Biochemistry (Moscow)

, Volume 84, Issue 1, pp 71–78 | Cite as

Brain Proteome of Drosophila melanogaster Is Enriched with Nuclear Proteins

  • K. G. Kuznetsova
  • M. V. Ivanov
  • M. A. Pyatnitskiy
  • L. I. Levitsky
  • I. Y. Ilina
  • A. L. Chernobrovkin
  • R. A. Zubarev
  • M. V. Gorhskov
  • S. A. MoshkovskiiEmail author


The brain proteome of Drosophila melanogaster was characterized by liquid chromatography/high-resolution mass spectrometry and compared to the earlier characterized Drosophila whole-body and head proteomes. Raw data for all the proteomes were processed in a similar manner. Approximately 4000 proteins were identified in the brain proteome that represented, as expected, the subsets of the head and body proteomes. However, after thorough data curation, we reliably identified 24 proteins unique for the brain proteome; 13 of them have never been detected before at the protein level. Fourteen of 24 identified proteins have been annotated as nuclear proteins. Comparison of three used datasets by label-free quantitation showed statistically significant enrichment of the brain proteome with nuclear proteins. Therefore, we recommend the use of isolated brain preparations in the studies of Drosophila nuclear proteins.


proteomics mass spectrometry Drosophila melanogaster brain nuclear protein 



bicinchoninic acid


liquid chromatography


mass spectrometry


tandem mass spectrometry


normalized spectral abundance factor


triethylammonium bicarbonate


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pandey, U. B., and Nichols, C. D. (2011) Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery, Pharmacol. Rev., 63, 411–436.CrossRefGoogle Scholar
  2. 2.
    Vierstraete, E., Cerstiaens, A., Baggerman, G., Van den Bergh, G., De Loof, A., and Schoofs, L. (2003) Proteomics in Drosophila melanogaster: first 2D database of larval hemolymph proteins, Biochem. Biophys. Res. Commun., 304, 831–838.CrossRefGoogle Scholar
  3. 3.
    Scigelova, M., and Makarov, A. (2006) Orbitrap mass ana–lyzer–overview and applications in proteomics, Proteomics, 6 (Suppl. 2), 16–21.Google Scholar
  4. 4.
    Tyanova, S., Albrechtsen, R., Kronqvist, P., Cox, J., Mann, M., and Geiger, T. (2016) Proteomic maps of breast cancer subtypes, Nat. Commun., 7, 10259.CrossRefGoogle Scholar
  5. 5.
    Vizcaino, J. A., Cote, R. G., Csordas, A., Dianes, J. A., Fabregat, A., Foster, J. M., Griss, J., Alpi, E., Birim, M., Contell, J., O’Kelly, G., Schoenegger, A., Ovelleiro, D., Perez–Riverol, Y., Reisinger, F., Rios, D., Wang, R., and Hermjakob, H. (2013) The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013, Nucleic Acids Res., 41, D1063–D1069.Google Scholar
  6. 6.
    Xing, X., Zhang, C., Li, N., Zhai, L., Zhu, Y., Yang, X., and Xu, P. (2014) Qualitative and quantitative analysis of the adult Drosophila melanogaster proteome, Proteomics, 14, 286–290.CrossRefGoogle Scholar
  7. 7.
    Aradska, J., Bulat, T., Sialana, F. J., Birner–Gruenberger, R., Erich, B., and Lubec, G. (2015) Gel–free mass spec–trometry analysis of Drosophila melanogaster heads, Proteomics, 15, 3356–3360.CrossRefGoogle Scholar
  8. 8.
    Casas–Vila, N., Bluhm, A., Sayols, S., Dinges, N., Dejung, M., Altenhein, T., Kappei, D., Altenhein, B., Roignant, J.–Y., and Butter, F. (2017) The developmental proteome of Drosophila melanogaster, Genome Res., 27, 1273–1285.CrossRefGoogle Scholar
  9. 9.
    Kuznetsova, K. G., Kliuchnikova, A. A., Ilina, I. U., Chernobrovkin, A. L., Novikova, S. E., Farafonova, T. E., Karpov, D. S., Ivanov, M. V., Goncharov, A. O., Ilgisonis, E. V., Voronko, O. E., Nasaev, S. S., Zgoda, V. G., Zubarev, R. A., Gorshkov, M. V., and Moshkovskii, S. A. (2018) Proteogenomics of adenosine–to–ino–sine RNA editing in fruit fly, J. Proteome Res., 17, 3889–3903.CrossRefGoogle Scholar
  10. 10.
    Vizcaino, J. A., Deutsch, E. W., Wang, R., Csordas, A., Reisinger, F., Rios, D., Dianes, J. A., Sun, Z., Farrah, T., Bandeira, N., Binz, P.–A., Xenarios, I., Eisenacher, M., Mayer, G., Gatto, L., Campos, A., Chalkley, R. J., Kraus, H.–J., Albar, J. P., Martinez–Bartolome, S., Apweiler, R., Omenn, G. S., Martens, L., Jones, A. R., and Hermjakob, H. (2014) ProteomeXchange provides globally coordinated proteomics data submission and dissemination, Nat. Biotech., 32, 223–226.CrossRefGoogle Scholar
  11. 11.
    Levitsky, L. I., Ivanov, M. V., Lobas, A. A., Bubis, J. A., Tarasova, I. A., Solovyeva, E. M., Pridatchenko, M. L., and Gorshkov, M. V. (2018) IdentiPy: an extensible search engine for protein identification in shotgun proteomics, J. Proteome Res., 17, 2249–2255.CrossRefGoogle Scholar
  12. 12.
    Craig, R., and Beavis, R. C. (2003) A method for reducing the time required to match protein sequences with tandem mass spectra, Rapid Commun. Mass Spectrom., 17, 2310–2316.CrossRefGoogle Scholar
  13. 13.
    Paoletti, A. C., Parmely, T. J., Tomomori–Sato, C., Sato, S., Zhu, D., Conaway, R. C., Conaway, J. W., Florens, L., and Washburn, M. P. (2006) Quantitative proteomic analy–sis of distinct mammalian Mediator complexes using nor–malized spectral abundance factors, Proc. Natl. Acad. Sci. USA, 103, 18928–18933.CrossRefGoogle Scholar
  14. 14.
    Blake, J. A., Dolan, M., Drabkin, H., Hill, D. P., Ni, L., Sitnikov, D., Bridges, S., Burgess, S., Buza, T., McCarthy, F., Peddinti, D., Pillai, L., Carbon, S., Dietze, H., Ireland, A., Lewis, S. E., Mungall, C. J., Gaudet, P., Chisholm, R. L., Fey, P., Kibbe, W. A., Basu, S., Siegele, D. A., McIntosh, B. K., Renfro, D. P., Zweifel, A. E., Hu, J. C., Brown, N. H., Tweedie, S., Alam–Faruque, Y., Apweiler, R., Auchinchloss, A., Axelsen, K., Bely, B., Blatter, M.–C., Bonilla, C., Bougueleret, L., Boutet, E., Breuza, L., Bridge, A., Chan, W. M., Chavali, G., Coudert, E., Dimmer, E., Estreicher, A., Famiglietti, L., Feuermann, M., Gos, A., Gruaz–Gumowski, N., Hieta, R., Hinz, U., Hulo, C., Huntley, R., James, J., Jungo, F., Keller, G., Laiho, K., Legge, D., Lemercier, P., Lieberherr, D., Magrane, M., Martin, M. J., Masson, P., Mutowo–Muellenet, P., O’Donovan, C., Pedruzzi, I., Pichler, K., Poggioli, D., Porras Millan, P., Poux, S., Rivoire, C., Roechert, B., Sawford, T., Schneider, M., Stutz, A., Sundaram, S., Tognolli, M., Xenarios, I., Foulger, R., Lomax, J., Roncaglia, P., Khodiyar, V. K., Lovering, R. C., Talmud, P. J., Chibucos, M., Gwinn Giglio, M., Chang, H.–Y., Hunter, S., McAnulla, C., Mitchell, A., Sangrador, A., Stephan, R., Harris, M. A., Oliver, S. G., Rutherford, K., Wood, V., Bahler, J., Lock, A., Kersey, P. J., McDowall, M. D., Staines, D. M., Dwinell, M., Shimoyama, M., Laulederkind, S., Hayman, T., Wang, S.–J., Petri, V., Lowry, T., D’Eustachio, P., Matthews, L., Balakrishnan, R., Binkley, G., Cherry, J. M., Costanzo, M. C., Dwight, S. S., Engel, S. R., Fisk, D. G., Hitz, B. C., Hong, E. L., Karra, K., Miyasato, S. R., Nash, R. S., Park, J., Skrzypek, M. S., Weng, S., Wong, E. D., Berardini, T. Z., Li, D., Huala, E., Mi, H., Thomas, P. D., Chan, J., Kishore, R., Sternberg, P., Van Auken, K., Howe, D., and Westerfield, M. (2013) Gene ontology annotations and resources, Nucleic Acids Res., 41, D530–D535.Google Scholar
  15. 15.
    Gaudet, P., Michel, P.–A., Zahn–Zabal, M., Britan, A., Cusin, I., Domagalski, M., Duek, P. D., Gateau, A., Gleizes, A., Hinard, V., Rech de Laval, V., Lin, J., Nikitin, F., Schaeffer, M., Teixeira, D., Lane, L., and Bairoch, A. (2017) The neXtProt knowledgebase on human proteins: 2017 update, Nucleic Acids Res., 45, D177–D182.Google Scholar
  16. 16.
    Moshkovskii, S. A., Ivanov, M. V., Kuznetsova, K. G., and Gorshkov, M. V. (2018) Identification of single amino acid substitutions in proteogenomics, Biochemistry (Moscow), 83, 250–258.CrossRefGoogle Scholar
  17. 17.
    Chernobrovkin, A. L., Kopylov, A. T., Zgoda, V. G., Moysa, A. A., Pyatnitskiy, M. A., Kuznetsova, K. G., Ilina, I. Y., Karpova, M. A., Karpov, D. S., Veselovsky, A. V., Ivanov, M. V., Gorshkov, M. V., Archakov, A. I., and Moshkovskii, S. A. (2015) Methionine to isothreonine con–version as a source of false discovery identifications of genetically encoded variants in proteogenomics, J. Proteomics, 120, 169–178.CrossRefGoogle Scholar
  18. 18.
    UniProt Consortium (2015) UniProt: a hub for protein information, Nucleic Acids Res., 43, D204–D212.Google Scholar
  19. 19.
    Kruskal, W., and Wallis, W. A. (1952) Use of ranks in one–criterion variance analysis, J. Am. Stat. Assoc., 47, 583–621.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • K. G. Kuznetsova
    • 1
  • M. V. Ivanov
    • 2
  • M. A. Pyatnitskiy
    • 1
    • 3
  • L. I. Levitsky
    • 2
  • I. Y. Ilina
    • 1
  • A. L. Chernobrovkin
    • 4
  • R. A. Zubarev
    • 4
    • 5
  • M. V. Gorhskov
    • 2
  • S. A. Moshkovskii
    • 1
    • 6
    Email author
  1. 1.Institute of Biomedical ChemistryMoscowRussia
  2. 2.Institute of Energy Problems of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  3. 3.Higher School of EconomicsMoscowRussia
  4. 4.Karolinska InstitutetStockholmSweden
  5. 5.Sechenov First Moscow State Medical UniversityMoscowRussia
  6. 6.Pirogov Russian National Research Medical University (RNRMU)MoscowRussia

Personalised recommendations