Biochemistry (Moscow)

, Volume 83, Supplement 1, pp S176–S189 | Cite as

Interactions between the Translation Machinery and Microtubules

  • E. M. ChudinovaEmail author
  • E. S. Nadezhdina


Microtubules are components of eukaryotic cytoskeleton that are involved in the transport of various components from the nucleus to the cell periphery and back. They also act as a platform for assembly of complex molecular ensembles. Ribonucleoprotein (RNP) complexes, such as ribosomes and mRNPs, are transported over significant distances (e.g. to neuronal processes) along microtubules. The association of RNPs with microtubules and their transport along these structures are essential for compartmentalization of protein biosynthesis in cells. Microtubules greatly facilitate assembly of stress RNP granules formed by accumulation of translation machinery components during cell stress response. Microtubules are necessary for the cytoplasm-to-nucleus transport of proteins, including ribosomal proteins. At the same time, ribosomal proteins and RNA-binding proteins can influence cell mobility and cytoplasm organization by regulating microtubule dynamics. The molecular mechanisms underlying the association between the translation machinery components and microtubules have not been studied systematically; the results of such studies are mostly fragmentary. In this review, we attempt to fill this gap by summarizing and discussing the data on protein and RNA components of the translation machinery that directly interact with microtubules or microtubule motor proteins.


ribosome polysome mRNP mRNA kinesin dynein stress granule 



adenomatous polyposis coli


eukaryotic translation elongation factor




eukaryotic translation initiation factor

Hu antigen

antigen in human paraneoplastic neurological syndromes


Janus kinase and microtubule-interacting protein 1


kinesin family member


microtubule-associated protein 1B light chain 1


messenger ribonucleoprotein


poly(A)-binding protein


large subunit ribosomal protein


small subunit ribosomal protein


mRNA untranslated region


Y box-binding protein 1


zipcode-binding protein 1


  1. 1.
    Jackson, R. J., Hellen, C. U., and Pestova, T. V. (2010) The mechanism of eukaryotic translation initiation and principles of its regulation, Rev. Mol. Cell Biol., 11, 113–127.CrossRefGoogle Scholar
  2. 2.
    Afonina, Zh. A., and Shirokov, V. A. (2018) Three-dimensional organization of polyribosomes–a modern approach, Biochemistry (Moscow), 83, Suppl. 1, S48–S55.CrossRefGoogle Scholar
  3. 3.
    Negrutskii, B. S., Stapulionis, R., and Deutscher, M. P. (1994) Supramolecular organization of the mammalian translation system, Proc. Natl. Acad. Sci. USA, 91, 964–968.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Gross, S. R., and Kinzy, T. G. (2007) Improper organization of the actin cytoskeleton affects protein synthesis at initiation, Mol. Cell Biol., 27, 1974–1989.CrossRefPubMedGoogle Scholar
  5. 5.
    Morelli, J. K., Zhou, W., Yu, J., Lu, C., and Vayda, M. E. (1998) Actin depolymerization affects stress-induced translational activity of potato tuber tissue, Plant Physiol., 116, 1227–1237.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Carbonaro, M., O’Brate, A., and Giannakakou, P. (2011) Microtubule disruption targets HIF-1alpha mRNA to cytoplasmic P-bodies for translational repression, J. Cell Biol., 192, 83–99.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    King, M. L., Messitt, T. J., and Mowry, K. L. (2005) Putting RNAs in the right place at the right time: RNA localization in the frog oocyte, Biol. Cell, 97, 19–33.CrossRefPubMedGoogle Scholar
  8. 8.
    Lecuyer, E., Yoshida, H., Parthasarathy, N., Alm, C., Babak, T., Cerovina, T., Hughes, T. R., Tomancak, P., and Krause, H. M. (2007) Global analysis of mRNA localization reveals a prominent role in organizing cellular architecture and function, Cell, 131, 174–187.CrossRefPubMedGoogle Scholar
  9. 9.
    Jansen, R. P., and Niessing, D. (2012) Assembly of mRNA–protein complexes for directional mRNA transport in eukaryotes–an overview, Curr. Protein Pept. Sci., 13, 284–293.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Parton, R. M., Davidson, A., Davis, I., and Weil, T. T. (2014) Subcellular mRNA localisation at a glance, J. Cell Sci., 127, 2127–2133.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Buxbaum, A. R., Yoon, Y. J., Singer, R. H., and Park, H. Y. (2015) Single-molecule insights into mRNA dynamics in neurons, Trends Cell Biol., 25, 468–475.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Piper, M., Lee, A. C., van Horck, F. P., McNeilly, H., Lu, T. B., Harris, W. A., and Holt, C. E. (2015) Differential requirement of Factin and microtubule cytoskeleton in cue-induced local protein synthesis in axonal growth cones, Neural Dev., 10,3.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Katz, Z. B., Wells, A. L., Park, H. Y., Wu, B., Shenoy, S. M., and Singer, R. H. (2012) β-Actin mRNA compartmen-talization enhances focal adhesion stability and directs cell migration, Genes Dev., 26, 1885–1890.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lenk, R., Ransom, L., Kaufmann, Y., and Penman, S. (1977) A cytoskeletal structure with associated polyribo-somes obtained from HeLa cells, Cell, 10, 67–78.CrossRefPubMedGoogle Scholar
  15. 15.
    Shestakova, E. A., Motuz, L. P., and Gavrilova, L. P. (1993) Colocalization of components of the protein-synthesizing machinery with the cytoskeleton in G0-arrested cells, Cell Biol. Int., 17, 417–424.CrossRefPubMedGoogle Scholar
  16. 16.
    Edmonds, B. T., Bell, A., Wyckoff, J., Condeelis, J., and Leyh, T. S. (1998) The effect of Factin on the binding and hydrolysis of guanine nucleotide by Dictyostelium elongation factor 1A, J. Biol. Chem., 273, 10288–10295.CrossRefPubMedGoogle Scholar
  17. 17.
    Perez, W. B., and Kinzy, T. G. (2014) Translation elongation factor 1A mutants with altered actin bundling activity show reduced aminoacyl-tRNA binding and alter initiation via eIF2a phosphorylation, J. Biol. Chem., 289, 20928–20938.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kaverina, I., and Straube, A. (2011) Regulation of cell migration by dynamic microtubules, Semin. Cell Dev. Biol., 22, 968–974.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Carson, J. H., and Barbarese, E. (2005) Systems analysis of RNA trafficking in neural cells, Biol. Cell, 97, 51–62.CrossRefPubMedGoogle Scholar
  20. 20.
    Mahamid, J., Pfeffer, S., Schaffer, M., Villa, E., Danev, R., Cuellar, L. K., Forster, F., Hyman, A. A., Plitzko, J. M., and Baumeister, W. (2016) Visualizing the molecular sociology at the HeLa cell nuclear periphery, Science, 351, 1969–1972.CrossRefGoogle Scholar
  21. 21.
    Castoldi, M., and Popov, A. V. (2003) Purification of brain tubulin through two cycles of polymerization-depolymerization in a high-molarity buffer, Protein Expr. Purif., 32, 83–88.CrossRefPubMedGoogle Scholar
  22. 22.
    Sakamoto, T., Uezu, A., Kawauchi, S., Kuramoto, T., Makino, K., Umeda, K., Araki, N., Baba, H., and Nakanishi, H. (2008) Mass spectrometric analysis of microtubule cosedimented proteins from rat brain, Genes Cells, 13, 3295–3312.CrossRefGoogle Scholar
  23. 23.
    Patel, P. C., Fisher, K. H., Yang, E. C., Deane, C. M., and Harrison, R. E. (2009) Proteomic analysis of microtubule-associated proteins during macrophage activation, Mol. Cell Proteomics, 8, 2500–2514.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ozlu, N., Monigatti, F., Renard, B. Y., Field, C. M., Steen, H., Mitchison, T. J., and Steen, J. J. (2010) Binding partner switching on microtubules and aurora-B in the mitosis to cytokinesis transition, Mol. Cell Proteomics, 9, 336–350.CrossRefPubMedGoogle Scholar
  25. 25.
    Gache, V., Waridel, P., Winter, C., Juhem, A., Schroeder, M., Shevchenko, A., and Popov, A. V. (2010) Xenopus meiotic microtubule-associated interactome, PLoS One, 17, e9248.CrossRefGoogle Scholar
  26. 26.
    Volkov, V. A., Grissom, P. M., Arzhanik, V. K., Zaytsev, A. V., Renganathan, K., McClure-Begley, T., Old, W. M., Ahn, N., and McIntosh, J. R. (2015) Centromere protein F includes two sites that couple efficiently to depolymerizing microtubules, J. Cell Biol., 209, 813–828.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Chuong, S. D., Good, A. G., Taylor, G. J., Freeman, M. C., Moorhead, G. B., and Muench, D. G. (2004) Large-scale identification of tubulin-binding proteins provides insight on subcellular trafficking, metabolic channeling, and signaling in plant cells, Mol. Cell Proteomics, 3, 970–983.CrossRefPubMedGoogle Scholar
  28. 28.
    Derbyshire, P., Menard, D., Green, P., Saalbach, G., Buschmann, H., Lloyd, C. W., and Pesquet, E. (2015) Proteomic analysis of microtubule interacting proteins over the course of xylem tracheary element formation in Arabidopsis, Plant Cell, 27, 2709–2726.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Hughes, J. R., Meireles, A. M., Fisher, K. H., Garcia, A., Antrobus, P. R., Wainman, A., Zitzmann, N., Deane, C., Ohkura, H., and Wakefield, J. G. (2008) A microtubule interactome: complexes with roles in cell cycle and mitosis, PLoS Biol., 22, e98.CrossRefGoogle Scholar
  30. 30.
    Sauer, G., Korner, R., Hanisch, A., Ries, A., Nigg, E. A., and Sillje, H. H. (2005) Proteome analysis of the human mitotic spindle, Mol. Cell Proteomics, 4, 35–43.CrossRefPubMedGoogle Scholar
  31. 31.
    Severin, F. F., Shanina, N. A., Shevchenko, A., Solovyanova, O. B., Koretsky, V. V., and Nadezhdina, E. S. (1997) A major 170 kDa protein associated with bovine adrenal medulla microtubules: a member of the centrosomin family? FEBS Lett., 420, 125–128.CrossRefPubMedGoogle Scholar
  32. 32.
    Shanina, N. A., Ivanov, P. A., Chudinova, E. M., Severin, F. F., and Nadezhdina, E. S. (2001) Translation initiation factor eIF3 is able to bind with microtubules in mammalian cells, Mol. Biol. (Moscow), 35, 638–646.CrossRefGoogle Scholar
