831, DOI:  https://doi.org/10.1073/pnas.221252798.CrossRefPubMedGoogle Scholar
  42. 42.
    McCormac, A. C., and Terry, M. J. (2004) The nuclear genes Lhcb and HEMA1 are differentially sensitive to plastid signals and suggest distinct roles for the GUN1 and GUN5 plastid-signaling pathways during de-etiolation, Plant J., 40, 672–685, DOI:  https://doi.org/10.1111/j.1365-313X.2004.02243.x.CrossRefPubMedGoogle Scholar
  43. 43.
    Martin, G., Leivar, P., Ludevid, D., Tepperman, J. M., Quail, P. H., and Monte, E. (2016) Phytochrome and retrograde signaling pathways converge to antagonistically regulate a light-induced transcriptional network, Nat. Commun., 7, 11431, DOI:  https://doi.org/10.1038/ncomms11431.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Beck, C. F. (2005) Signaling pathways from the chloroplast to the nucleus, Planta, 222, 741–756, DOI:  https://doi.org/10.1007/s00425-005-0021-2.CrossRefGoogle Scholar
  45. 45.
    Krasnovsky, A. A. (1994) Singlet molecular oxygen and primary mechanisms of photo-oxidative damage of chloroplasts. Studies based on detection of oxygen and pigment phosphorescence, Proc. Roy. Soc. Edinb. B Biol., 102, 219–235, DOI:  https://doi.org/10.1017/S0269727000014147.Google Scholar
  46. 46.
    Reinbothe, S., Reinbothe, C., Apel, K., and Lebedev, N. (1996) Evolution of chlorophyll biosynthesis — the challenge to survive photooxidation, Cell, 86, 703–705, DOI:  https://doi.org/10.1016/S0092-8674(00)80144-0.CrossRefPubMedGoogle Scholar
  47. 47.
    Matsumoto, F., Obayashi, T., Sasaki-Sekimoto, Y., Ohta, H., Takamiya, K., and Masuda, T. (2004) Gene expression profiling of the tetrapyrrole metabolic pathway in Arabidopsis with a mini-array system, Plant Physiol., 135, 2379–2391, DOI:  https://doi.org/10.1104/pp.104.042408.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Huq, E., Al-Sady, B., Hudson, M., Kim, C., Apel, K., and Quail, P. H. (2004) Phytochrome-interacting factor 1 is a critical bHLH regulator of chlorophyll biosynthesis, Science, 305, 1937–1941, DOI:  https://doi.org/10.1126/science.1099728.CrossRefPubMedGoogle Scholar
  49. 49.
    Zhu, X., Chen, J., Xie, Z., Gao, J., Ren, G., Gao, S., Zhou, X., and Kuai, B. (2015) Jasmonic acid promotes degreening via MYC 2/3/4- and ANAC 019/055/072-mediated regulation of major chlorophyll catabolic genes, Plant J., 84, 597–610, DOI:  https://doi.org/10.1111/tpj.13030.CrossRefPubMedGoogle Scholar
  50. 50.
    Gendron, J. M., Pruneda-Paz, J. L., Doherty, C. J., Gross, A. M., Kang, S. E., and Kay, S. A. (2012) Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor,Proc. Natl. Acad. Sci. USA, 109, 3167–3172, DOI:  https://doi.org/10.1073/pnas.1200355109.CrossRefPubMedGoogle Scholar
  51. 51.
    Cheminant, S., Wild, M., Bouvier, F., Pelletier, S., Renou, J. P., Erhardt, M., Hayes, S., Terry, M. J., Genschik, P., and Achard, P. (2011) DELLAs regulate chlorophyll and carotenoid biosynthesis to prevent photooxidative damage during seedling deetiolation in Arabidopsis, Plant Cell, 23, 1849–1860, DOI:  https://doi.org/10.1105/tpc.111.085233.CrossRefPubMedGoogle Scholar
  52. 52.
    Xu, X., Paik, I., Zhu, L., and Huq, E. (2015) Illuminating progress in phytochrome-mediated light signaling pathways, Trends Plant Sci., 20, 641–650, DOI:  https://doi.org/10.1016/j.tplants.2015.06.010.CrossRefPubMedGoogle Scholar
  53. 53.
