Advertisement

Biochemistry (Moscow)

, Volume 83, Supplement 1, pp S134–S145 | Cite as

High-Pressure Scanning Microcalorimetry – A New Method for Studying Conformational and Phase Transitions

  • S. A. PotekhinEmail author
Review

Abstract

The development of high-pressure scanning microcalorimetry and the first results studying transitions in proteins, lipids, and model polymers are reviewed. Special attention is given to changes (increments) in volume parameters upon transitions as well as the nature of these changes. It is demonstrated that the use of the model of compound transfer reaction in its purest form for assessment of denaturation volume effects failed due to serious difficulties.

Keywords

scanning microcalorimetry high pressure theoretical analysis macromolecules 

References

  1. 1.
    Mozhaev, V. V., Heremans, K., Frank, J., Masson, P., and Balny, C. (1996) High pressure effects on protein structure and function, Proteins, 24, 81–91.CrossRefPubMedGoogle Scholar
  2. 2.
    Panick, G., Malessa, R., Winter, R., Rapp, G., Frye, K. J., and Royer, C. A. (1998) Structural characterization of the pressure-denatured state and unfolding/refolding kinetics of staphylococcal nuclease by synchrotron small-angle X-ray scattering and Fourier-transform infrared spectroscopy, J. Mol. Biol., 275, 389–402.CrossRefPubMedGoogle Scholar
  3. 3.
    Robinson, C. R., and Sigar, S. G. (1995) Hydrostatic and osmotic pressure as tools to study macromolecular recognition, Methods Enzymol., 259, 395–427.CrossRefPubMedGoogle Scholar
  4. 4.
    Takeda, N., Kato, M., and Taniguchi, Y. (1995) Pressure-and thermally-induced reversible changes in the secondary structure of ribonuclease: studies by FT-IR spectroscopy, Biochemistry, 34, 5980–5987.CrossRefPubMedGoogle Scholar
  5. 5.
    Yamaguchi, T., Yamada, H., and Akasaka, K. (1995) Thermodynamics of unfolding of ribonuclease a under high pressure. A study by proton NMR, J. Mol. Biol., 250, 689–694.CrossRefPubMedGoogle Scholar
  6. 6.
    Clark, E. D. B. (1998) Refolding of recombinant proteins, Curr. Opin. Biotechnol., 9, 157–163.CrossRefPubMedGoogle Scholar
  7. 7.
    Chrunyk, B. A., Evans, J., Lillquist, J., Young, P., and Wetzel, R. (1993) Inclusion body formation and protein stability in sequence variants of interleukin1 beta, J. Biol. Chem., 268, 18053–18061.PubMedGoogle Scholar
  8. 8.
    King, J., Haase-Pettingell, C., Robinson, A. S., Speed, M., and Mitraki, A. (1996) Thermolabile folding intermediates: inclusion body precursors and chaperonin substrates, FASEB J., 10, 57–66.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Mitraki, A., Fane, B., Haase-Pettingell, C., Sturtevant, J., and King, J. (1991) Global suppression of protein folding defects and inclusion body formation, Science, 253, 54–58.CrossRefPubMedGoogle Scholar
  10. 10.
    Panda, M., Gorovits, B. M., and Horowitz, P. M. (2000) Productive and nonproductive intermediates in the folding of denatured rhodanese, J. Biol. Chem., 275, 63–70.CrossRefPubMedGoogle Scholar
  11. 11.
    Speed, M. A., Wang, D. I., and King, J. (1996) Specific aggregation of partially folded polypeptide chains: the molecular basis of inclusion body composition, Nat. Biotechnol., 14, 1283–1287.CrossRefPubMedGoogle Scholar
  12. 12.
    Gorovits, B. M., and Horowitz, P. M. (1998) High hydrostatic pressure can reverse aggregation of protein folding intermediates and facilitate acquisition of native structure, Biochemistry, 37, 6132–6135.CrossRefPubMedGoogle Scholar
  13. 13.
    St. John, R. J., Carpenter, J. F., and Randolph, T. W. (1999) High pressure fosters protein refolding from aggregates at high concentrations, Proc. Natl. Acad. Sci. USA, 96, 13029–13033.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Denys, S., Ludikhuyze, L. R., Van Loey, A. M., and Hendrickx, M. E. (2000) Modeling conductive heat transfer and process uniformity during batch high-pressure processing of foods, Biotechnol. Prog., 16, 92–101.CrossRefPubMedGoogle Scholar
  15. 15.
    Buckow, R., Sikes, A., and Tume, R. (2013) Effect of high pressure on physicochemical properties of meat, Crit. Rev. Food Sci. Nutr., 53, 770–786.CrossRefPubMedGoogle Scholar
  16. 16.
    Tauscher, B. (1995) Pasteurization of food by hydrostatic high pressure: chemical aspects, Z. Lebensm Unters. Forsch., 200, 3–13.CrossRefPubMedGoogle Scholar
  17. 17.
    Summit, M., Scott, B., Nielson, K., Mathur, E., and Baross, J. (1998) Pressure enhances thermal stability of DNA polymerase from three thermophilic organisms, Extremophiles, 2, 339–345.CrossRefPubMedGoogle Scholar
  18. 18.
    Sun, M. M., Tolliday, N., Vetriani, C., Robb, F. T., and Clark, D. S. (1999) Pressure-induced thermostabilization of glutamate dehydrogenase from the hyperthermophile Pyrococcus furiosus, Protein Sci., 8, 1056–1063.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Senin, A. A., Dzhavadov, L. N., and Potekhin, S. A. (2016) High-pressure differential scanning microcalorimeter, Rev. Sci. Instrum., 87, 034901.CrossRefPubMedGoogle Scholar
  20. 20.
    Potekhin, S. A., Senin, A. A., Abdurakhmanov, N. N., and Mezhburd, E. V., RF Patent 2364845, Differential Adiabatic High Pressure Scanning Microcalorimeter, March 19, 2008 (registered August 20, 2009).Google Scholar
  21. 21.
    Melchior, D. L., and Steim, J. M. (1976) Thermotropic transitions in biomembranes, Annu. Rev. Biophys. Bioeng., 5, 205–238.CrossRefPubMedGoogle Scholar
  22. 22.
    Marsh, D. (1991) General features of phospholipid phase transitions, Chem. Phys. Lipids, 57, 109–120.CrossRefPubMedGoogle Scholar
  23. 23.
    Heimburg, T. (1998) Mechanical aspects of membrane thermodynamics. Estimation of the mechanical properties of lipid membranes close to the chain melting transition from calorimetry, Biochim. Biophys. Acta, 1415, 147–162.CrossRefPubMedGoogle Scholar
  24. 24.
    Ebel, H., Grabitz, P., and Heimburg, T. (2001) Enthalpy and volume changes in lipid membranes. I. The propor-tionality of heat and volume changes in the lipid melting transition and its implication for the elastic constants, J. Phys. Chem. B, 105, 7353–7360.CrossRefGoogle Scholar
  25. 25.
    Grabitz, P., Ivanova, V. P., and Heimburg, T. (2002) Relaxation kinetics of lipid membranes and its relation to the heat capacity, Biophys. J., 82, 299–309.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Potekhin, S. A., Senin, A. A., Abdurakhmanov, N. N., and Khusainova, R. S. (2008) High pressure effect on the main transition from the ripple gel P' β phase to the liquid crystal (La) phase in dipalmitoylphosphatidylcholine. Microcalorimetric study, Biochim. Biophys. Acta, 1778, 2588–2593.CrossRefPubMedGoogle Scholar
  27. 27.
    Potekhin, S. A., Senin, A. A., Abdurakhmanov, N. N., and Khusainova, R. S. (2011) Thermodynamic invariants of gel to the liquid crystal 1,2-diacylphosphatidylcholines transition, Biochim. Biophys. Acta, 1808, 1806–1810.CrossRefPubMedGoogle Scholar
  28. 28.
    Potekhin, S. A., Senin, A. A., and Khusainova, R. S. (2013) Thermodynamics of the gel to liquid crystal 1,2-dia-cylphosphatidylcholines transition. High-pressure microcalorimetry, Thermochim. Acta, 560, 17–26.CrossRefGoogle Scholar
  29. 29.
    Potekhin, S. A., and Khusainova, R. S. (2017) Acyl chain length dependencies of energy and volume dependent parameters upon the gel to liquid crystal transition of 1,2-diacylphosphatidylcholines. Theoretical consideration, Biophys. Chem., 227, 29–33.CrossRefPubMedGoogle Scholar
  30. 30.
    Potekhin, S. A. (2012) The potential of scanning microcalorimetry for studying thermotropic conformational transitions in biomacromolecules, Polymer Sci. Ser. C, 54, 108–115.CrossRefGoogle Scholar
  31. 31.
    Potekhin, S. A., Yegorov, A. E., and Khusainova, R. S. (2015) A thermodynamic analysis of two-state transitions under high pressure. Theoretical considerations, Biophysics, 60, 687–691.CrossRefGoogle Scholar
  32. 32.
    Mason, J. T., and Huang, C.-H. (1981) Chain length dependent thermodynamics of saturated symmetric-chain phosphatidylcholine bilayers, Lipids, 16, 604–608.CrossRefGoogle Scholar
  33. 33.
    Nagle, J. F., and Wilkinson, D. A. (1978) Lecithin bilayers. Density measurement and molecular interactions, Biophys. J., 23, 159–175.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Mabrey, S., and Sturtevant, J. M. (1976) Investigation of phase transitions of lipids and lipid mixtures by high sensitivity differential scanning calorimetry, Proc. Natl. Acad. Sci. USA, 73, 3862–3866.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Gil, E. S., and Hudson. S. A. (2004) Stimuli-responsive polymers and their bioconjugates, Prog. Polym. Sci., 29, 1173–1222.CrossRefGoogle Scholar
  36. 36.
    Alarcon, C. D. H., Pennadam, S., and Alexander, C. (2005) Stimuli responsive polymers for biomedical applications, Chem. Soc. Rev., 34, 276–285.CrossRefGoogle Scholar
  37. 37.
    Graziano, G. (2000) On the temperature-induced coil to globule transition of poly-N-isopropylacrylamide in dilute aqueous solutions, Int. J. Biol. Macromol., 27, 89–97.CrossRefPubMedGoogle Scholar
  38. 38.
    Bruscolini, P., Buzano, C., Pelizzola, A., and Pretti, M. (2002) Lattice model for polymer hydration: collapse of poly(N-iso-propylacrylamide), Macromol. Symp., 181, 261–273.CrossRefGoogle Scholar
  39. 39.
    Burova, T. V., Grinberg, N. V., Grinberg, V. Y., Tang, Y. T., Zhang, G. Z., and Khokhlov, A. R. (2008) Order–disorder conformational transitions of N-isopropylacrylamide-sodium styrene sulfonate copolymers in aqueous solutions, Macromolecules, 41, 5981–5984.CrossRefGoogle Scholar
  40. 40.
    Schild, H. G. (1992) Poly(N-isopropylacrylamide): experiment, theory and application, Prog. Polym. Sci., 17, 163–249.CrossRefGoogle Scholar
  41. 41.
    Loozen, E., Nies, E., Heremans, K., and Berghmans, H. (2006) The influence of pressure on the lower critical solution temperature miscibility behavior of aqueous solutions of poly(vinyl methyl ether) and the relation to the compositional curvature of the volume of mixing, J. Phys. Chem. B, 110, 7793–7802.CrossRefPubMedGoogle Scholar
  42. 42.
    Wu, C., and Zhou, S. (1996) First observation of the molten globule state of a single homopolymer chain, Phys. Rev. Lett., 77, 3053.CrossRefPubMedGoogle Scholar
  43. 43.
    Schafer-Soenen, H., Moerkerke, R., Berghmans, H., Koningsveld, R., Dusek, K., and Solc, K. (1997) Zero and offzero critical concentrations in systems containing polydisperse polymers with very high molar masses. 2. The system water–poly(vinyl methyl ether), Macromolecules, 30, 410–416.CrossRefGoogle Scholar
  44. 44.
    Grinberg, V. Y., Senin, A. A., Grinberg, N. V., Burova, T. V., Dubovik, A. S., Potekhin, S. A., and Erukhimovich, I. Ya. (2015) High pressure effects under phase separation of aqueous solutions of poly(N-isopropylacrylamide): a HS-DSC study, Polymer, 64, 14–18.CrossRefGoogle Scholar
  45. 45.
    Grinberg, V. Y., Burova, T. V., Grinberg, N. V., Dubovik, A. S., Senin, A. A., Potekhin, S. A., and Erukhimovich, I. Ya. (2016) Energetics of phase separation in aqueous solutions of poly(vinyl methyl ether), Polymer, 87, 283–289.CrossRefGoogle Scholar
  46. 46.
    Finkelstein, A. V., and Ptitsyn, O. B. (2002) in Protein Physics: A Course of Lectures, Academic Press, New York.Google Scholar
  47. 47.
    Privalov, P. L., and Khechinashvili, N. N. (1974) A thermodynamic approach to the problem of stabilization of globular protein structure: a calorimetric study, J. Mol. Biol., 86, 665–684.CrossRefPubMedGoogle Scholar
  48. 48.
    Liu, Y., and Sturtevant, J. M. (1996) The observed change in heat capacity accompanying the thermal unfolding of proteins depends on the composition of the solution and on the method employed to change the temperature of unfolding, Biochemistry, 35, 3059–3062.CrossRefPubMedGoogle Scholar
  49. 49.
    Makhatadze, G. I., and Privalov, P. L. (1995) Energetics of protein structure, Adv. Protein Chem., 47, 307–425.CrossRefPubMedGoogle Scholar
  50. 50.
    Privalov, P. L., and Gill, S. J. (1988) Stability of protein structure and hydrophobic interaction, Adv. Protein Chem., 39, 191–234.CrossRefPubMedGoogle Scholar
  51. 51.
    Makhatadze, G. I., and Privalov, P. L. (1993) Contribution of hydration to protein folding thermodynamics: I. The enthalpy of hydration, J. Mol. Biol., 232, 639–659.CrossRefPubMedGoogle Scholar
  52. 52.
    Privalov, P. L., and Makhatadze, G. I. (1993) Contribution of hydration to protein folding thermodynamics: II. The entropy and Gibbs energy of hydration, J. Mol. Biol., 232, 660–679.CrossRefPubMedGoogle Scholar
  53. 53.
    Privalov, P. L. (1979) Stability of proteins: small globular proteins, Adv. Protein Chem., 33, 167–241.CrossRefPubMedGoogle Scholar
  54. 54.
    Baldwin, R. L. (2013) Properties of hydrophobic free energy found by gas–liquid transfer, Proc. Natl. Acad. Sci. USA, 110, 1670–1673.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Spolar, R. S., Livingstone, J. R., and Record, M. T. (1992) Use of liquid hydrocarbon and amide transfer data to estimate contributions to thermodynamic functions of protein folding from the removal of nonpolar and polar surface from water, Biochemistry, 31, 3947–3955.CrossRefPubMedGoogle Scholar
  56. 56.
    Myers, J. K., Pace, C. N., and Scholtz, J. M. (1995) Denaturant m values and heat capacity changes: relation to changes in accessible surface areas of protein unfolding, Protein Sci., 4, 2138–2148.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Privalov, P. L., and Makhatadze, G. I. (1992) Contribution of hydration and noncovalent interactions to the heat capacity effect on protein unfolding, J. Mol. Biol., 224, 715–723.CrossRefPubMedGoogle Scholar
  58. 58.
    Privalov, P. L., and Makhatadze, G. I. (1990) Heat capacity of proteins: II. Partial molar heat capacity of the unfolded polypeptide chain of proteins: protein unfolding effects, J. Mol. Biol., 213, 385–391.CrossRefPubMedGoogle Scholar
  59. 59.
    Mozhaev, V. V., Heremans, K., Frank, J., Masson, P., and Balny, C. (1996) High pressure effects on protein structure and function, Proteins, 24, 81–91.CrossRefPubMedGoogle Scholar
  60. 60.
    Royer, C. A. (2002) Revisiting volume changes in pressure-induced protein unfolding, Biochim. Biophys. Acta, 1595, 201–209.CrossRefPubMedGoogle Scholar
  61. 61.
    Boonyaratanakornkit, B. B., Park, C. B., and Clark, D. S. (2002) Pressure effects on intra-and intermolecular interactions within proteins, Biochim. Biophys. Acta, 1595, 235–249.CrossRefPubMedGoogle Scholar
  62. 62.
    Brandts, J. F., Oliveira, R. J., and Westort, C. (1970) Thermodynamics of protein denaturation. Effect of pressure on the denaturation of ribonuclease A, Biochemistry, 9, 1038–1047.CrossRefPubMedGoogle Scholar
  63. 63.
    Rasper, J., and Kauzmann, W. (1962) Volume changes in protein reactions. I. Ionization reactions of proteins, J. Am. Chem. Soc., 84, 1771–1777.CrossRefGoogle Scholar
  64. 64.
    Kauzmann, W., Bodanszky, A., and Rasper, J. (1962) Volume changes in protein reactions. II. Comparison of ionization reactions in proteins and small molecules, J. Am. Chem. Soc., 84, 1777–1788.CrossRefGoogle Scholar
  65. 65.
    Gross, M., and Jaenicke, R. (1994) Proteins under pressure. The influence of high hydrostatic pressure on structure, function and assembly of proteins and protein complexes, Eur. J. Biochem., 221, 617–630.PubMedGoogle Scholar
  66. 66.
    Van Eldik, R., Asano, T., and Le Noble, W. J. (1989) Activation and reaction volumes in solution, Chem. Rev., 89, 549–688.CrossRefGoogle Scholar
  67. 67.
    Kauzmann, W. (1987) Thermodynamics of unfolding, Nature, 325, 763–764.CrossRefGoogle Scholar
  68. 68.
    Dill, K. A. (1990) Dominant forces in protein folding, Biochemistry, 29, 7133–7155.CrossRefPubMedGoogle Scholar
  69. 69.
    Zipp, A., and Kauzmann, W. (1973) Pressure denaturation of metmyoglobin, Biochemistry, 12, 4217–4228.CrossRefPubMedGoogle Scholar
  70. 70.
    Sawamura, S., Nagaoka, K., and Machikawa, T. (2001) Effects of pressure and temperature on the solubility of alkylbenzenes in water: volumetric property of hydrophobic hydration, J. Phys. Chem. B, 105, 2429–2436.CrossRefGoogle Scholar
  71. 71.
    Hawley, S. A. (1971) Reversible pressure-temperature denaturation of chymotrypsinogen, Biochemistry, 10, 2436–2442.CrossRefPubMedGoogle Scholar
  72. 72.
    Meersman, F., Dobson, C. M., and Heremans, K. (2006) Protein unfolding, amyloid fibril formation and configurational energy landscapes under high pressure conditions, Chem. Soc. Rev., 35, 908–917.PubMedGoogle Scholar
  73. 73.
    Roche, J., Caro, J. A., Norberto, D. R., Barthe, P., Roumestand, C., Schlessman, J. L., Garcia, A. E., GarcHa-Moreno, B. E., and Royer, C. A. (2012) Cavities determine the pressure unfolding of proteins, Proc. Natl. Acad. Sci. USA, 109, 6945–6950.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Rouget, J. B., Aksel, T., Roche, J., Saldana, J. L., Garcia, A. E., Barrick, D., and Royer, C. A. (2011) Size and sequence and the volume change of unfolding, J. Am. Chem. Soc., 133, 6020–6027.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Meersman, F., Daniel, I., Bartlett, D. H., Winter, R., Hazael, R., and McMillan, P. F. (2013) High-pressure biochemistry and biophysics, Rev. Mineral Geochem., 75, 607–648.CrossRefGoogle Scholar
  76. 76.
    Masterton, W. L., and Seiler, H. K. (1968) Apparent and partial molal volumes of water in organic solvents, J. Phys. Chem., 72, 4257–4262.CrossRefGoogle Scholar
  77. 77.
    Suzuki, K. (1960) Studies on the kinetics of protein denaturation under high pressure, Rev. Phys. Chem. Jap., 29, 91–98.Google Scholar
  78. 78.
    Yegorov, A. Y., and Potekhin, S. A. (2015) Moderate pressure has no distinct impact on hydrophobic hydration of proteins, Thermochim. Acta, 610, 10–15.CrossRefGoogle Scholar
  79. 79.
    Kunugi, S., and Tanaka, N. (2002) Cold denaturation of proteins under high pressure, Biochim. Biophys. Acta, 1595, 329–344.CrossRefPubMedGoogle Scholar
  80. 80.
    Zhang, J., Peng, X., Jonas, A., and Jonas, J. (1995) NMR study of the cold, heat, and pressure unfolding of ribonu-clease A, Biochemistry, 34, 8631–8641.Google Scholar
  81. 81.
    Nash, D. P., and Jonas, J. (1997) Structure of pressure-assisted cold denatured lysozyme and comparison with lysozyme folding intermediates, Biochemistry, 36, 14375–14383.CrossRefPubMedGoogle Scholar
  82. 82.
    Panick, G., Vidugiris, G. J., Malessa, R., Rapp, G., Winter, R., and Royer, C. A. (1999) Exploring the temper-ature-pressure phase diagram of staphylococcal nuclease, Biochemistry, 38, 4157–4164.CrossRefPubMedGoogle Scholar
  83. 83.
    Meersman, F., Smeller, L., and Heremans, K. (2002) Comparative Fourier transform infrared spectroscopy study of cold-, pressure-, and heat-induced unfolding and aggregation of myoglobin, Biophys. J., 82, 2635–2644.PubMedGoogle Scholar
  84. 84.
    Bowron, D. T., Weigel, R., Filipponi, A., Roberts, M. A., and Finney, J. L. (2001) X-Ray absorption spectroscopy investigations of the hydrophobic hydration of krypton at high pressure, Mol. Phys., 99, 761–765.CrossRefGoogle Scholar
  85. 85.
    Potekhin, S. A., Senin, A. A., Abdurachmanov, N. N., and Tiktopulo, E. I. (2009) High-pressure stabilization of collagen structure, Biochim. Biophys. Acta, 1794, 1151–1158.CrossRefPubMedGoogle Scholar
  86. 86.
    Shoulders, M. D., and Raines, R. T. (2009) Collagen structure and stability, Annu. Rev. Biochem., 78, 929–958.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Finkelstein, A. V., and Shakhnovich, E. I. (1989) Theory of cooperative transitions in protein molecules. II. Phase diagram for protein molecule in solution, Biopolymers, 28, 1681–1694.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Protein ResearchRussian Academy of SciencesPushchinoRussia

Personalised recommendations