  33. 33.
    Hasek, J., Kovarik, P., Valasek, L., Malinska, K., Schneider, J., Kohlwein, S. D., and Ruis, H. (2000) Rpg1p, the subunit of the Saccharomyces cerevisiae eIF3 core complex, is a microtubule-interacting protein, Cell Motil. Cytoskeleton, 45, 235–246.CrossRefPubMedGoogle Scholar
  34. 34.
    Berg, J. M., Lee, C., Chen, L., Galvan, L., Cepeda, C., Chen, J. Y., Penagarikano, O., Stein, J. L., Li, A., Oguro-Ando, A., Miller, J. A., Vashisht, A. A., Starks, M. E., Kite, E. P., Tam, E., Gdalyahu, A., Al-Sharif, N. B., Burkett, Z. D., White, S. A., Fears, S. C., Levine, M. S., Wohlschlegel, J. A., and Geschwind, D. H. (2015) JAKMIP1, a novel regulator of neuronal translation, modulates synaptic function and autistic-like behaviors in mouse, Neuron, 88, 1173–1191.Google Scholar
  35. 35.
    Jang, C. Y., Kim, H. D., Zhang, X., Chang, J. S., and Kim, J. (2012) Ribosomal protein S3 localizes on the mitotic spindle and functions as a microtubule associated protein in mitosis, Biochem. Biophys. Res. Commun., 429, 57–62.CrossRefPubMedGoogle Scholar
  36. 36.
    Wang, S., Huang, J., He, J., Wang, A., Xu, S., Huang, S. F., and Xiao, S. (2010) RPL41, a small ribosomal peptide deregulated in tumors, is essential for mitosis and centro-some integrity, Neoplasia, 12, 284–293.Google Scholar
  37. 37.
    Chierchia, L., Tussellino, M., Guarino, D., Carotenuto, R., DeMarco, N., Campanella, C., Biffo, S., and Vaccaro, M. C. (2015) Cytoskeletal proteins associate with components of the ribosomal maturation and translation apparatus in Xenopus stage I oocytes, Zygote, 23, 669–682.CrossRefPubMedGoogle Scholar
  38. 38.
    Venticinque, L., Jamieson, K. V., and Meruelo, D. (2011) Interactions between laminin receptor and the cytoskeleton during translation and cell motility, PLoS One, 6, e15895.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Eliseeva, I. A., Kim, E. R., Guryanov, S. G., Ovchinnikov, L. P., and Lyabin, D. N. (2011) Y-box-binding protein 1 (YB-1) and its functions, Biochemistry (Moscow), 76, 1402–1433.CrossRefGoogle Scholar
  40. 40.
    Chernov, K. G., Mechulam, A., Popova, N. V., Pastre, D., Nadezhdina, E. S., Skabkina, O. V., Shanina, N. A., Vasiliev, V. D., Tarrade, A., Melki, J., Joshi, V., Baconnais, S., Toma, F., Ovchinnikov, L. P., and Curmi, P. A. (2008) YB-1 promotes microtubule assembly in vitro through interaction with tubulin and microtubules, BMC Biochem., 9, e23.CrossRefGoogle Scholar
  41. 41.
    Chernov, K. G., Curmi, P. A., Hamon, L., Mechulam, A., Ovchinnikov, L. P., and Pastré, D. (2008) Atomic force microscopy reveals binding of mRNA to microtubules mediated by two major mRNP proteins YB-1 and PABP, FEBS Lett., 582, 2875–2881.CrossRefPubMedGoogle Scholar
  42. 42.
    Preitner, N., Quan, J., Nowakowski, D. W., Hancock, M. L., Shi, J., Tcherkezian, J., Young-Pearse, T. L., and Flanagan, J. G. (2014) APC is an RNA-binding protein, and its interactome provides a link to neural development and microtubule assembly, Cell, 158, 368–382.PubMedGoogle Scholar
  43. 43.
    Mili, S., Moissoglu, K., and Macara, I. G. (2008) Genomewide screen reveals APC-associated RNAs enriched in cell protrusions, Nature, 453, 115–119.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Villarin, J. M., McCurdy, E. P., Martinez, J. C., and Hengst, U. (2016) Local synthesis of dynein cofactors matches retrograde transport to acutely changing demands, Nat. Commun., 7, 13865.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Moore, R. C., Durso, N. A., and Cyr, R. J. (1998) Elongation factor-1 alpha stabilizes microtubules in a calcium/calmodulin-dependent manner, Cell Motil. Cytoskeleton, 41, 168–180.CrossRefPubMedGoogle Scholar
  46. 46.
    Shiina, N., Gotoh, Y., Kubomura, N., Iwamatsu, A., and Nishida, E. (1994) Microtubule severing by elongation factor 1 alpha, Science, 266, 282–285.CrossRefPubMedGoogle Scholar
  47. 47.
    Suda, M., Fukui, M., Sogabe, Y., Sato, K., Morimatsu, A., Arai, R., Motegi, F., Miyakawa, T., Mabuchi, I., and Hirata, D. (1999) Overproduction of elongation factor 1 alpha, an essential translational component, causes aberrant cell morphology by affecting the control of growth polarity in fission yeast, Genes Cells, 4, 517–527.PubMedGoogle Scholar
  48. 48.
    Hashemzadeh-Bonehi, L., Curtis, P. S., Morley, S. J., Thorpe, J. R., and Pain, V. M. (2003) Overproduction of a conserved domain of fission yeast and mammalian translation initiation factor eIF4G causes aberrant cell morphology and results in disruption of the localization of Factin and the organization of microtubules, Genes Cells, 8, 163–178.CrossRefPubMedGoogle Scholar
  49. 49.
    Bisbal, M., Wojnacki, J., Peretti, D., Ropolo, A., Sesma, J., Jausoro, I., and Caceres, A. (2009) KIF4 mediates anterograde translocation and positioning of ribosomal constituents to axons, J. Biol. Chem., 284, 9489–9497.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Campbell, E. M., and Hope, T. J. (2003) Role of the cytoskeleton in nuclear import, Adv. Drug Deliv. Rev., 55, 761–771.CrossRefPubMedGoogle Scholar
  51. 51.
    Roth, D. M., Moseley, G. W., Glover, D., Pouton, C. W., and Jans, D. A. (2007) A microtubule-facilitated nuclear import pathway for cancer regulatory proteins, Traffic, 8, 673–686.CrossRefPubMedGoogle Scholar
  52. 52.
    Fukao, A., Sasano, Y., Imataka, H., Inoue, K., Sakamoto, H., Sonenberg, N., Thoma, C., and Fujiwara, T. (2009) The ELAV protein HuD stimulates capdependent translation in a poly(A)-and eIF4A-dependent manner, Mol. Cell, 36, 1007–1017.CrossRefPubMedGoogle Scholar
  53. 53.
    Fujiwara, Y., Kasashima, K., Saito, K., Fukuda, M., Fukao, A., Sasano, Y., Inoue, K., Fujiwara, T., and Sakamoto, H. (2011) Microtubule association of a neuronal RNA-binding protein HuD through its binding to the light chain of MAP1B, Biochimie, 93, 817–822.CrossRefPubMedGoogle Scholar
  54. 54.
    Cheng, Y. C., Liou, J. P., Kuo, C. C., Lai, W. Y., Shih, K. H., Chang, C. Y., Pan, W. Y., Tseng, J. T., and Chang, J. Y. (2013) MPT0B098, a novel microtubule inhibitor that destabilizes the hypoxia-inducible factor-1a mRNA through decreasing nuclear-cytoplasmic translocation of RNA-binding protein HuR, Mol. Cancer Ther., 12, 1202–1212.Google Scholar
  55. 55.
    Sweet, T. J., Boyer, B., Hu, W., Baker, K. E., and Coller, J. (2007) Microtubule disruption stimulates P-body formation, RNA, 13, 493–502.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Kedersha, N., Ivanov, P., and Anderson, P. (2013) Stress granules and cell signaling: more than just a passing phase? Trends Biochem. Sci., 38, 494–506.CrossRefPubMedGoogle Scholar
  57. 57.
    Buchan, J. R. (2014) mRNP granules: assembly, function, and connections with disease, RNA Biol., 11, 1019–1030.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Anderson, P., Kedersha, N., and Ivanov, P. (2015) Stress granules, P-bodies and cancer, Biochim. Biophys. Acta, 1849, 861–870.CrossRefPubMedGoogle Scholar
  59. 59.
    Ivanov, P. A., Chudinova, E. M., and Nadezhdina, E. S. (2003) Disruption of microtubules inhibits cytoplasmic ribonucleoprotein stress granule formation, Exp. Cell Res., 290, 227–233.CrossRefPubMedGoogle Scholar
  60. 60.
    Kwon, S., Zhang, Y., and Matthias, P. (2007) The deacetylase HDAC6 is a novel critical component of stress granules involved in the stress response, Genes Dev., 21, 3381–3394.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Fujimura, K., Katahira, J., Kano, F., Yoneda, Y., and Murata, M. (2009) Microscopic dissection of the process of stress granule assembly, Biochim. Biophys. Acta, 1793, 1728–1737.CrossRefPubMedGoogle Scholar
  62. 62.
    Kolobova, E., Efimov, A., Kaverina, I., Rishi, A. K., Schrader, J. W., Ham, A. J., Larocca, M. C., and Goldenring, J. R. (2009) Microtubule-dependent association of AKAP350A and CCAR1 with RNA stress granules, Exp. Cell Res., 315, 542–555.CrossRefPubMedGoogle Scholar
  63. 63.
    Chernov, K. G., Barbet, A., Hamon, L., Ovchinnikov, L. P., Curmi, P. A., and Pastre, D. (2009) Role of microtubules in stress granule assembly: microtubule dynamical instability favors the formation of micrometric stress granules in cells, J. Biol. Chem., 284, 36569–3680.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Nadezhdina, E. S., Lomakin, A. J., Shpilman, A. A., Chudinova, E. M., and Ivanov, P. A. (2010) Microtubules govern stress granule mobility and dynamics, Biochim. Biophys. Acta, 1803, 361–371.CrossRefPubMedGoogle Scholar
  65. 65.
    Tsai, N. P., Tsui, Y. C., and Wei, L. N. (2009) Dynein motor contributes to stress granule dynamics in primary neurons, Neuroscience, 159, 647–656.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Loschi, M., Leishman, C. C., Berardone, N., and Boccacio, G. L. (2009) Dynein and kinesin regulate stress-granule and P-body dynamics, J. Cell Sci., 122, 3973–3982.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Chudinova, E. M., Nadezhdina, E. S., and Ivanov, P. A. (2012) Cellular acidosis inhibits assembly, disassembly, and motility of stress granules, Biochemistry (Moscow), 77, 1277–1284.CrossRefGoogle Scholar
  68. 68.
    Cooper, J. R., and Wordeman, L. (2009) The diffusive interaction of microtubule binding proteins, Curr. Opin. Cell Biol., 21, 68–73.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Helenius, J., Brouhard, G., Kalaidzidis, Y., Diez, S., and Howard, J. (2006) The depolymerizing kinesin MCAK uses lattice diffusion to rapidly target microtubule ends, Nature, 441, 115–119.CrossRefPubMedGoogle Scholar
  70. 70.
    Hinrichs, M. H., Jalal, A., Brenner, B., Mandelkow, E., Kumar, S., and Scholz, T. (2012) Tau protein diffuses along the microtubule lattice, J. Biol. Chem., 287, 38559–38568.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Ali, M. Y., Krementsova, E. B., Kennedy, G. G., Mahaffy, R., Pollard, T. D., Trybus, K. M., and Warshaw, D. M. (2007) Myosin Va maneuvers through actin intersections and diffuses along microtubules, Proc. Natl. Acad. Sci. USA, 13, 4332–4336.CrossRefGoogle Scholar
  72. 72.
    Ayloo, S., Lazarus, J. E., Dodda, A., Tokito, M., Ostap, E. M., and Holzbaur, E. L. (2014) Dynactin functions as both a dynamic tether and brake during dynein-driven motility, Nat. Commun., 5, 4807.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Bartoli, K. M., Jakovljevic, J., Woolford, J. L., Jr., and Saunders, W. S. (2011) Kinesin molecular motor Eg5 functions during polypeptide synthesis, Mol. Biol. Cell, 22, 3420–3430.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Higuchi, Y., Ashwin, P., Roger, Y., and Steinberg, G. (2014) Early endosome motility spatially organizes polysome distribution, J. Cell Biol., 204, 343–357.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Graber, T. E., Hebert-Seropian, S., Khoutorsky, A., David, A., Yewdell, J. W., Lacaille, J. C., and Sossin, W. S. (2013) Reactivation of stalled polyribosomes in synaptic plasticity, Proc. Natl. Acad. Sci. USA, 110, 16205–16210.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    El Fatimy, R., Davidovic, L., Tremblay, S., Jaglin, X., Dury, A., Robert, C., De Koninck, P., and Khandjian, E. W. (2016) Tracking the fragile X mental retardation protein in a highly ordered neuronal ribonucleoparticles population: a link between stalled polyribosomes and RNA granules, PLoS Genet., 12, e1006192.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Pichon, X., Bastide, A., Safieddine, A., Chouaib, R., Samacoits, A., Basyuk, E., Peter, M., Mueller, F., and Bertrand, E. (2016) Visualization of single endogenous polysomes reveals the dynamics of translation in live human cells, J. Cell Biol., 214, 769–781.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Hirokawa, N., and Tanaka, Y. (2015) Kinesin superfamily proteins (KIFs): various functions and their relevance for important phenomena in life and diseases, Exp. Cell Res., 334, 16–25.CrossRefPubMedGoogle Scholar
  79. 79.
    Davidovic, L., Jaglin, X. H., Lepagnol-Bestel, A. M., Tremblay, S., Simonneau, M., Bardoni, B., and Khandjian, E. W. (2007) The fragile X mental retardation protein is a molecular adaptor between the neurospecific KIF3C kinesin and dendritic RNA granules, Hum. Mol. Genet., 16, 3047–3058.CrossRefPubMedGoogle Scholar
  80. 80.
    Takano, K., Miki, T., Katahira, J., and Yoneda, Y. (2007) NXF2 is involved in cytoplasmic mRNA dynamics through interactions with motor proteins, Nucleic Acids Res., 35, 2513–2521.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Song, T., Zheng, Y., Wang, Y., Katz, Z., Liu, X., Chen, S., Singer, R. H., and Gu, W. (2015) Specific interaction of KIF11 with ZBP1 regulates the transport of β-actin mRNA and cell motility, J. Cell Sci., 128, 1001–1010.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Kislauskis, E. H., Zhu, X., and Singer, R. H. (1997) β-Actin messenger RNA localization and protein synthesis augment cell motility, J. Cell Biol., 136, 1263–1270.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Huttelmaier, S., Zenklusen, D., Lederer, M., Dictenberg, J., Lorenz, M., Meng, X., Bassell, G. J., Condeelis, J., and Singer, R. H. (2005) Spatial regulation of beta-actin translation by Src-dependent phosphorylation of ZBP1, Nature, 24, 438, 512–515.CrossRefGoogle Scholar
  84. 84.
    Shigeoka, T., Jung, H., Jung, J., Turner-Bridger, B., Ohk, J., Lin, J. Q., Amieux, P. S., and Holt, C. E. (2016) Dynamic axonal translation in developing and mature visual circuits, Cell, 166, 181–192.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Simon, B., Masiewicz, P., Ephrussi, A., and Carlomagno, T. (2015) The structure of the SOLE element of oskar mRNA, RNA, 21, 1444–1453.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Kanai, Y., Dohmae, N., and Hirokawa, N. (2004) Kinesin transports RNA: isolation and characterization of an RNA-transporting granule, Neuron, 43, 513–525.CrossRefPubMedGoogle Scholar
  87. 87.
    Falley, K., Schutt, J., Iglauer, P., Menke, K., Maas, C., Kneussel, M., Kindler, S., Wouters, F. S., Richter, D., and Kreienkamp, H. J. (2009) Shank1 mRNA: dendritic transport by kinesin and translational control by the 5'-untranslated region, Traffic, 10, 844–857.CrossRefPubMedGoogle Scholar
  88. 88.
    Gaspar, I., Sysoev, V., Komissarov, A., and Ephrussi, A. (2017) An RNA-binding atypical tropomyosin recruits kinesin-1 dynamically to oskar mRNPs, EMBO J., 36, 319–333.CrossRefPubMedGoogle Scholar
  89. 89.
    Jambor, H., Mueller, S., Bullock, S. L., and Ephrussi, A. (2014) A stem-loop structure directs oskar mRNA to microtubule minus ends, RNA, 20, 429–439.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Palacios, I. M., and St. Johnston, D. (2002) Kinesin light chain-independent function of the kinesin heavy chain in cytoplasmic streaming and posterior localization in the Drosophila oocyte, Development, 129, 5473–5485.CrossRefPubMedGoogle Scholar
  91. 91.
    Lu, W., Winding, M., Lakonishok, M., Wildonger, J., and Gelfand, V. I. (2016) Microtubule-microtubule sliding by kinesin-1 is essential for normal cytoplasmic streaming in Drosophila oocytes, Proc. Natl. Acad. Sci. USA, 113, E4995–5004.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Veeranan-Karmegam, R., Boggupalli, D. P., Liu, G., and Gonsalvez, G. B. (2016) A new isoform of Drosophila nonmuscle tropomyosin 1 interacts with kinesin-1 and functions in oskar mRNA localization, J. Cell Sci., 129, 4252–4264.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Mach, J. M., and Lehmann, R. (1997) An Egalitarian–Bicaudal D complex is essential for oocyte specification and axis determination in Drosophila, Genes Dev., 11, 423–435.CrossRefPubMedGoogle Scholar
  94. 94.
    Hoogenraad, C. C., and Akhmanova, A. (2016) Bicaudal D family of motor adaptors: linking dynein motility to cargo binding, Trends Cell Biol., 26, 327–340.CrossRefPubMedGoogle Scholar
  95. 95.
    Dienstbier, M., Boehl, F., Li, X., and Bullock, S. L. (2009) Egalitarian is a selective RNA-binding protein linking mRNA localization signals to the dynein motor, Genes Dev., 23, 1546–1558.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Navarro, C., Puthalakath, H., Adams, J. M., Strasser, A., and Lehmann, R. (2004) Egalitarian binds dynein light chain to establish oocyte polarity and maintain oocyte fate, Nat. Cell Biol., 6, 427–435.CrossRefPubMedGoogle Scholar
  97. 97.
    Irion, U., and St. Johnston, D. (2007) Bicoid RNA local-ization requires specific binding of an endosomal sorting complex, Nature, 445, 554–558.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Protein ResearchRussian Academy of SciencesPushchinoRussia
  2. 2.Peoples’ Friendship University of RussiaMoscowRussia
  3. 3.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations