Advertisement

Biochemistry (Moscow)

, Volume 83, Supplement 1, pp S146–S162 | Cite as

Analysis of Insulin Analogs and the Strategy of Their Further Development

  • O. M. Selivanova
  • S. Yu. Grishin
  • A. V. Glyakina
  • A. S. Sadgyan
  • N. I. Ushakova
  • O. V. GalzitskayaEmail author
Review

Abstract

We analyzed the structural properties of the peptide hormone insulin and described the mechanism of its physiological action, as well as effects of insulin in type 1 and 2 diabetes. Recently published data on the development of novel insulin preparations based on combining molecular design and genetic engineering approaches are presented. New strategies for creation of long-acting insulin analogs, the mechanisms of functioning of these analogs and their structure are discussed. Side effects of insulin preparations are described, including amyloidogenesis and possible mitogenic effect. The pathways for development of novel insulin analogs are outlined with regard to the current requirements for therapeutic preparations due to the wider occurrence of diabetes of both types.

Keywords

insulin analogs diabetes hyperglycemia hypoglycemia glycemic control insulin fibrils 

Abbreviations

αCT

C-terminal domain of insulin receptor α-subunit

BMI

body mass index

ER

endoplasmic reticulum

IR

insulin receptor

IGF-1R

type 1 insulin-like growth factor receptor

IRA

insulin receptor isoform A

IRB

nsulin receptor isoform B

L1

leucine-rich repeat domain of the insulin receptor α-subunit

NPH

neutral protamine Hagedorn

PEG

polyethylene glycol

ThT

thioflavin T

References

  1. 1.
    Banting, F. G., and Best, C. J. (1922) The internal secretion of the pancreas, Reprinted in 1972, Vol. 80, to mark 50th anniversary of the discovery, J. Lab. Clin. Med., 7, 251–266.Google Scholar
  2. 2.
    De Meyts, P. (2004) Insulin and its receptor: structure, function and evolution, Bioessays, 26, 1351–1362.CrossRefGoogle Scholar
  3. 3.
    Cabrera, S. M., Chen, Y. G., Hagopian, W. A., and Hessner, M. J. (2016) Blood-based signatures in type 1 diabetes, Diabetologia, 59, 414–425.PubMedCrossRefGoogle Scholar
  4. 4.
    Edelman, S., and Pettus, J. (2014) Challenges associated with insulin therapy in type 2 diabetes mellitus, Am. J. Med., 127, 11–16.CrossRefGoogle Scholar
  5. 5.
    Tkachuk, V. A., and Vorotnikov, A. V. (2014) Molecular mechanisms of development of insulin resistance, Saharnii Diabet, 2, 29–40.Google Scholar
  6. 6.
    Titov, V. N. (2012) Phylogenesis, etiology and pathogenesis of insulin resistance. Differences from type ii diabetes mellitus, Vestnik RAMN, 4, 65–73.Google Scholar
  7. 7.
    American Diabetes Association (2012) Diagnosis and classification of diabetes mellitus, Diabetes Care, 35 (Suppl. 1), 64-71.Google Scholar
  8. 8.
    Chin, J. A., and Sumpio, B. E. (2014) Diabetes mellitus and peripheral vascular disease: diagnosis and management, Clin. Podiatr. Med. Surg., 31, 11–26.PubMedCrossRefGoogle Scholar
  9. 9.
    Todd, J. A. (1990) Genetic control of autoimmunity in type 1 diabetes, Immunol. Today, 11, 122–129.PubMedCrossRefGoogle Scholar
  10. 10.
    Redondo, M. J., Fain, P. R., and Eisenbarth, G. S. (2001) Genetics of type 1A diabetes, Recent Prog. Horm. Res., 56, 69–89.PubMedCrossRefGoogle Scholar
  11. 11.
    Ohtsubo, K., Chen, M. Z., Olefsky, J. M., and Marth, J. D. (2011) Pathway to diabetes through attenuation of pancreatic beta cell glycosylation and glucose transport, Nat. Med., 17, 1067–1075.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Ye, J. (2013) Mechanisms of insulin resistance in obesity, Front. Med., 7, 14–24.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Chakraborty, C., Doss, C. G. P., Bandyopadhyay, S., and Agoramoorthy, G. (2014) Influence of miRNA in insulin signaling pathway and insulin resistance: micromolecules with a major role in type-2 diabetes, Wiley Interdiscip. Rev. RNA, 5, 697–712.PubMedCrossRefGoogle Scholar
  14. 14.
    Feng, X., Tang, H., Leng, J., and Jiang, Q. (2014) Suppressors of cytokine signaling (SOCS) and type 2 diabetes, Mol. Biol. Rep., 41, 2265–2274.PubMedCrossRefGoogle Scholar
  15. 15.
    Cheng, K., Andrikopoulos, S., and Gunton, J. E. (2013) First phase insulin secretion and type 2 diabetes, Curr. Mol. Med., 13, 126–139.PubMedCrossRefGoogle Scholar
  16. 16.
    Zaykov, A. N., Mayer, J. P., and DiMarchi, R. D. (2016) Pursuit of a perfect insulin, Nat. Rev. Drug Discov., 15, 425–439.PubMedCrossRefGoogle Scholar
  17. 17.
    Home, P., Riddle, M., Cefalu, W. T., Bailey, C. J., Bretzel, R. G., Del Prato, S., Leroith, D., Schernthaner, G., Van Gaal, L., and Raz, I. (2014) Insulin therapy in people with type 2 diabetes: opportunities and challenges? Diabetes Care, 37, 1499–1508.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Dzhavakhishvili, T. S., Romantsova, T. I., and Roik, O. V. (2010) Dynamics of body weight in patients with type 2 diabetes during the first year of insulin therapy, Obes. Metab., 4, 13–19.CrossRefGoogle Scholar
  19. 19.
    Dedov, I. I., Shestakova, M. V., and Moiseev, S. V. (2005) Analogues of insulin, Klin. Farmakol. Ter., 14, 49–55.Google Scholar
  20. 20.
    Vigneri, R., Squatrito, S., and Sciacca, L. (2010) Insulin and its analogs: actions via insulin and IGF receptors, Acta Diabetol., 47, 271–278.PubMedCrossRefGoogle Scholar
  21. 21.
    Bell, G. I., Pictet, R. L., Rutter, W. J., Cordell, B., Tischer, E., and Goodman, H. M. (1980) Sequence of the human insulin gene, Nature, 284, 26–32.PubMedCrossRefGoogle Scholar
  22. 22.
    Alarcyn, C., Leahy, J. L., Schuppin, G. T., and Rhodes, C. J. (1995) Increased secretory demand rather than a defect in the proinsulin conversion mechanism causes hyper-proinsulinemia in a glucose-infusion rat model of noninsulin-dependent diabetes mellitus, J. Clin. Invest., 95, 1032–1039.CrossRefGoogle Scholar
  23. 23.
    Greider, M. H., Howell, S. L., and Lacy, P. E. (1969) Isolation and properties of secretory granules from rat islets of Langerhans. II. Ultrastructure of the beta granule, J. Cell Biol., 41, 162–166.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Michael, J., Carroll, R., Swift, H. H., and Steiner, D. F. (1987) Studies on the molecular organization of rat insulin secretory granules, J. Biol. Chem., 262, 16531–16535.PubMedGoogle Scholar
  25. 25.
    Chang, T. W., and Goldberg, A. L. (1978) The metabolic fates of amino acids and the formation of glutamine in skeletal muscle, J. Biol. Chem., 253, 3685–3693.PubMedGoogle Scholar
  26. 26.
    Eto, K., Tsubamoto, Y., Terauchi, Y., Sugiyama, T., Kishimoto, T., Takahashi, N., Yamauchi, N., Kubota, N., Murayama, S., Aizawa, T., Akanuma, Y., Aizawa, S., Kasai, H., Yazaki, Y., and Kadowaki, T. (1999) Role of NADH shuttle system in glucose-induced activation of mitochon-drial metabolism and insulin secretion, Science, 283, 981–985.PubMedCrossRefGoogle Scholar
  27. 27.
    Bender, K., Newsholme, P., Brennan, L., and Maechler, P. (2006) The importance of redox shuttles to pancreatic beta-cell energy metabolism and function, Biochem. Soc. Trans., 34, 811–814.PubMedCrossRefGoogle Scholar
  28. 28.
    Nolan, C. J., Leahy, J. L., Delghingaro-Augusto, V., Moibi, J., Soni, K., Peyot, M. L., Fortier, M., Guay, C., Lamontagne, J., Barbeau, A., Przybytkowski, E., Joly, E., Masiello, P., Wang, S., Mitchell, G. A., and Prentki, M. (2006) Beta cell compensation for insulin resistance in Zucker fatty rats: increased lipolysis and fatty acid signalling, Diabetologia, 49, 2120–2130.PubMedCrossRefGoogle Scholar
  29. 29.
    Prentki, M., Joly, E., El-Assaad, W., and Roduit, R. (2002) Malonyl-CoA signaling, lipid partitioning, and glucolipo-toxicity: role in beta-cell adaptation and failure in the etiology of diabetes, Diabetes, 51 (Suppl. 3), 405–413.Google Scholar
  30. 30.
    Baker, E. N., Blundell, T. L., Cutfield, J. F., Cutfield, S. M., Dodson, E. J., Dodson, G. G., Hodgkin, D. M., Hubbard, R. E., Isaacs, N. W., and Reynolds, C. D. (1988) The structure of 2Zn pig insulin crystals at 1.5 Å resolution, Philos. Trans. R. Soc. Lond. B Biol. Sci., 319, 369–456.PubMedCrossRefGoogle Scholar
  31. 31.
    Wood, S. P., Blundell, T. L., Wollmer, A., Lazarus, N. R., and Neville, R. W. (1975) The relation of conformation and association of insulin to receptor binding; X-ray and circular-dichroism studies on bovine and hystricomorph insulins, Eur. J. Biochem., 55, 531–542.PubMedCrossRefGoogle Scholar
  32. 32.
    Williamson, K. L., and Williams, R. J. (1979) Conformational analysis by nuclear magnetic resonance: insulin, Biochemistry, 18, 5966–5972.PubMedCrossRefGoogle Scholar
  33. 33.
    Ramesh, V., and Bradbury, J. H. (1987) 1H NMR studies of insulin: histidine residues, metal binding, and dissociation in alkaline solution, Arch. Biochem. Biophys., 258, 112–122.PubMedCrossRefGoogle Scholar
  34. 34.
    Wollmer, A., Rannefeld, B., Johansen, B. R., Hejnaes, K. R., Balschmidt, P., and Hansen, F. B. (1987) Phenolpromoted structural transformation of insulin in solution, Biol. Chem. Hoppe. Seyler., 368, 903–911.PubMedCrossRefGoogle Scholar
  35. 35.
    Pittman, I., and Tager, H. S. (1995) A spectroscopic investigation of the conformational dynamics of insulin in solution, Biochemistry, 34, 10578–10590.PubMedCrossRefGoogle Scholar
  36. 36.
    Bakaysa, D. L., Radziuk, J., Havel, H. A., Brader, M. L., Li, S., Dodd, S. W., Beals, J. M., Pekar, A. H., and Brems, D. N. (1996) Physicochemical basis for the rapid time-action of LysB28ProB29-insulin: dissociation of a protein–ligand complex, Protein Sci., 5, 2521–2531.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    De Meyts, P., and Whittaker, J. (2002) Structural biology of insulin and IGF1 receptors: implications for drug design, Nat. Rev. Drug Discov., 1, 769–783.PubMedCrossRefGoogle Scholar
  38. 38.
    Menting, J. G., Whittaker, J., Margetts, M. B., Whittaker, L. J., Kong, G. K., Smith, B. J., Watson, C. J., Zakova, L., KletvHkova, E., Jiracek, J., Chan, S. J., Steiner, D. F., Dodson, G. G., Brzozowski, A. M., Weiss, M. A., Ward, C. W., and Lawrence, M. C. (2013) How insulin engages its primary binding site on the insulin receptor, Nature, 493, 241–245.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Menting, J. G., Yang, Y., Chan, S. J., Phillips, N. B., Smith, B. J., Whittaker, J., Wickramasinghe, N. P., Whittaker, L. J., Pandyarajan, V., Wan, Z. L., Yadav, S. P., Carroll, J. M., Strokes, N., Roberts, C. T., Jr., Ismail-Beigi, F., Milewski, W., Steiner, D. F., Chauhan, V. S., Ward, C. W., Weiss, M. A., and Lawrence, M. C. (2014) Protective hinge in insulin opens to enable its receptor engagement, Proc. Natl. Acad. Sci. USA, 111, 3395–3404.CrossRefGoogle Scholar
  40. 40.
    Pandyarajan, V., Smith, B. J., Phillips, N. B., Whittaker, L., Cox, G. P., Wickramasinghe, N., Menting, J. G., Wan, Z. L., Whittaker, J., Ismail-Beigi, F., Lawrence, M. C., and Weiss, M. A. (2014) Aromatic anchor at an invariant hormonereceptor interface, J. Biol. Chem., 289, 34709–34727.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Pullen, R. A., Lindsay, D. G., Wood, S. P., Tickle, I. J., Blundell, T. L., Wollmer, A., Krail, G., Brandenburg, D., Zahn, H., Gliemann, J., and Gammeltoft, S. (1976) Receptor-binding region of insulin, Nature, 259, 369–373.PubMedCrossRefGoogle Scholar
  42. 42.
    Kwok, S. C., Steiner, D. F., Rubenstein, A. H., and Tager, H. S. (1983) Identification of a point mutation in the human insulin gene giving rise to a structurally abnormal insulin (insulin Chicago), Diabetes, 32, 872–875.PubMedCrossRefGoogle Scholar
  43. 43.
    Shoelson, S., Haneda, M., Blix, P., Nanjo, A., Sanke, T., Inouye, K., Steiner, D., Rubenstein, A., and Tager, H. (1983) Three mutant insulins in man, Nature, 302, 540–543.PubMedCrossRefGoogle Scholar
  44. 44.
    Shoelson, S., Fickova, M., Haneda, M., Nahum, A., Musso, G., Kaiser, E. T., Rubenstein, A. H., and Tager, H. (1983) Identification of a mutant human insulin predicted to contain a serine-for-phenylalanine substitution, Proc. Natl. Acad. Sci. USA, 80, 7390–7394.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Kobayashi, M., Ohgaku, S., Iwasaki, M., Maegawa, H., Shigeta, Y., and Inouye, K. (1982) Supernormal insulin: [D-PheB24]-insulin with increased affinity for insulin receptors, Biochem. Biophys. Res. Commun., 107, 329–336.PubMedCrossRefGoogle Scholar
  46. 46.