    Rockwell, N. C., Su, Y. S., and Lagarias, J. C. (2006) Phytochrome structure and signaling mechanisms, Annu. Rev. Plant Biol., 57, 837–858, DOI:  https://doi.org/10.1146/annurev.arplant.56.032604.144208.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Cherry, J. R., Hondred, D., Walker, J. M., and Vierstra, R. D. (1992) Phytochrome requires the 6-kDa N-terminal domain for full biological activity, Proc. Natl. Acad. Sci. USA, 89, 5039–5043, DOI:  https://doi.org/10.1073/pnas.89.11.5039.CrossRefPubMedGoogle Scholar
  55. 55.
    Han, Y. J., Kim, H. S., Kim, Y. M., Shin, A. Y., Lee, S. S., Bhoo, S. H., Song, P. S., and Kim, J. I. (2010) Functional characterization of phytochrome autophosphorylation in plant light signaling, Plant Cell Physiol., 51, 596–609, DOI:  https://doi.org/10.1093/pcp/pcq025.CrossRefPubMedGoogle Scholar
  56. 56.
    Sineshchekov, V. A. (2010) Fluorescence and photochemical investigations of phytochrome in higher plants, J. Botany, 2010, 358372, DOI:  https://doi.org/10.1155/2010/358372.CrossRefGoogle Scholar
  57. 57.
    Sineshchekov, V. A. (1995) Photobiophysics and photobiochemistry of the heterogeneous phytochrome system, Biochim. Biophys. Acta, 1228, 125–164, DOI:  https://doi.org/10.1016/0005-2728(94)00173-3.CrossRefGoogle Scholar
  58. 58.
    Gartner, W., and Braslavsky, S. E. (2004) The phytochromes: spectroscopy and function, in Photoreceptors and Light Signaling (Comprehensive Series in Photochemical and Photobiological Sciences), Vol. 3 (Batschauer, A., ed.) RSC Publishing, pp. 136–180.Google Scholar
  59. 59.
    Helizon, H., Rosler-Dalton, J., Gasch, P., von Horsten, S., Essen, L.-O., and Zeidler, M. (2018) Arabidopsis phytochrome A nuclear translocation is mediated by a far red elongated hypocotyl 1—importin complex, Plant J., 96, 1255–1268, DOI:  https://doi.org/10.1111/tpj.14107.CrossRefPubMedGoogle Scholar
  60. 60.
    Sheerin, D. J., Menon, C., zur Oven-Krockhaus, S., Enderle, B., Zhu, L., Johnen, P., Schleifenbaum, F., Stierhof, Y. D., Huq, E., and Hiltbrunner, A. (2015) Light-activated phytochrome A and B interact with members of the SPA family to promote photomorphogenesis in Arabidopsis by reorganizing the COP1/SPA complex, Plant Cell, 27, 189–201, DOI:  https://doi.org/10.1105/tpc.114.134775.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Yang, S. W., Jang, I. C., Henriques, R., and Chua, N. H. (2009) Far-red elongated hypocotyl1 and FHY1-like associate with the Arabidopsis transcription factors LAF1 and HFR1 to transmit phytochrome A signals for inhibition of hypocotyl elongation, Plant Cell, 21, 1341–1359, DOI:  https://doi.org/10.1105/tpc.109.067215.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Chen, F., Shi, X., Chen, L., Dai, M., Zhou, Z., Shen, Y., Li, J., Li, G., Wei, N., and Deng, X. W. (2012) Phosphorylation of far-red elongated hypocotyll is a key mechanism defining signaling dynamics of phytochrome A under red and far-red light in Arabidopsis, Plant Cell, 24, 1907–1920, DOI:  https://doi.org/10.1105/tpc.112.097733.CrossRefPubMedGoogle Scholar
  63. 63.
    Castillon, A., Shen, H., and Huq, E. (2007) Phytochrome interacting factors: central players in phytochrome-mediat-ed light signaling networks, Trends Plants Sci., 12, 514–521, DOI:  https://doi.org/10.1016/j.tplants.2007.10.001.CrossRefGoogle Scholar
  64. 64.
    Fairchild, C. D., Schumaker, M. A., and Quail, P. H. (2000) HFR1 encodes an atypical bHLH protein that acts in phytochrome A signal transduction, Genes Dev., 14, 2377–2391, DOI:  https://doi.org/10.1101/gad.828000.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Rausenberger, J., Tscheuschler, A., Nordmeier, W., Wust, F., Timmer, J., Schafer, E., Fleck, C., and Hiltbrunner, A. (2011) Photoconversion and nuclear trafficking cycles determine phytochrome A’s response profile to far-red light, Cell, 146, 813–825, DOI:  https://doi.org/10.1016/j.cell.2011.07.023.CrossRefPubMedGoogle Scholar
  66. 66.
    Kneissl, J., Shinomura, T., Furuya, M., and Bolle, C. (2008) A rice phytochrome A in Arabidopsis: the role of the N-terminus under red and far-red light, Mol. Plant, 1, 84–102, DOI:  https://doi.org/10.1093/mp/ssm010.CrossRefPubMedGoogle Scholar
  67. 67.
    Casal, J. J., Davis, S. J., Kirchenbauer, D., Viczian, A., Yanovsky, M. J., Clough, R. C., Kircher, S., Jordan-Beebe, E. T., Schafer, E., Nagy, F., and Vierstra, R. D. (2002) The serine-rich N-terminal domain of oat phytochrome a helps regulate light responses and subnuclear localization of the photoreceptor, Plant Physiol., 129, 1127–1137, DOI:  https://doi.org/10.1104/pp.010977.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Trupkin, A., Debrieux, D., Hiltbrunner, A., Fankhauser, C., and Casal, J. J. (2007) The serine-rich N-terminal region of Arabidopsis phytochrome A is required for protein stability, Plant Mol. Biol., 63, 669–678, DOI:  https://doi.org/10.1007/s11103-006-9115-x.CrossRefPubMedGoogle Scholar
  69. 69.
    Yanovsky, M. J., Whitelam, G. C., and Casal, J. J. (2000) Fhy3-1 retains inductive responses of phytochrome A, Plant Physiol., 123, 235–242, DOI:  https://doi.org/10.1104/pp.123.1.235.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Beale, S. I. (1990) Biosynthesis of the tetrapyrrole pigment precursor, δ-aminolevulinic acid, from glutamate, Plant Physiol., 93, 1273–1279, DOI:  https://doi.org/10.1104/pp.93.4.1273.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Ilag, L. L., Kumar, A. M., and Soll, D. (1994) Light regulation of chlorophyll biosynthesis at the level of 5-aminole-vulinate formation in Arabidopsis, Plant Cell, 6, 265–275, DOI:  https://doi.org/10.1105/tpc.6.2.265.CrossRefPubMedGoogle Scholar
  72. 72.
    Masoner, M., Unser, G., and Mohr, H. (1972) Accumulation of protochlorophyll and chlorophyll a as controlled by photomorphogenically effective light, Planta, 105, 267–272, DOI:  https://doi.org/10.1007/BF00385398.CrossRefPubMedGoogle Scholar
  73. 73.
    McCormac, A. C., Fischer, A., Kumar, A. M., Soll, D., and Terry, M. J. (2001) Regulation of HEMA1 expression by phytochrome and a plastid signal during de-etiolation in Arabidopsis thaliana, Plant J., 25, 549–561, DOI:  https://doi.org/10.1046/j.1365-313x.2001.00986.x.PubMedGoogle Scholar
  74. 74.
    McCormac, A. C., and Terry, M. J. (2002) Light-signalling pathways leading to the coordinated expression of HEMA1 and Lhcb during chloroplast development in Arabidopsis thaliana, Plant J., 32, 549–559, DOI:  https://doi.org/10.1046/j.1365-313X.2002.01443.x.PubMedGoogle Scholar
  75. 75.
    Tang, W., Wang, W., Chen, D., Ji, Q., Jing, Y., Wang, H., and Lin, R. (2012) Transposase-derived proteins FHY3/FAR1 interact with phytochrome-interacting factor 1 to regulate chlorophyll biosynthesis by modulating HEMB1 during deetiolation in Arabidopsis, Plant Cell, 24, 1984–2000, DOI:  https://doi.org/10.1105/tpc.112.097022.CrossRefPubMedGoogle Scholar
  76. 76.
    Forreiter, C., van Cleve, B., Schmidt, A., and Apel, K. (1991) Evidence for a general light-dependent negative control of NADPH-protochlorophyllide oxidoreductase in angiosperms, Planta, 183, 126–132, DOI:  https://doi.org/10.1007/BF00197576.CrossRefPubMedGoogle Scholar
  77. 77.
    Armstrong, G. A., Runge, S., Frick, G., Sperling, U., and Apel, K. (1995) Identification of NADPH:protochlorophyllide oxidoreductases A and B: a branched pathway for light-dependent chlorophyll biosynthesis in Arabidopsis thaliana, Plant Physiol., 108, 1505–1517, DOI:  https://doi.org/10.1104/pp.108.4.1505.CrossRefPubMedGoogle Scholar
  78. 78.
    Oosawa, N., Masuda, T., Awai, K., Fusada, N., Shimada, H., Ohta, H., and Takamiya, K. (2000) Identification and light-induced expression of a novel gene of NADPH-protochlorophyllide oxidoreductase isoform in Arabidopsis thaliana, FEBS Lett., 474, 133–136, DOI:  https://doi.org/10.1016/S0014-5793(00)01568-4.CrossRefPubMedGoogle Scholar
  79. 79.
    Su, Q., Frick, G., Armstrong, G., and Apel, K. (2001) POR C of Arabidopsis thaliana: a third light- and NADPH-dependent protochlorophyllide oxidoreductase that is differentially regulated by light, Plant Mol. Biol., 47, 805–813, DOI:  https://doi.org/10.1023/A:1013699721301.CrossRefPubMedGoogle Scholar
  80. 80.
    Kasemir, H. (1979) Control of chloroplast formation by light, Cell Biol. Int. Rep., 3, 197–214, DOI:  https://doi.org/10.1016/0309-1651(79)90033-X.CrossRefPubMedGoogle Scholar
  81. 81.
    Kasemir, H., and Prehm, G. (1976) Control of chlorophyll synthesis by phytochrome: III. Does phytochrome regulate the chlorophyllide esterification in mustard seedlings? Planta, 132, 291–295, DOI:  https://doi.org/10.1007/BF00399729.CrossRefPubMedGoogle Scholar
  82. 82.
    Jabben, M., and Mohr, H. (1975) Stimulation of the Shibata shift by photochrome in the cotyledons of the mustard seedling Sinapis alba L., Photochem. Photobiol., 22, 55–58, DOI:  https://doi.org/10.1111/j.1751-1097.1975.tb06721.x.CrossRefPubMedGoogle Scholar
  83. 83.
    Masoner, M., and Kasemir, H. (1975) Control of chlorophyll synthesis by phytochrome, Planta, 126, 111–117, DOI:  https://doi.org/10.1007/BF00380614.CrossRefPubMedGoogle Scholar
  84. 84.
    Rajasekhar, V. K., Guha-Mukherjee, S., and Sopory, S. K. (1983) Time dependence of phytochrome-mediated carotenoid and chlorophyll synthesis in Sorghum bicolor L., Ann. Bot. (London), 52, 159–163, DOI:  https://doi.org/10.1093/oxfordjournals.aob.a086561.CrossRefGoogle Scholar
  85. 85.
    Wu, Z., Zhang, X., He, B., Diao, L., Sheng, S., Wang, J., Guo, X., Su, N., Wang, L., Jiang, L., Wang, C., Zhai, H., and Wan, J. (2007) A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis, Plant Physiol., 145, 29–40, DOI:  https://doi.org/10.1104/pp.107.100321.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Chory, J. (1993) Out of darkness: mutants reveal pathways controlling light-regulated development in plants, Trends Genet., 9, 167–172, DOI:  https://doi.org/10.1016/0168-9525(93)90163-C.CrossRefPubMedGoogle Scholar
  87. 87.
    Lau, O. S., and Deng, X. W. (2010) Plant hormone signaling lightens up: integrators of light and hormones, Curr. Opin. Plant Biol., 13, 571–577, DOI:  https://doi.org/10.1016/j.pbi.2010.07.001.CrossRefPubMedGoogle Scholar
  88. 88.
    Sperling, U., Cleve, B., Frick, G., Apel, K., and Armstrong, G. A. (1997) Overexpression of light-dependent PORA or PORB in plants depleted of endogenous POR by far-red light enhances seedling survival in white light and protects against photooxidative damage, Plant J., 12, 649–658, DOI:  https://doi.org/10.1046/j.1365-313X.1997.00649.x.CrossRefPubMedGoogle Scholar
  89. 89.
    Frances, S., White, M. J., Edgerton, M. D., Jones, A. M., Elliott, R. C., and Thompson, W. F. (1992) Initial characterization of a pea mutant with light-independent photomorphogenesis, Plant Cell, 4, 1519–1530, DOI:  https://doi.org/10.1105/tpc.4.12.1519.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Weller, J. L., Murfet, I. C., and Reid, J. B. (1997) Pea mutants with reduced sensitivity to far-red light define an important role for phytochrome A in day-length detection, Plant Physiol., 114, 1225–1236, DOI:  https://doi.org/10.1104/pp.114.4.1225.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Martin, G. E. M., Timko, M. P., and Wilks, H. M. (1997) Purification and kinetic analysis of pea (Pisum sativum L.) NADPH:protochlorophyllide oxidoreductase expressed as a fusion with maltose-binding protein in Escherichia coli, Biochem. J., 325, 139–145, DOI:  https://doi.org/10.1042/bj3250139.PubMedGoogle Scholar
  92. 92.
    Sineshchekov, V. A., Frances, S., and White, M. J. (1995) Fluorescence and photochemical characterization of phytochrome in de-etiolated pea mutant lip, J. Photochem. Photobiol. B, 28, 47–51, DOI:  https://doi.org/10.1016/1011-1344(94)07093-4.CrossRefGoogle Scholar
  93. 93.
    Oh, E., Yamaguchi, S., Kamiya, Y., Bae, G., Chung W.-I., and Choi, G. (2006) Light activates the degradation of PIL5 protein to promote seed germination through gibberellin in Arabidopsis, Plant J., 47, 124–139, DOI:  https://doi.org/10.1111/j.1365-313X.2006.02773.x.PubMedGoogle Scholar
  94. 94.
    Toledo-Ortiz, G., Huq, E., and Rodriguez-Concepcion, M. (2010) Direct regulation of phytoene synthase gene expression and carotenoid biosynthesis by phytochrome-interacting factors, Proc. Natl. Acad. Sci. USA, 107, 11626–11631, DOI:  https://doi.org/10.1073/pnas.0914428107.CrossRefPubMedGoogle Scholar
  95. 95.
    DuBell, A. N., and Mullet, J. E. (1995) Differential tran scription of pea chloroplast genes during light-induced leaf development (continuous far-red light activates chloroplast transcription), Plant Physiol., 109, 105–112, DOI:  https://doi.org/10.1104/pp.109.1.105.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Antipova, T. V., Gapeeva, T. A., and Volotovsky, I. D. (2004) Photoregulation of protochlorophyllide oxidoreductase and Rubisco large subunit accumulation in phytochrome A-deficient transgenic tobacco plants, Russ. J. Plant Physiol., 51, 152–155, DOI:  https://doi.org/10.1023/B:RUPP.0000019206.95008.4d.CrossRefGoogle Scholar
  97. 97.
    Parks, B. M., and Quail, P. H. (1993) hy8, a new class of Arabidopsis long hypocotyl mutants deficient in functional phytochrome A, Plant Cell, 5, 39–48, DOI:  https://doi.org/10.1105/tpc.5.1.39.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Runge, S., Sperling, U., Frick, G., Apel, K., and Armstrong, G. A. (1996) Distinct roles for light-dependent NADPH:protochlorophyllide oxidoreductases (POR) A and B during greening in higher plants, Plant J., 9, 513–523, DOI:  https://doi.org/10.1046/j.1365-313X.1996.09040513.x.CrossRefPubMedGoogle Scholar
  99. 99.
    Frick, G., Apel, K., and Armstrong, G. A. (1995) Light-dependent protochlorophyllide oxidoreductase, phytochrome and greening in Arabidopsis thaliana, in Photosynthesis: From Light to Biosphere, Vol. III (Mathis, P., ed.), Kluwer Academic Publishers, Dordrecht, pp. 893–898.Google Scholar
  100. 100.
    Lebedev, N., van Cleve, B., Armstrong, G., and Apel, K. (1995) Chlorophyll synthesis in a deetiolated (det340) mutant of Arabidopsis without NADPH-protochlorophyllide (PChlide) oxidoreductase (POR) A and photoactive PChlide-F655, Plant Cell, 7, 2081–2090, DOI:  https://doi.org/10.1105/tpc.7.12.2081.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Sperling, U., Franck, F., van Cleve, B., Frick, G., Apel, K., and Armstrong, G. A. (1998) Etioplast differentiation in Arabidopsis: both PORA and PORB restore the prolamellar body and photoactive protochlorophyllide-F655 to the cop1 photomorphogenic mutant, Plant Cell, 10, 283–296, DOI:  https://doi.org/10.1105/tpc.10.2.283.PubMedPubMedCentralGoogle Scholar
  102. 102.
    Page, M. T., McCormac, A. C., Smith, A. G., and Terry, M. J. (2017) Singlet oxygen initiates a plastid signal controlling photosynthetic gene expression, New Phytol., 213, 1168–1180, DOI:  https://doi.org/10.1111/nph.14223.CrossRefPubMedGoogle Scholar
  103. 103.
    Litvin, F. F., and Belyaeva, O. B. (1971) Sequence of photochemical and dark reactions in the terminal stage of chlorophyll biosynthesis, Photosynthetica, 5, 200–209.Google Scholar
  104. 104.
    Schulz, R., and Senger, H. (1993) Protochlorophyllide reductase: a key enzyme in the greening process, in Pigment—Protein Complexes in Plastids: Synthesis and Assembly (Sundqvist, C., and Ryberg, M., eds.), Academic Press, Inc., San Diego, California, pp. 179–218.CrossRefGoogle Scholar
  105. 105.
    Kittsteiner, U., Paulsen, H., Schendel, R., and Rudiger, W. (1990) Lack of light regulation of NADPH:protochlorophyllide oxidoreductase mRNA in cress seedlings (Lepidium sativum L.), Zeitschrift for Naturforschung C, 45, 1077–1079, DOI:  https://doi.org/10.1515/znc-1990-9-1024.CrossRefGoogle Scholar
  106. 106.
    Spano, A. J., He, Z., Michel, H., Hunt, D. F., and Timko, M. P. (1992) Molecular cloning, nuclear gene structure, and developmental expression of NADPH:protochlorophyllide oxidoreductase in pea (Pisum sativum L.), Plant Mol. Biol., 18, 967–972, DOI:  https://doi.org/10.1007/BF00019210.CrossRefPubMedGoogle Scholar
  107. 107.
    He, Z. H., Li, J., Sundqvist, C., and Timko, M. P. (1994) Leaf developmental age controls expression of genes encoding enzymes of chlorophyll and heme biosynthesis in pea (Pisum sativum L.), Plant Physiol., 106, 537–546, DOI:  https://doi.org/10.1104/pp.106.2.537.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Sineshchekov, V. A., Loskovich, A., Inagaki, N., and Takano, M. (2006) Two native pools of phytochrome a in monocots: evidence from fluorescence investigations of phytochrome mutants of rice, Photochem. Photobiol., 82, 1116–1122, DOI:  https://doi.org/10.1562/2005-12-10-RA-749.CrossRefPubMedGoogle Scholar
  109. 109.
    Schendel, R., Dornemann, D., Rudiger, W., and Sineshchekov, V. (1996) Comparative investigations of the effect of 5-aminolevulinate feeding on phytochrome and protochlorophyll(ide) content in dark-grown seedlings of barley, cucumber and cress, J. Photochem. Photobiol. B, 36, 245–253, DOI:  https://doi.org/10.1016/S1011-1344(96)07390-3.CrossRefGoogle Scholar
  110. 110.
    Canton, F. R., and Quail, P. H. (1999) Both phyA and phyB mediate light-imposed repression of PHYA gene expression in Arabidopsis, Plant Physiol., 121, 1207–1215, DOI:  https://doi.org/10.1104/pp.121.4.1207.CrossRefPubMedGoogle Scholar
  111. 111.
    Takano, M., Kanegae, H., Shinomura, T., Miyao, A., Hirochika, H., and Furuya, M. (2001) Isolation and characterization of rice phytochrome A mutants, Plant Cell, 13, 521–534, DOI:  https://doi.org/10.1105/tpc.13.3.521.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Lucas, M., and Prat, S. (2014) PIFs get BRright: phytochrome interacting factors as integrators of light and hormonal signals, New Phytol., 202, 1126–1141, DOI:  https://doi.org/10.1111/nph.12725.CrossRefPubMedGoogle Scholar
  113. 113.
    Jeong, J., Kim, K., Kim, M. E., Kim, H. G., Heo, G. S., Park, O. K., Park, Y. I., Choi, G., and Oh, E. (2016) Phytochrome and ethylene signaling integration in Arabidopsis occurs via the transcriptional regulation of genes co-targeted by PIFs and EIN3, Front. Plant Sci., 7, 1055, DOI:  https://doi.org/10.3389/fpls.2016.01055.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Roy, A., Sahoo, D., and Tripathy, B. C. (2013) Involvement of phytochrome A in suppression of photomorphogenesis in rice seedling grown in red light, Plant Cell Environ., 36, 2120–2134, DOI:  https://doi.org/10.1111/pce.12099.CrossRefPubMedGoogle Scholar
  115. 115.
    Zhong, S., Zhao, M., Shi, T., Shi, H., An, F., Zhao, Q., and Guo, H. (2009) EIN3/EIL1 cooperate with PIF1 to prevent photo-oxidation and to promote greening of Arabidopsis seedlings, Proc. Natl. Acad. Sci. USA, 106, 21431–21436, DOI:  https://doi.org/10.1073/pnas.0907670106.CrossRefPubMedGoogle Scholar
  116. 116.
    Riemann, M., Muller, A., Korte, A., Furuya, M., Weiler, E. W., and Nick, P. (2003) Impaired induction of the jasmonate pathway in the rice mutant hebiba, Plant Physiol., 133, 1820–1830, DOI:  https://doi.org/10.1104/pp.103.027490.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Riemann, M., Bouyer, D., Hisada, A., Muller, A., Yatou, O., Weiler, E. W., Takano, M., Furuya, M., and Nick, P. (2009) Phytochrome A requires jasmonate for photodestruction, Planta, 229, 1035–1045, DOI:  https://doi.org/10.1007/s00425-009-0891-9.CrossRefPubMedGoogle Scholar
  118. 118.
    Robson, F., Okamoto, H., Patrick, E., Harris, S. R., Wasternack, C., Brearley, C., and Turner, J. G. (2010) Jasmonate and phytochrome A signaling in Arabidopsis wound and shade responses are integrated through JAZ1 stability, Plant Cell, 22, 1143–1160, DOI:  https://doi.org/10.1105/tpc.109.067728.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Ritsema, T., van Zanten, M., Leon-Reyes, A., Voesenek, L. A., Millenaar, F. F., Pieterse, C. M., and Peeters, A. J. (2010) Kinome profiling reveals an interaction between jasmonate, salicylate and light control of hyponastic petiole growth in Arabidopsis thaliana, PLoS One, 5, e14255, DOI:  https://doi.org/10.1371/journal.pone.0014255.CrossRefPubMedGoogle Scholar
  120. 120.
    Kim, J. I., Shen, Y., Han, Y. J., Park, J. E., Kirchenbauer, D., Soh, M. S., Nagy, F., Schafer, E., and Song, P. S. (2004) Phytochrome phosphorylation modulates light signaling by influencing the protein—protein interaction, Plant Cell, 16, 2629–2640, DOI:  https://doi.org/10.1105/tpc.104.023879.CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Seo, M., Nambara, E., Choi, G., and Yamaguchi, S. (2009) Interaction of light and hormone signals in germinating seeds, Plant Mol. Biol., 69, 463, DOI:  https://doi.org/10.1007/s11103-008-9429-y.CrossRefPubMedGoogle Scholar
  122. 122.
    Luccioni, L. G., Oliverio, K. A., Yanovsky, M. J., Boccalandro, H. E., and Casal, J. J. (2002) Brassinosteroid mutants uncover fine tuning of phytochrome signaling, Plant Physiol., 128, 173–181, DOI:  https://doi.org/10.1104/pp.010668.CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Sineshchekov, V., Koppel, L., Shor, E., Kochetova, G., Galland, P., and Zeidler, M. (2013) Protein phosphatase activity and acidic/alkaline balance as factors regulating the state of phytochrome A and its two native pools in the plant cell, Photochem. Photobiol., 89, 83–96, DOI:  https://doi.org/10.1111/j.1751-1097.2012.01226.x.CrossRefPubMedGoogle Scholar
  124. 124.
    Sineshchekov, V., Koppel, L., and Kim, J.-I. (2019) The dephosphorylated S8A and S18A mutants of (oat) phytochrome A comprise its two species, phyA′ and phyA″, suggesting that autophosphorylation at these sites is not involved in the phyA differentiation, Photochem. Photobiol. Sci., DOI:  https://doi.org/10.1039/C8PP00574E.

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Biological FacultyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations