Advertisement

Biochemistry (Moscow)

, Volume 84, Issue 4, pp 441–451 | Cite as

The Gln3 Transcriptional Regulator of Saccharomyces cerevisiae Manifests Prion-Like Properties upon Overproduction

  • K. S. Antonets
  • M. V. Belousov
  • M. E. Belousova
  • A. A. NizhnikovEmail author
Article
  • 37 Downloads

Abstract

Prions are proteins that can exist under the same conditions in two or more conformations, at least one of them is infectious. Usually, acquisition of infectious prion conformation is associated with the formation of amyloids–protein aggregates with a characteristic spatial structure. About 10 prions have been identified in the yeast Saccharomyces cerevisiae. The Gln3 protein, which is one of the key regulators of nitrogen metabolism in S. cerevisiae, contains an amyloidogenic region manifesting prion-like properties. The prion properties of the full-length Gln3 have not been studied. We have found that the amyloidogenic region of Gln3 acts as a template and initiates aggregation of the full-length Gln3 in the presence of the [PIN+] prion when Gln3 is overexpressed. Full-length Gln3 in its aggregated form manifests prion-like properties, including infectivity and dependence on the anti-prion agents; however, unlike other known yeast prions, prion-like state of Gln3 is observed only upon the protein overproduction. Here, we suggest the term “conditional prions” for proteins, whose prion state is maintained exclusively under non-physiological conditions.

Keywords

prion Gln3 amyloid [PIN+infectivity yeast S. cerevisiae 

Abbreviations

CFP

cyan fluorescent protein

DAPI

4′,6-diamidino-2-phenylindole

FOA

5-fluoroorotic acid

Gln3QN

asparagine/glutamine-rich fragment of Gln3 protein (a.a. 166-242)

GuHCl

guanidine hydrochloride

PCR

polymerase chain reaction

[PIN+]

prion isoform of Rnq1 protein

PMSF

phenylmethylsulfonyl fluoride

YFP

yellow fluorescent protein

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alberti, S., Halfmann, R., King, O., Kapila, A., and Lindquist, S. (2009) A systematic survey identifies prions and illuminates sequence features of prionogenic proteins, Cell, 137, 146–158, doi:  https://doi.org/10.1016/j.cell.2009.02.044.CrossRefGoogle Scholar
  2. 2.
    Roberts, B. T., and Wickner, R. B. (2003) Heritable activity: a prion that propagates by covalent autoactivation, Genes Dev., 17, 2083–2087.CrossRefGoogle Scholar
  3. 3.
    Bolton, D. C., McKinley, M. P., and Prusiner, S. B. (1982) Identification of a protein that purifies with the scrapie prion, Science, 218, 1309–1311.CrossRefGoogle Scholar
  4. 4.
    Prusiner, S. B., and Scott, M. R. (1997) Genetics of prions, Annu. Rev. Genet., 31, 139–175.CrossRefGoogle Scholar
  5. 5.
    Wickner, R. B. (1994) [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae, Science, 264, 566–569, doi:  https://doi.org/10.1126/science.7909170.Google Scholar
  6. 6.
    Derkatch, I. L., Bradley, M. E., Hong, J. Y., and Liebman, S. W. (2001) Prions affect the appearance of other prions: the story of [PIN+], Cell, 106, 171–182, doi:  https://doi.org/10.1016/S0092-8674(01)00427-5.CrossRefGoogle Scholar
  7. 7.
    Du, Z., Park, K. K.–W., Yu, H., Fan, Q., and Li, L. (2008) Newly identified prion linked to the chromatin–remodeling factor Swi1 in Saccharomyces cerevisiae, Nat. Genet., 40, 460–465, doi:  https://doi.org/10.1038/ng.112.CrossRefGoogle Scholar
  8. 8.
    Patel, B. K., Gavin–Smyth, J., and Liebman, S. W. (2009) The yeast global transcriptional co–repressor protein Cyc8 can propagate as a prion, Nat. Cell Biol., 11, 344–349, doi:  https://doi.org/10.1038/ncb1843.CrossRefGoogle Scholar
  9. 9.
    Suzuki, G., Shimazu, N., and Tanaka, M. (2012) A yeast prion, Mod5, promotes acquired drug resistance and cell survival under environmental stress, Science, 336, 355–359, doi:  https://doi.org/10.1126/science.1219491.Google Scholar
  10. 10.
    Osherovich, L. Z., and Weissman, J. S. (2001) Multiple Gln/Asn–rich prion domains confer susceptibility to induction of the yeast [PSI+] prion, Cell, 106, 183–194, doi:  https://doi.org/10.1016/S0092-8674(01)00440-8.CrossRefGoogle Scholar
  11. 11.
    Michelitsch, M. D., and Weissman, J. S. (2000) A census of glutamine/asparagine–rich regions: implications for their conserved function and the prediction of novel prions, Proc. Natl. Acad. Sci. USA, 97, 11910–11915, doi:  https://doi.org/10.1073/pnas.97.22.11910.CrossRefGoogle Scholar
  12. 12.
    Harrison, P. M., and Gerstein, M. (2003) A method to assess compositional bias in biological sequences and its application to prion–like glutamine/asparagine–rich domains in eukaryotic proteomes, Genome Biol., 4, R40, doi:  https://doi.org/10.1186/gb-2003-4-6-r40.Google Scholar
  13. 13.
    Nizhnikov, A. A., Antonets, K. S., Bondarev, S. A., Inge–Vechtomov, S. G., and Derkatch, I. L. (2016) Prions, amyloids, and RNA: pieces of a puzzle, Prion, 10, 182–206, doi:  https://doi.org/10.1080/19336896.2016.1181253.CrossRefGoogle Scholar
  14. 14.
    Tycko, R., and Wickner, R. B. (2013) Molecular structures of amyloid and prion fibrils: consensus versus controversy, Acc. Chem. Res., 46, 1487–1496, doi:  https://doi.org/10.1021/ar300282r.CrossRefGoogle Scholar
  15. 15.
    Wickner, R. B., Shewmaker, F., Edskes, H., Kryndushkin, D., Nemecek, J., McGlinchey, R., Bateman, D., and Winchester, C. L. (2010) Prion amyloid structure explains templating: how proteins can be genes, FEMS Yeast Res., 10, 980–991, doi:  https://doi.org/10.1111/j.1567-1364.2010.00666.x.CrossRefGoogle Scholar
  16. 16.
    Romanova, N. V., and Chernoff, Y. O. (2009) Hsp104 and prion propagation, Protein Pept. Lett., 16, 598–605, doi:  https://doi.org/10.2174/092986609788490078.CrossRefGoogle Scholar
  17. 17.
    Liebman, S. W., and Chernoff, Y. O. (2012) Prions in yeast, Genetics, 191, 1041–1072, doi:  https://doi.org/10.1534/genet-ics.111.137760.CrossRefGoogle Scholar
  18. 18.
    Chernova, T. A., Wilkinson, K. D., and Chernoff, Y. O. (2014) Physiological and environmental control of yeast prions, FEMS Microbiol. Rev., 38, 326–344, doi:  https://doi.org/10.1111/1574-6976.12053.CrossRefGoogle Scholar
  19. 19.
    Wickner, R. B., Shewmaker, F. P., Bateman, D. A., Edskes, H. K., Gorkovskiy, A., Dayani, Y., and Bezsonov, E. E. (2015) Yeast prions: structure, biology, and prion–handling systems, Microbiol. Mol. Biol. Rev., 79, 1–17, doi:  https://doi.org/10.1128/MMBR.00041-14.CrossRefGoogle Scholar
  20. 20.
    Wright, R. E., and Lederberg, J. (1957) Extranuclear transmission in yeast heterokaryons, Proc. Natl. Acad. Sci. USA, 43, 919–923.CrossRefGoogle Scholar
  21. 21.
    Zakharov, I. A., and Yarovoy, B. P. (1977) Cytoduction as a new tool in studying the cytoplasmic heredity in yeast, Mol. Cell. Biochem., 14, 15–18.CrossRefGoogle Scholar
  22. 22.
    Tanaka, M., Chien, P., Naber, N., Cooke, R., and Weissman, J. S. (2004) Conformational variations in an infectious protein determine prion strain differences, Nature, 428, 323–328, doi:  https://doi.org/10.1038/nature02392.CrossRefGoogle Scholar
  23. 23.
    Cox, K., Rai, R., Distler, M., Daugherty, J. R., Coffman, J. A., and Cooper, T. G. (2000) Saccharomyces cerevisiae GATA sequences function as TATA elements during nitrogen catabolite repression and when Gln3p is excluded from the nucleus by overproduction of Ure2p, J. Biol. Chem., 275, 17611–17618, doi:  https://doi.org/10.1074/jbc.M001648200.CrossRefGoogle Scholar
  24. 24.
    Kulkarni, A. A., Abul–Hamd, A. T., Rai, R., El Berry, H., and Cooper, T. G. (2001) Gln3p nuclear localization and interaction with Ure2p in Saccharomyces cerevisiae, J. Biol. Chem., 276, 32136–32144, doi:  https://doi.org/10.1074/jbc.M104580200.CrossRefGoogle Scholar
  25. 25.
    Nizhnikov, A. A., Kondrashkina, A. M., Antonets, K. S., and Galkin, A. P. (2014) Overexpression of genes encoding asparagine–glutamine–rich transcriptional factors causes nonsense suppression in Saccharomyces cerevisiae, Russ. J. Genet. Appl. Res., 4, 122–130, doi:  https://doi.org/10.1134/S2079059714020051.CrossRefGoogle Scholar
  26. 26.
    Nizhnikov, A. A., Antonets, K. S., Inge–Vechtomov, S. G., and Derkatch, I. L. (2014) Modulation of efficiency oftranslation termination in Saccharomyces cerevisiae: turning nonsense into sense, Prion, 8, 247–260, doi:  https://doi.org/10.4161/pri.29851.CrossRefGoogle Scholar
  27. 27.
    Matveenko, A. G., Belousov, M. V., Bondarev, S. A., Moskalenko, S. E., and Zhouravleva, G. A. (2016) Identification of new genes that affect [PSI+] prion toxicity in Saccharomyces cerevisiae yeast, Mol. Biol., 50, 710–718, doi:  https://doi.org/10.1134/S0026893316050113.CrossRefGoogle Scholar
  28. 28.
    Antonets, K. S., Sargsyan, H. M., and Nizhnikov, A. A. (2016) A glutamine/asparagine–rich fragment of Gln3, but not the full–length protein, aggregates in Saccharomyces cerevisiae, Biochemistry (Moscow), 81, 407–413, doi:  https://doi.org/10.1134/S0006297916040118.CrossRefGoogle Scholar
  29. 29.
    Kaiser, C., Michaelis, S., Mitchell, A., and Cold Spring Harbor Laboratory (1994) Methods in Yeast Genetics: a Cold Spring Harbor Laboratory Course Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  30. 30.
    Zakharov, I. A., Kozhin, S. A., Kozhina, T. N., and Fedorova, I. V. (1976) Collection of Techniques for Genetics of Yeast Saccharomycetes [in Russian], Nauka, Leningrad.Google Scholar
  31. 31.
    Nizhnikov, A. A., Ryzhova, T. A., Volkov, K. V., Zadorsky, S. P., Sopova, J. V., Inge–Vechtomov, S. G., and Galkin, A. P. (2016) Interaction of prions causes heritable traits in Saccharomyces cerevisiae, PLOS Genet., 12, e1006504, doi:  https://doi.org/10.1371/journal.pgen.1006504.CrossRefGoogle Scholar
  32. 32.
    Rubel, A. A., Ryzhova, T. A., Antonets, K. S., Chernoff, Y. O., and Galkin, A. P. (2013) Identification of PrP sequences essential for the interaction between the PrP polymers and Aβ peptide in an yeast–based assay, Prion, 7, 469–476, doi:  https://doi.org/10.4161/pri.26867.CrossRefGoogle Scholar
  33. 33.
    Newnam, G. P., Wegrzyn, R. D., Lindquist, S. L., and Chernoff, Y. O. (1999) Antagonistic interactions between yeast chaperones Hsp104 and Hsp70 in prion curing, Mol. Cell. Biol., 19, 1325–1333, doi:  https://doi.org/10.1128/mcb.19.2.1325.CrossRefGoogle Scholar
  34. 34.
    Saifitdinova, A. F., Nizhnikov, A. A., Lada, A. G., Rubel, A. A., Magomedova, Z. M., Ignatova, V. V., Inge–Vechtomov, S. G., and Galkin, A. P. (2010) [NSI(+)]: a novel non–Mendelian nonsense suppressor determinant in Saccharomyces cerevisiae, Curr. Genet., 56, 467–478, doi:  https://doi.org/10.1007/s00294-010-0314-2.CrossRefGoogle Scholar
  35. 35.
    Derkatch, I. L., and Liebman, S. W. (2007) Prion–prion interactions, Prion, 1, 161–169.CrossRefGoogle Scholar
  36. 36.
    Masison, D. C., and Reidy, M. (2015) Yeast prions are useful for studying protein chaperones and protein quality control, Prion, 9, 174–183, doi:  https://doi.org/10.1080/19336896.2015.1027856.CrossRefGoogle Scholar
  37. 37.
    Huang, Z., Chen, K., Zhang, J., Li, Y., Wang, H., Cui, D., Tang, J., Liu, Y., Shi, X., Li, W., Liu, D., Chen, R., Sucgang, R. S., and Pan, X. (2013) A functional variomics tool for discovering drug–resistance genes and drug targets, Cell Rep., 3, 577–585, doi:  https://doi.org/10.1016/j.celrep.2013.01.019.CrossRefGoogle Scholar
  38. 38.
    Holmes, D. L., Lancaster, A. K., Lindquist, S., and Halfmann, R. (2013) Heritable remodeling of yeast multi–cellularity by an environmentally responsive prion, Cell, 153, 153–165, doi:  https://doi.org/10.1016/j.cell.2013.02.026.CrossRefGoogle Scholar
  39. 39.
    Cox, B. (1994) Cytoplasmic inheritance: prion–like factors in yeast, Curr. Biol., 4, 744–748, doi:  https://doi.org/10.1016/S0960-9822(00)00167-6.CrossRefGoogle Scholar
  40. 40.
    Inge–Vechtomov, S. G. (2013) The template principle: paradigm of modern genetics, Genetika, 49, 9–15, doi:  https://doi.org/10.1134/S1022795413010055.Google Scholar
  41. 41.
    Wickner, R. B. (2011) Prion diseases: infectivity versus toxicity, Nature, 470, 470–471, doi:  https://doi.org/10.1038/470470a.CrossRefGoogle Scholar
  42. 42.
    Liebman, S. W., and Derkatch, I. L. (1999) The yeast [PSI+] prion: making sense of nonsense, J. Biol. Chem., 274, 1181–1184, doi:  https://doi.org/10.1074/jbc.274.3.1181.CrossRefGoogle Scholar
  43. 43.
    Bertram, P. G., Choi, J. H., Carvalho, J., Ai, W., Zeng, C., Chan, T. F., and Zheng, X. F. S. (2000) Tripartite regulation of Gln3p by TOR, Ure2p, and phosphatases, J. Biol. Chem., 275, 35727–35733, doi:  https://doi.org/10.1074/jbc.M004235200.CrossRefGoogle Scholar
  44. 44.
    Eisenberg, D., and Jucker, M. (2012) The amyloid state of proteins in human diseases, Cell, 148, 1188–1203, doi:  https://doi.org/10.1016/j.cell.2012.02.022.CrossRefGoogle Scholar
  45. 45.
    Chernova, T. A., Kiktev, D. A., Romanyuk, A. V., Shanks, J. R., Laur, O., Ali, M., Ghosh, A., Kim, D., Yang, Z., Mang, M., Chernoff, Y. O., and Wilkinson, K. D. (2017) Yeast short–lived actin–associated protein forms a metastable prion in response to thermal stress, Cell Rep., 18, 751–761, doi:  https://doi.org/10.1016/j.celrep.2016.12.082.CrossRefGoogle Scholar
  46. 46.
    Sopko, R., Huang, D., Preston, N., Chua, G., Papp, B., Kafadar, K., Snyder, M., Oliver, S. G., Cyert, M., Hughes, T. R., Boone, C., and Andrews, B. (2006) Mapping pathways and phenotypes by systematic gene overexpression, Mol. Cell, 21, 319–330, doi:  https://doi.org/10.1016/j.molcel.2005.12.011.CrossRefGoogle Scholar
  47. 47.
    Osherovich, L. Z., Cox, B. S., Tuite, M. F., and Weissman, J. S. (2004) Dissection and design of yeast prions, PLoS Biol., 2, e86, doi:  https://doi.org/10.1371/journal.pbio.0020086.CrossRefGoogle Scholar
  48. 48.
    Crist, C. G., Nakayashiki, T., Kurahashi, H., and Nakamura, Y. (2003) [PHI+], a novel Sup35–prion variant propagated with non–Gln/Asn oligopeptide repeats in the absence of the chaperone protein Hsp104, Genes Cells, 8, 603–618, doi:  https://doi.org/10.1046/j.1365-2443.2003.00661.x.Google Scholar
  49. 49.
    Chong, Y. T., Koh, J. L. Y., Friesen, H., Duffy, K., Cox, M. J., Moses, A., Moffat, J., Boone, C., and Andrews, B. J. (2015) Yeast proteome dynamics from single cell imaging and automated analysis, Cell, 161, 1413–1424, doi:  https://doi.org/10.1016/j.cell.2015.04.051.CrossRefGoogle Scholar
  50. 50.
    Wickner, R. B., Masison, D. C., and Edskes, H. K. (1995) [PSI] and [URE3] as yeast prions, Yeast, 11, 1671–1685, doi:  https://doi.org/10.1002/yea.320111609.Google Scholar
  51. 51.
    Sikorski, R. S., and Hieter, P. (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae, Genetics, 122, 19–27, doi: 0378111995000377.Google Scholar
  52. 52.
    Chernoff, Y. O., Newnam, G. P., Kumar, J., Allen, K., and Zink, A. D. (1999) Evidence for a protein mutator in yeast: role of the Hsp70–related chaperone Ssb in formation, stability, and toxicity of the [PSI] prion, Mol. Cell. Biol., 19, 8103–8112, doi:  https://doi.org/10.1128/MCB.19.12.8103.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • K. S. Antonets
    • 1
    • 2
  • M. V. Belousov
    • 1
    • 2
  • M. E. Belousova
    • 2
  • A. A. Nizhnikov
    • 1
    • 2
    Email author
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.All-Russia Research Institute for Agricultural MicrobiologySt. Petersburg, PushkinRussia

Personalised recommendations