    Nanjo, K., Sanke, T., Miyano, M., Okai, K., Sowa, R., Kondo, M., Nishimura, S., Iwo, K., Miyamura, K., and Given, B. D. (1986) Diabetes due to secretion of a structurally abnormal insulin (insulin Wakayama). Clinical and functional characteristics of [LeuA3] insulin, J. Clin. Invest., 77, 514–519.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Blundell, T. L., Cutfield, J. F., Cutfield, S. M., Dodson, E. J., Dodson, G. G., Hodgkin, D. C., and Mercola, D. A. (1972) Three-dimensional atomic structure of insulin and its relationship to activity, Diabetes, 21, 492–505.PubMedCrossRefGoogle Scholar
  48. 48.
    Cosmatos, A., Cheng, K., Okada, Y., and Katsoyannis, P. G. (1978) The chemical synthesis and biological evaluation of [1-L-alanine-A]-and [1-D-alanine-A] insulins, J. Biol. Chem., 253, 6586–6590.PubMedGoogle Scholar
  49. 49.
    Geiger, R., Geisen, K., Summ, H. D., and Langer, D. (1975) (A1-D-alanine) insulin, Hoppe. Seylers. Z. Physiol. Chem., 356, 1635–1649.PubMedCrossRefGoogle Scholar
  50. 50.
    Geiger, R., Geisen, K., and Summ, H. D. (1982) Exchange of A1-glycine in bovine insulin with L-and D-tryptophan, Hoppe. Seylers. Z. Physiol. Chem., 363, 1231–1239.PubMedCrossRefGoogle Scholar
  51. 51.
    Nakagawa, S. H., and Tager, H. S. (1989) Perturbation of insulin–receptor interactions by intramolecular hormone cross-linking. Analysis of relative movement among residues A1, B1, and B29, J. Biol. Chem., 264, 272–279.PubMedGoogle Scholar
  52. 52.
    Ogawa, H., Burke, G. T., Chanley, J. D., and Katsoyannis, P. G. (1987) Effect of N-methylation of selected peptide bonds on the biological activity of insulin. [2-N-methylisoleucine-A]insulin and [3-N-methylvaline-A]insulin, Int. J. Pept. Protein Res., 30, 460–473.PubMedCrossRefGoogle Scholar
  53. 53.
    Schwartz, G., and Katsoyannis, P. G. (1978) Synthesis of des(tetrapeptide B(1-4)) and des(pentapeptide B(1-5)) human insulins. Two biologically active analogues, Biochemistry, 17, 4550–4556.PubMedCrossRefGoogle Scholar
  54. 54.
    Nakagawa, S. H., and Tager, H. S. (1991) Implications of invariant residue LeuB6 in insulin–receptor interactions, J. Biol. Chem., 266, 11502–11509.PubMedGoogle Scholar
  55. 55.
    Schwartz, G. P., Burke, G. T., and Katsoyannis, P. G. (1987) A superactive insulin: [B10-aspartic acid]insulin(human), Proc. Natl. Acad. Sci. USA, 84, 6408–6411.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Chan, S. J., Seino, S., Gruppuso, P. A., Schwartz, R., and Steiner, D. F. (1987) A mutation in the B chain coding region is associated with impaired proinsulin conversion in a family with hyperproinsulinemia, Proc. Natl. Acad. Sci. USA, 84, 2194–2197.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Gruppuso, P. A., Gorden, P., Kahn, C. R., Cornblath, M., Zeller, W. P., and Schwartz, R. (1984) Familial hyperproin-sulinemia due to a proposed defect in conversion of proinsulin to insulin, N. Engl. J. Med., 311, 629–634.PubMedCrossRefGoogle Scholar
  58. 58.
    Brange, J. Ribel, U., Hansen, J. F., Dodson, G., Hansen, M. T., Havelund, S., Melberg, S. G., Norris, F., Norris, K., and Snel, L. (1988) Monomeric insulins obtained by protein engineering and their medical implications, Nature, 333, 679–682.PubMedCrossRefGoogle Scholar
  59. 59.
    Brems, D. N., Alter, L. A., Beckage, M. J., Chance, R. E., DiMarchi, R. D., Green, L. K., Long, H. B., Pekar, A. H., Shields, J. E., and Frank, B. H. (1992) Altering the association properties of insulin by amino acid replacement, Protein Eng., 5, 527–533.PubMedCrossRefGoogle Scholar
  60. 60.
    Blundell, T. L., Cutfield, J. F., Cutfield, S. M., Dodson, E. J., Dodson, G. G., Hodgkin, D. C., and Mercola, D. A. (1972) Three-dimensional atomic structure of insulin and its relationship to activity, Diabetes, 21, 492–505.PubMedCrossRefGoogle Scholar
  61. 61.
    Nathan, D. M., Genuth, S., Lachin, J., Cleary, P., Crofford, O., Davis, M., Rand, L., and Siebert, C. (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus, N. Engl. J. Med., 329, 977–986.PubMedCrossRefGoogle Scholar
  62. 62.
    Chou, H. S., Larsson, M., Hsiao, M. H., Chen, Y. C., Roding, M., Nyden, M., and Liu, D. M. (2016) Injectable insulin-lysozyme-loaded nanogels with enzymatically-controlled degradation and release for basal insulin treatment: in vitro characterization and in vivo observation, J. Control. Release, 224, 33–42.PubMedCrossRefGoogle Scholar
  63. 63.
    Ionova, T. I., Odin, V. I., Nikitina, T. P., Kurbatova, K. A., and Shablovskaya, N. E. (2013) Quality of life and problems posed by hypoglycemia in type 2 diabetes mellitus during oral hypoglycemic therapy, Klin. Med., 9, 34–40.Google Scholar
  64. 64.
    Hirsch, I. B., Farkas-Hirsch, R., and Skyler, J. S. (1990) Intensive insulin therapy for treatment of type I diabetes, Diabetes Care, 13, 1265–1283.PubMedCrossRefGoogle Scholar
  65. 65.
    Gusarov, D. A., Gusarova, V. D., Bayramashvili, D. I., and Mironov, A. F. (2008) Human insulin and its pharmaceutical analogs, Biomed. Khim., 54, 624–642.PubMedGoogle Scholar
  66. 66.
    Home, P. D. (2012) The pharmacokinetics and pharmaco-dynamics of rapidacting insulin analogues and their clinical consequences, Diabetes Obes. Metab., 14, 780–788.PubMedCrossRefGoogle Scholar
  67. 67.
    Oakley, W., Hill, D., and Oakley, N. (1966) Combined use of regular and crystalline protamine (NPH) insulins in the treatment of severe diabetes, Diabetes, 15, 219–222.PubMedCrossRefGoogle Scholar
  68. 68.
    Rosenstock, J., Schwartz, S. L., Clark, C. M., Jr., Park, G. D., Donley, D. W., and Edwards, M. B. (2001) Basal insulin therapy in type 2 diabetes: 28-week comparison of insulin glargine (HOE 901) and NPH insulin, Diabetes Care, 24, 631–636.PubMedCrossRefGoogle Scholar
  69. 69.
    Johnson, I. S. (1983) Human insulin from recombinant DNA technology, Science, 219, 632–637.PubMedCrossRefGoogle Scholar
  70. 70.
    Peters, A. L., Pollom, R. D., Zielonka, J. S., Carey, M. A., and Edelman, S. V. (2015) Biosimilars and new insulin versions, Endocr. Pract., 21, 1387–1394.PubMedCrossRefGoogle Scholar
  71. 71.
    Miroshnikov, A. I. (2009) Recipe for Russian insulin, Acta Naturae, 3, 18–20.Google Scholar
  72. 72.
    Owens, D. R., Landgraf, W., Schmidt, A., Bretzel, R. G., and Kuhlmann, M. K. (2012) The emergence of biosimilar insulin preparations–a cause for concern? Diabetes Technol. Ther., 14, 989–996.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Habriev, R. U. (2005) in Manual on Experimental (Preclinical) Study of New Pharmacological Substances (Habriev, R. U., ed.) [in Russian], Meditsina, Moscow.Google Scholar
  74. 74.
    Mironov, A. N. (2012) in Manual on Preclinical Trials of Medicines, Part I (Mironov, A. N., ed.) [in Russian], Grif i K, Moscow.Google Scholar
  75. 75.
    Mironov, A. N. (2013) in Manual on Expertise of Medicines, Part V. I. (Mironov, A. N., ed.) [in Russian], Grif i K, Moscow.Google Scholar
  76. 76.
    Atkinson, M. A., Eisenbarth, G. S., and Michels, A. W. (2014) Type 1 diabetes, Lancet, 383, 69–82.PubMedCrossRefGoogle Scholar
  77. 77.
    Kuraeva, T. L. (2010) Analogues of insulin in achieving compensation and improving the quality of life of children and adolescents with type 1 diabetes mellitus, Saharnii Diabet, 3, 147–152.Google Scholar
  78. 78.
    Howey, D. C., Bowsher, R. R., Brunelle, R. L., and Woodworth, J. R. (1994) [Lys(B28), Pro(B29)]-human insulin. A rapidly absorbed analogue of human insulin, Diabetes, 43, 396–402.PubMedGoogle Scholar
  79. 79.
    Ciszak, E., Beals, J. M., Frank, B. H., Baker, J. C., Carter, N. D., and Smith, G. D. (1995) Role of C-terminal B-chain residues in insulin assembly: the structure of hexameric LysB28ProB29-human insulin, Structure, 3, 615–622.PubMedCrossRefGoogle Scholar
  80. 80.
    Bakaysa, D. L., Radziuk, J., Havel, H. A., Brader, M. L., Li, S., Dodd, S. W., Beals, J. M., Pekar, A. H., and Brems, D. N. (1996) Physicochemical basis for the rapid time-action of Lys B28 Pro B29-insulin: dissociation of a protein–ligand complex, Protein Sci., 5, 2521–2531.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Becker, R. H. A., Frick, A. D., Burger, F., Potgieter, J. H., and Scholtz, H. (2005) Insulin glulisine, a new rapid-acting insulin analogue, displays a rapid time-action profile in obese nondiabetic subjects, Exp. Clin. Endocrinol. Diabetes, 113, 435–443.Google Scholar
  82. 82.
    Dreyer, M., Prager, R, Robinson, A., Busch, K., Ellis, G., Souhami, E., and Van Leendert, R. (2005) Efficacy and safety of insulin glulisine in patients with type 1 diabetes, Horm. Metab. Res., 37, 702–707.PubMedCrossRefGoogle Scholar
  83. 83.
    Pavlova, M. G. (2008) Apidra (insulin glulisin) in the treatment of type 1 diabetes mellitus, Saharnii Diabet, 2, 65–68.Google Scholar
  84. 84.
    Heinemann, L., Heise, T., Wahl, L. C., Trautmann, M. E., Ampudia, J., Starke, A. A., and Berger, M. (1996) Prandial glycaemia after a carbohydrate-rich meal in type I diabetic patients: using the rapid acting insulin analogue [Lys(B28), Pro(B29)] human insulin, Diabet. Med., 13, 625–629.PubMedCrossRefGoogle Scholar
  85. 85.
    Owens, D. R., Matfin, G., and Monnier, L. (2014) Basal insulin analogues in the management of diabetes mellitus: what progress have we made? Diabetes Metab. Res. Rev., 30, 104–119.PubMedCrossRefGoogle Scholar
  86. 86.
    Zinman, B. (2013) Newer insulin analogs: advances in basal insulin replacement, Diabetes Obes. Metab., 15 (Suppl. 1), 6–10.PubMedCrossRefGoogle Scholar
  87. 87.
    Hallas-Moller, K. (1956) The lente insulins, Diabetes, 5, 7–14.PubMedCrossRefGoogle Scholar
  88. 88.
    Heise, T., Nosek, L., Ronn, B. B., Endahl, L., Heinemann, L., Kapitza, C., and Draeger, E. (2004) Lower within-subject variability of insulin detemir in comparison to NPH insulin and insulin glargine in people with type 1 diabetes, Diabetes, 53, 1614–1620.PubMedCrossRefGoogle Scholar
  89. 89.
    Peterkova, V. A., Kuraeva, T. L., and Titovich, E. V. (2003) Lantus (insulin glargine): real benefits and perspectives of use in pediatrics, Saharnii Diabet, 3, 26–28.Google Scholar
  90. 90.
    Klimontov, V. V., and Myakina, N. E. (2014) Insulin glargine: pharmacokinetic and pharmacodynamic bases of clinical effect, Saharnii Diabet, 4, 99–107.Google Scholar
  91. 91.
    Migdalis, I. N. (2011) Insulin analogs versus human insulin in type 2 diabetes, Diabetes Res. Clin. Pract., 93 (Suppl. 1), 102–104.CrossRefGoogle Scholar
  92. 92.
    Swinnen, S. G., Simon, A. C., Holleman, F., Hoekstra, J. B., and Devries, J. H. (2011) Insulin detemir versus insulin glargine for type 2 diabetes mellitus, Cochrane Database Syst. Rev., 7, 63–83.Google Scholar
  93. 93.
    Jonassen, I., Havelund, S., Hoeg-Jensen, T., Steensgaard, D. B., Wahlund, P. O., and Ribel, U. (2012) Design of the novel protraction mechanism of insulin degludec, an ultra-long-acting basal insulin, Pharm. Res., 29, 2104–2114.PubMedGoogle Scholar
  94. 94.
    Dedov, I. I., and Shestakova, M. V. (2014) Insulin degludec–a new analogue of insulin super-long-acting, Saharnii Diabet, 2, 91–104.Google Scholar
  95. 95.
    Whittingham, J. L., Havelund, S., and Jonassen, I. (1997) Crystal structure of a prolonged-acting insulin with albumin-binding properties, Biochemistry, 36, 2826–2831.PubMedCrossRefGoogle Scholar
  96. 96.
    Sorli, C., Warren, M., Oyer, D., Mersebach, H., Johansen, T., and Gough, S. C. (2013) Elderly patients with diabetes experience a lower rate of nocturnal hypoglycaemia with insulin degludec than with insulin glargine: a meta-analysis of phase IIIa trials, Drugs Aging, 30, 1009–1018.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Henry, R. R., Mudaliar, S., Ciaraldi, T. P., Armstrong, D. A., Burke, P., Pettus, J., Garhyan, P., Choi, S. L., Jacober, S. J., Knadler, M. P., Lam, E. C., Prince, M. J., Bose, N., Porksen, N., Sinha, V. P., and Linnebjerg, H. (2014) Basal insulin peglispro demonstrates preferential hepatic versus peripheral action relative to insulin glargine in healthy subjects, Diabetes Care, 37, 2609–2615.PubMedCrossRefGoogle Scholar
  98. 98.
    Mathieu, C., Gillard, P., and Benhalima, K. (2017) Insulin analogues in type 1 diabetes mellitus: getting better all the time, Nat. Rev. Endocrinol., 13, 385–399.PubMedCrossRefGoogle Scholar
  99. 99.
    Bergenstal, R. M., Rosenstock, J., Bastyr, E. J., Prince, M. J., Qu, Y., and Jacober, S. J. (2014) Lower glucose variability and hypoglycemia measured by continuous glucose monitoring with novel long-acting insulin LY2605541 versus insulin glargine, Diabetes Care, 37, 659–665.PubMedCrossRefGoogle Scholar
  100. 100.
    Caparrotta, T. M., and Evans, M. (2014) PEGylated insulin Lispro, (LY2605541)–a new basal insulin analogue, Diabetes Obes. Metab., 16, 388–395.PubMedCrossRefGoogle Scholar
  101. 101.
    Ciaraldi, T. P., and Sasaoka, T. (2011) Review on the in vitro interaction of insulin glargine with the insulin/insulin-like growth factor system: potential implications for metabolic and mitogenic activities, Horm. Metab. Res., 43, 1–10.PubMedCrossRefGoogle Scholar
  102. 102.
    Monnier, L., Colette, C., and Owens, D. (2013) Basal insulin analogs: from pathophysiology to therapy. What we see, know, and try to comprehend? Diabetes Metab., 39, 468–476.PubMedCrossRefGoogle Scholar
  103. 103.
    Kurapkat, G., Siedentop, M., Gattner, H. G., Hagelstein, M., Brandenburg, D., Grotzinger, J., and Wollmer, A. (1999) The solution structure of a superpotent β-chain-shortened single-replacement insulin analogue, Protein Sci., 8, 499–508.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Jiracek, J., Zakova, L., Antolikova, E., Watson, C. J., Turkenburg, J. P., Dodson, G. G., and Brzozowski, A. M. (2010) Implications for the active form of human insulin based on the structural convergence of highly active hormone analogues, Proc. Natl. Acad. Sci. USA, 107, 1966–1970.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Phillips, N. B., Wan, Z. L., Whittaker, L., Hu, S. Q., Huang, K., Hua, Q. X., Whittaker, J., Ismail-Beigi, F., and Weiss, M. A. (2010) Supramolecular protein engineering: design of zincstapled insulin hexamers as a long acting depot, J. Biol. Chem., 285, 11755–11759.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Berenson, D. F., Weiss, A. R., Wan, Z., and Weiss, M. A. (2011) Insulin analogs for the treatment of diabetes mellitus: therapeutic applications of protein engineering, Ann. N. Y. Acad. Sci., 1243, 40–54.CrossRefGoogle Scholar
  107. 107.
    Morishita, H. (2015) Premixed insulin and intermediate-acting insulin, Nihon Rinsho, 73, 453–457.PubMedGoogle Scholar
  108. 108.
    Arinina, E. E., and Rashid, M. A. (2012) Clinical and economic benefits of using human insulin analogues, Pharmacoeconomics, 5, 41–46.Google Scholar
  109. 109.
    Dedov, I. I., and Shestakova, M. V. (2014) Insulin degludec/insulin aspart–the first combined preparation of basal and prandial insulin analogues, Saharnii Diabet, 4, 108–119.Google Scholar
  110. 110.
    Rodionova, T. I., and Orlova, M. M. (2014) Assessment of efficiency of application of various analogues of insulin in treatment of diabetes type 2, Saratov J. Med. Sci. Res., 10, 461–464.Google Scholar
  111. 111.
    Nilsson, M. R. (2016) Insulin amyloid at injection sites of patients with diabetes, Amyloid, 23, 139–147.PubMedCrossRefGoogle Scholar
  112. 112.
    Berhanu, W. M., and Masunov, A. E. (2012) Controlling the aggregation and rate of release in order to improve insulin formulation: molecular dynamics study of full-length insulin amyloid oligomer models, J. Mol. Model., 18, 1129–1142.PubMedCrossRefGoogle Scholar
  113. 113.
    Amdursky, N., Gazit, E., and Rosenman, G. (2012) Formation of low-dimensional crystalline nucleus region during insulin amyloidogenesis process, Biochem. Biophys. Res. Commun., 419, 232–237.PubMedCrossRefGoogle Scholar
  114. 114.
    Brange, J., Andersen, L., Laursen, E. D., Meyn, G., and Rasmussen, E. (1997) Toward understanding insulin fibrillation, J. Pharm. Sci., 86, 517–525.PubMedCrossRefGoogle Scholar
  115. 115.
    Yang, Y., Petkova, A., Huang, K., Xu, B., Hua, Q. X., Ye, I. J., Chu, Y. C., Hu, S. Q., Phillips, N. B., Whittaker, J., Ismail-Beigi, F., Mackin, R. B., Katsoyannis, P. G., Tycko, R., and Weiss, M. A. (2010) An Achilles’ heel in an amyloidogenic protein and its repair: insulin fibrillation and therapeutic design, J. Biol. Chem., 285, 10806–10821.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Li, Y., Gonga, H., Sunb, Y., Yana, J., Chenga, B., Zhanga, X., Huang, J., Yua, M., Guoa, Y., Zhengb, L., and Huanga, K. (2012) Dissecting the role of disulfide bonds on the amyloid formation of insulin, Biochem. Biophys. Res. Commun., 423, 373–378.PubMedCrossRefGoogle Scholar
  117. 117.
    Huang, K., Maiti, N. C., Phillips, N. B., Carey, P. R., and Weiss, M. A. (2006) Structure-specific effects of protein topology on crossbeta assembly: studies of insulin fibrillation, Biochemistry, 45, 10278–10293.PubMedCrossRefGoogle Scholar
  118. 118.
    Fodera, V., Librizzi, F., Groenning, M., Van de Weert, M., and Leone, M. (2008) Secondary nucleation and accessible surface in insulin amyloid fibril formation, J. Phys. Chem. B, 112, 3853–3858.PubMedCrossRefGoogle Scholar
  119. 119.
    Groenning, M., Frokjaer, S., and Vestergaard, B. (2009) Formation mechanism of insulin fibrils and structural aspects of the insulin fibrillation process, Curr. Protein Pept. Sci., 10, 509–528.PubMedCrossRefGoogle Scholar
  120. 120.
    Ahmad, A., Uversky, V. N., Hong, D., and Fink, A. L. (2005) Early events in the fibrillation of monomeric insulin, J. Biol. Chem., 280, 42669–42675.PubMedCrossRefGoogle Scholar
  121. 121.
    Zhou, C., Qi, W., Lewis, E. N., and Carpenter, J. F. (2016) Characterization of sizes of aggregates of insulin analogs and the conformations of the constituent protein molecules: a concomitant dynamic light scattering and raman spectroscopy study, J. Pharm. Sci., 105, 551–558.PubMedCrossRefGoogle Scholar
  122. 122.
    Woods, R. J., Alarcon, J., McVey, E., and Pettis, R. J. (2012) Intrinsic fibrillation of fast-acting insulin analogs, J. Diabetes Sci. Technol., 6, 265–276.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Blundell, T., Dodson G., Hodgkin, D., and Mercola, D. (1972) Insulin: the structure in the crystal and its reflection in chemistry and biology, Adv. Protein Chem., 26, 279–402.CrossRefGoogle Scholar
  124. 124.
    Selivanova, O. M., Suvorina, M. Y., Surin, A. K., Dovidchenko, N. V., and Galzitskaya, O. V. (2017) Insulin and lispro insulin: what is common and different in their behavior? Curr. Protein Pept. Sci., 18, 57–64.PubMedCrossRefGoogle Scholar
  125. 125.
    Selivanova, O. M., and Galzitskaya, O. V. (2012) Structural polymorphism and possible pathways of amyloid fibril formation on the example of insulin protein, Biochemistry (Moscow), 77, 1237–1247.CrossRefGoogle Scholar
  126. 126.
    Selivanova, O. M., Suvorina, M. Y., Dovidchenko, N. V., Eliseeva, I. A., Surin, A. K., Finkelstein, A. V., Schmatchenko, V. V., and Galzitskaya, O. V. (2014) How to determine the size of folding nuclei of protofibrils from the concentration dependence of the rate and lag-time of aggregation. II. Experimental application for insulin and Lispro insulin: aggregation morphology, kinetics, and sizes of nuclei, J. Phys. Chem. B, 118, 1198–1206.PubMedCrossRefGoogle Scholar
  127. 127.
    Burke, M. J., and Rougvie, M. A. (1972) Cross-β protein structures. I. Insulin fibrils, Biochemistry, 11, 2435–2439.PubMedCrossRefGoogle Scholar
  128. 128.
    Bouchard, M., Zurdo, J., Nettleton, E. J., Dobson, C. M., and Robinson, C. V. (2000) Formation of insulin amyloid fibrils followed by FTIR simultaneously with CD and electron microscopy, Protein Sci., 9, 1960–1967.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Jimenez, J. L., Nettleton, E. J., Bouchard, M., Robinson, C. V., Dobson, C. M., and Saibil, H. R. (2002) The protofilament structure of insulin amyloid fibrils, Proc. Natl. Acad. Sci. USA, 99, 9196–9201.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Koltun, W. L., Waugh, D. F., and Bear, R. S. (1954) An X-ray diffraction investigation of selected types of insulin fibrils, J. Am. Chem. Soc., 76, 413–417.CrossRefGoogle Scholar
  131. 131.
    Winocour, P. H., Mitchell, W. S., Gush, R. J., Taylor, L. J., and Baker, R. D. (1988) Altered hand skin blood flow in type 1 (insulin-dependent) diabetes mellitus, Diabet. Med., 5, 861–866.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • O. M. Selivanova
    • 1
  • S. Yu. Grishin
    • 1
    • 2
  • A. V. Glyakina
    • 1
    • 3
  • A. S. Sadgyan
    • 4
  • N. I. Ushakova
    • 4
  • O. V. Galzitskaya
    • 1
    Email author
  1. 1.Institute of Protein ResearchRussian Academy of SciencesPushchinoRussia
  2. 2.Lomonosov Moscow State UniversityMoscowRussia
  3. 3.Institute of Mathematical Problems of Biology, Keldysh Institute of Applied MathematicsRussian Academy of SciencesPushchinoRussia
  4. 4.Joint-Stock Scientific Production Association BioranMoscowRussia

Personalised recommendations