Advertisement

Biochemistry (Moscow)

, Volume 83, Supplement 1, pp S111–S133 | Cite as

Structural Aspects of Ribosomal RNA Recognition by Ribosomal Proteins

  • A. D. NikulinEmail author
Review

Abstract

This review is focused on the structural aspects of interaction between ribosomal proteins and ribosomal RNA in bacterial ribosomes and complexes of ribosomal proteins with specific fragments of ribosomal RNA. Special attention is given to the recognition of specific spatial architecture of the double-stranded ribosomal RNA by ribosomal proteins and to the role of unstructured protein regions in stabilization of distant ribosomal RNA segments.

Keywords

ribosome structure ribosomal proteins ribosomal RNA RNA–protein recognition double-stranded RNA unstructured proteins 

Abbreviations

EM

electron microscopy

LRS

50S (large) ribosomal subunit

NMR

nuclear magnetic resonance

r-protein

ribosomal protein

rRNA

ribosomal RNA

SRS

30S (small) ribosomal subunit

References

  1. 1.
    Spirin, A. S. (2011) Molecular Biology. Ribosomes and Protein Biosynthesis [in Russian], Akademiya, Moscow.Google Scholar
  2. 2.
    Klein, D. J., Moore, P. B., and Steitz, T. A. (2004) The roles of ribosomal proteins in the structure assembly, and evolution of the large ribosomal subunit, J. Mol. Biol., 340, 141–177.PubMedGoogle Scholar
  3. 3.
    Lecompte, O., Ripp, R., Thierry, J.-C., Moras, D., and Poch, O. (2002) Comparative analysis of ribosomal proteins in complete genomes: an example of reductive evolution at the domain scale, Nucleic Acids Res., 30, 5382–5390.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Korobeinikova, A. V., Garber, M. B., and Gongadze, G. M. (2012) Ribosomal proteins: structure, function and evolution, Biochemistry (Moscow), 77, 562–574.CrossRefGoogle Scholar
  5. 5.
    Hartman, H., Favaretto, P., and Smith, T. F. (2006) The archaeal origins of the eukaryotic translational system, Archaea, 2, 1–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Ban, N., Beckmann, R., Cate, J. H., Dinman, J. D., Dragon, F., Ellis, S. R., Lafontaine, D. L., Lindahl, L., Liljas, A., Lipton, J. M., McAlear, M. A., Moore, P. B., Noller, H. F., Ortega, J., Panse, V. G., Ramakrishnan, V., Spahn, C. M., Steitz, T. A., Tchorzewski, M., Tollervey, D., Warren, A. J., Williamson, J. R., Wilson, D., Yonath, A., and Yusupov, M. (2014) A new system for naming ribosomal proteins, Curr. Opin. Struct. Biol., 24, 165–169.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Kaczanowska, M., and Ryden-Aulin, M. (2007) Ribosome biogenesis and the translation process in Escherichia coli, Microbiol. Mol. Biol. Rev., 71, 477–494.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Hamacher, K., Trylska, J., and McCammon, J. A. (2006) Dependency map of proteins in the small ribosomal subunit, PLoS Comput. Biol., 2, e10.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Rohl, R., and Nierhaus, K. H. (1982) Assembly map of the large subunit (50S) of Escherichia coli ribosomes, Proc. Natl. Acad. Sci. USA, 79, 729–733.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Herold, M., and Nierhaus, K. H. (1987) Incorporation of six additional proteins to complete the assembly map of the 50S subunit from Escherichia coli ribosomes, J. Biol. Chem., 262, 8826–8833.PubMedGoogle Scholar
  11. 11.
    Spillmann, S., Dohme, F., and Nierhaus, K. H. (1977) Assembly in vitro of the 50S subunit from Escherichia coli ribosomes: proteins essential for the first heat-dependent conformational change, J. Mol. Biol., 115, 513–523.PubMedCrossRefGoogle Scholar
  12. 12.
    Held, W. A., and Nomura, M. (1973) Rate determining step in the reconstitution of Escherichia coli 30S ribosomal subunits, Biochemistry, 12, 3273–3281.PubMedCrossRefGoogle Scholar
  13. 13.
    Schuwirth, B. S. (2005) Structures of the bacterial ribosome at 3.5 Å resolution, Science, 310, 827–834.PubMedCrossRefGoogle Scholar
  14. 14.
    Porse, B. T., and Garrett, R. A. (1999) Ribosomal mechanics, antibiotics, and GTP hydrolysis, Cell, 97, 423–426.PubMedGoogle Scholar
  15. 15.
    Diaconu, M., Kothe, U., Schlunzen, F., Fischer, N., Harms, J. M., Tonevitsky, A. G., Stark, H., Rodnina, M. V., and Wahl, M. C. (2005) Structural basis for the function of the ribosomal L7/12 stalk in factor binding and GTPase activation, Cell, 121, 991–1004.PubMedCrossRefGoogle Scholar
  16. 16.
    Leijonmarck, M., and Liljas, A. (1987) Structure of the C-terminal domain of the ribosomal protein L7/L12 from Escherichia coli at 1.7 Å, J. Mol. Biol., 195, 555–579.PubMedCrossRefGoogle Scholar
  17. 17.
    Mitroshin, I. V., Garber, M. B., and Gabdulkhakov, A. G. (2016) Investigation of structure of the ribosomal L12/P stalk, Biochemistry (Moscow), 81, 1589–1601.CrossRefGoogle Scholar
  18. 18.
    Xing, Y., and Draper, D. E. (1996) Cooperative interactions of RNA and thiostrepton antibiotic with two domains of ribosomal protein L11, Biochemistry, 35, 1581–1588.PubMedCrossRefGoogle Scholar
  19. 19.
    Jonker, H. R. A., Ilin, S., Grimm, S. K., Wohnert, J., and Schwalbe, H. (2006) L11 domain rearrangement upon binding to RNA and thiostrepton studied by NMR spectroscopy, Nucleic Acids Res., 35, 441–454.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Wimberly, B. T., Guymon, R., McCutcheon, J. P., White, S. W., and Ramakrishnan, V. (1999) A detailed view of a ribosomal active site: the structure of the L11–RNA complex, Cell, 97, 491–502.PubMedCrossRefGoogle Scholar
  21. 21.
    Conn, G. L., Draper, D. E., Lattman, E. E., and Gittis, A. G. (1999) Crystal structure of a conserved ribosomal protein–RNA complex, Science, 284, 1171–1174.PubMedCrossRefGoogle Scholar
  22. 22.
    Murzin, A. G., Brenner, S. E., Hubbard, T., and Chothia, C. (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures, J. Mol. Biol., 247, 536–540.PubMedGoogle Scholar
  23. 23.
    Brennan, R. G., and Matthews, B. W. (1989) The helix-turn-helix DNA binding motif, J. Biol. Chem., 264, 1903–1906.PubMedGoogle Scholar
  24. 24.
    Matthews, B. W., Ohlendorf, D. H., Anderson, W. F., and Takeda, Y. (1982) Structure of the DNA-binding region of lac repressor inferred from its homology with cro repressor, Proc. Natl. Acad. Sci. USA, 79, 1428–1432.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Muller, C. W. (2001) Transcription factors: global and detailed views, Curr. Opin. Struct. Biol., 11, 26–32.PubMedCrossRefGoogle Scholar
  26. 26.
    Gudkov, A. T., Tumanova, L. G., Gongadze, G. M., and Bushuev, V. N. (1980) Role of different regions of ribosomal proteins L7 and L10 in their complex formation and in the interaction with the ribosomal 50S subunit, FEBS Lett., 109, 34–38.PubMedCrossRefGoogle Scholar
  27. 27.
    Rosendahl, G., and Douthwaite, S. (1993) Ribosomal proteins L11 and L10-(L12)4 and the antibiotic thiostrepton interact with overlapping regions of the 23S rRNA back-bone in the ribosomal GTPase center, J. Mol. Biol., 234, 1013–1020.PubMedCrossRefGoogle Scholar
  28. 28.
    Noeske, J., Wasserman, M. R., Terry, D. S., Altman, R. B., Blanchard, S. C., and Cate, J. H. D. (2015) High-resolution structure of the Escherichia coli ribosome, Nat. Struct. Mol. Biol., 22, 336–341.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 28.
    Cocozaki, A. I., Altman, R. B., Huang, J., Buurman, E. T., Kazmirski, S. L., Doig, P., Prince, D. B., Blanchard, S. C., Cate, J. H. D., and Ferguson, A. D. (2016) Resistance mutations generate divergent antibiotic susceptibility profiles against translation inhibitors, Proc. Natl. Acad. Sci. USA, 113, 8188–8193.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Lin, J., Gagnon, M. G., Bulkley, D., and Steitz, T. A. (2015) Conformational changes of elongation factor G on the ribosome during tRNA translocation, Cell, 160, 219–227.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Gagnon, M. G., Lin, J., and Steitz, T. A. (2016) Elongation factor 4 remodels the A-site tRNA on the ribosome, Proc. Natl. Acad. Sci. USA, 113, 4994–4999.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Fischer, N., Konevega, A. L., Wintermeyer, W., Rodnina, M. V., and Stark, H. (2010) Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopy, Nature, 466, 329–333.PubMedCrossRefGoogle Scholar
  33. 33.
    Trabuco, L. G., Schreiner, E., Eargle, J., Cornish, P., Ha, T., Luthey-Schulten, Z., and Schulten, K. (2010) The role of L1 stalk–tRNA interaction in the ribosome elongation cycle, J. Mol. Biol., 402, 741–760.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Ban, N., Nissen, P., Hansen, J., Moore, P. B., and Steitz, T. A. (2000) The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution, Science, 289, 905–920.PubMedCrossRefGoogle Scholar
  35. 35.
    Selmer, M. (2006) Structure of the 70S ribosome complexed with mRNA and tRNA, Science, 313, 1935–1942.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Nikonov, S., Nevskaya, N., Eliseikina, I., Fomenkova, N., Nikulin, A., Ossina, N., Garber, M., Jonsson, B. H., Briand, C., Al-Karadaghi, S., Svensson, A., Aevarsson, A., and Liljas, A. (1996) Crystal structure of the RNA binding ribosomal protein L1 from Thermus thermophiles, EMBO J., 15, 1350–1359.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Tishchenko, S., Nikonova, E., Kostareva, O., Gabdulkhakov, A., Piendl, W., Nevskaya, N., Garber, M., and Nikonov, S. (2011) Structural analysis of interdomain mobility in ribosomal L1 proteins, Acta Crystallogr. D, 67, 1023–1027.PubMedCrossRefGoogle Scholar
  38. 38.
    Nikulin, A., Eliseikina, I., Tishchenko, S., Nevskaya, N., Davydova, N., Platonova, O., Piendl, W., Selmer, M., Liljas, A., Drygin, D., Zimmermann, R., Garber, M., and Nikonov, S. (2003) Structure of the L1 protuberance in the ribosome, Nat. Struct. Biol., 10, 104–108.PubMedCrossRefGoogle Scholar
  39. 39.
    Willumeit, R., Forthmann, S., Beckmann, J., Diedrich, G., Ratering, R., Stuhrmann, H. B., and Nierhaus, K. H. (2001) Localization of the protein L2 in the 50S subunit and the 70S E. coli ribosome, J. Mol. Biol., 305, 167–177.PubMedCrossRefGoogle Scholar
  40. 40.
    Diedrich, G., Spahn, C. M. T., Stelzl, U., Schafer, M. A., Wooten, T., Bochkariov, D. E., Cooperman, B. S., Traut, R. R., and Nierhaus, K. H. (2000) Ribosomal protein L2 is involved in the association of the ribosomal subunits, tRNA binding to A and P sites and peptidyl transfer, EMBO J., 19, 5241–5250.PubMedGoogle Scholar
  41. 41.
    Cooperman, B. S., Wooten, T., Romero, D. P., and Traut, R. R. (1995) Histidine 229 in protein L2 is apparently essential for 50S peptidyl transferase activity, Biochem. Cell Biol., 73, 1087–1094.PubMedCrossRefGoogle Scholar
  42. 42.
    Gao, H., Sengupta, J., Valle, M., Korostelev, A., Eswar, N., Stagg, S. M., Van Roey, P., Agrawal, R. K., Harvey, S. C., Sali, A., Chapman, M. S., and Frank, J. (2003) Study of the structural dynamics of the E. coli 70S ribosome using real-space refinement, Cell, 113, 789–801.PubMedCrossRefGoogle Scholar
  43. 43.
    Uhlein, M., Weglohner, W., Urlaub, H., and Wittmann-Liebold, B. (1998) Functional implications of ribosomal protein L2 in protein biosynthesis as shown by in vivo replacement studies, Biochem. J., 331, 423–430.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Nowotny, V., and Nierhaus, K. H. (1982) Initiator proteins for the assembly of the 50S subunit from Escherichia coli ribosomes, Proc. Natl. Acad. Sci. USA, 79, 7238–7242.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Petrov, A., Meskauskas, A., and Dinman, J. D. (2004) Ribosomal protein L3: influence on ribosome structure and function, RNA Biol., 1, 59–65.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Pringle, M., Poehlsgaard, J., Vester, B., and Long, K. S. (2004) Mutations in ribosomal protein L3 and 23S ribosomal RNA at the peptidyl transferase center are associated with reduced susceptibility to tiamulin in Brachyspira spp. isolates, Mol. Microbiol., 54, 1295–1306.PubMedCrossRefGoogle Scholar
  47. 47.
    Klitgaard, R. N., Ntokou, E., Norgaard, K., Biltoft, D., Hansen, L. H., Trædholm, N. M., Kongsted, J., and Vester, B. (2015) Mutations in the bacterial ribosomal protein L3 and their association with antibiotic resistance, Antimicrob. Agents Chemother., 59, 3518–3528.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Urlaub, H., Kruft, V., Bischof, O., Muller, E. C., and Wittmann-Liebold, B. (1995) Protein–rRNA binding features and their structural and functional implications in ribosomes as determined by cross-linking studies, EMBO J., 14, 4578–4588.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Wower, I., Wower, J., Meinke, M., and Brimacombe, R. (1981) The use of 2-iminothiolane as an RNA–protein cross-linking agent in Escherichia coli ribosomes, and the localization on 23S RNA of sites cross-linked to proteins L4, L6, L21, L23, L27 and L29, Nucleic Acids Res., 9, 4285–4302.Google Scholar
  50. 50.
    Gabashvili, I. S., Gregory, S. T., Valle, M., Grassucci, R., Worbs, M., Wahl, M. C., Dahlberg, A. E., and Frank, J. (2001) The polypeptide tunnel system in the ribosome and its gating in erythromycin resistance mutants of L4 and L22, Mol. Cell, 8, 181–188.PubMedCrossRefGoogle Scholar
  51. 51.
    Zaman, S., Fitzpatrick, M., Lindahl, L., and Zengel, J. (2007) Novel mutations in ribosomal proteins L4 and L22 that confer erythromycin resistance in Escherichia coli, Mol. Microbiol., 66, 1039–1050.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Chittum, H. S., and Champney, W. S. (1994) Ribosomal protein gene sequence changes in erythromycin-resistant mutants of Escherichia coli, J. Bacteriol., 176, 6192–6198.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Zengel, J. M. (2003) The extended loops of ribosomal proteins L4 and L22 are not required for ribosome assembly or L4-mediated autogenous control, RNA, 9, 1188–1197.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Worbs, M., Huber, R., and Wahl, M. C. (2000) Crystal structure of ribosomal protein L4 shows RNA-binding sites for ribosome incorporation and feedback control of the S10 operon, EMBO J., 19, 807–818.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Hoffman, D. W., Davies, C., Gerchman, S. E., Kycia, J. H., Porter, S. J., White, S. W., and Ramakrishnan, V. (1994) Crystal structure of prokaryotic ribosomal protein L9: a bilobed RNA-binding protein, EMBO J., 13, 205–212.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Hoffman, D. W., Cameron, C. S., Davies, C., White, S. W., and Ramakrishnan, V. (1996) Ribosomal protein L9: a structure determination by the combined use of X-ray crystallography and NMR spectroscopy, J. Mol. Biol., 264, 1058–1071.PubMedCrossRefGoogle Scholar
  57. 57.
    Selmer, M., Gao, Y.-G., Weixlbaumer, A., and Ramakrishnan, V. (2012) Ribosome engineering to promote new crystal forms, Acta Crystallogr. Sect. D, 68, 578–583.CrossRefGoogle Scholar
  58. 58.
    Fischer, N., Neumann, P., Konevega, A. L., Bock, L. V., Ficner, R., Rodnina, M. V., and Stark, H. (2015) Structure of the E. coli ribosome–EF-Tu complex at <3 Å resolution by Cs-corrected cryo-EM, Nature, 520, 567–570.PubMedCrossRefGoogle Scholar
  59. 59.
    Naganathan, A., Wood, M. P., and Moore, S. D. (2015) The large ribosomal subunit protein L9 enables the growth of EF-P deficient cells and enhances small subunit maturation, PLoS One, 10, e0120060.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Raibaud, S., Vachette, P., Guillier, M., Allemand, F., Chiaruttini, C., and Dardel, F. (2003) How bacterial ribosomal protein L20 assembles with 23S ribosomal RNA and its own messenger RNA, J. Biol. Chem., 278, 36522–36530.PubMedCrossRefGoogle Scholar
  61. 61.
    Guillier, M., Allemand, F., Graffe, M., Raibaud, S., Dardel, F., Springer, M., and Chiaruttini, C. (2005) The N-terminal extension of Escherichia coli ribosomal protein L20 is important for ribosome assembly, but dispensable for translational feedback control, RNA, 11, 728–738.Google Scholar
  62. 62.
    Franceschi, F. J., and Nierhaus, K. H. (1988) Ribosomal protein L20 can replace the assembly-initiator protein L24 at low temperature, Biochemistry, 27, 7056–7059.PubMedCrossRefGoogle Scholar
  63. 63.
    Raibaud, S., Lebars, I., Guillier, M., Chiaruttini, C., Bontems, F., Rak, A., Garber, M., Allemand, F., Springer, M., and Dardel, F. (2002) NMR structure of bacterial ribosomal protein L20: implications for ribosome assembly and translational control, J. Mol. Biol., 323, 143–151.PubMedCrossRefGoogle Scholar
  64. 64.
    Timsit, Y., Allemand, F., Chiaruttini, C., and Springer, M. (2006) Coexistence of two protein folding states in the crystal structure of ribosomal protein L20, EMBO Rep., 7, 1013–1018.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Timsit, Y., Acosta, Z., Allemand, F., Chiaruttini, C., and Springer, M. (2009) The role of disordered ribosomal protein extensions in the early steps of eubacterial 50S ribosomal subunit assembly, Int. J. Mol. Sci., 10, 817–834.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Kramer, G., Rauch, T., Rist, W., Vorderwulbecke, S., Patzelt, H., Schulze-Specking, A., Ban, N., Deuerling, E., and Bukau, B. (2002) L23 protein functions as a chaperone docking site on the ribosome, Nature, 419, 171–174.PubMedCrossRefGoogle Scholar
  67. 67.
    Gu, S.-Q., Peske, F., Wieden, H.-J., Rodnina, M. V., and Wintermeyer, W. (2003) The signal recognition particle binds to protein L23 at the peptide exit of the Escherichia coli ribosome, RNA, 9, 566–573.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Ullers, R. S., Houben, E. N. G., Raine, A., ten Hagen-Jongman, C. M., Ehrenberg, M., Brunner, J., Oudega, B., Harms, N., and Luirink, J. (2003) Interplay of signal recognition particle and trigger factor at L23 near the nascent chain exit site on the Escherichia coli ribosome, J. Cell Biol., 161, 679–684.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Ohman, A., Rak, A., Dontsova, M., Garber, M. B., and Hard, T. (2003) NMR structure of the ribosomal protein L23 from Thermus thermophiles, J. Biomol. NMR, 26, 131–137.PubMedCrossRefGoogle Scholar
  70. 70.
    Spillmann, S., and Nierhaus, K. H. (1978) The ribosomal protein L24 of Escherichia coli is an assembly protein, J. Biol. Chem., 253, 7047–7050.PubMedGoogle Scholar
  71. 71.
    Mitra, K., Schaffitzel, C., Shaikh, T., Tama, F., Jenni, S., Brooks, C. L., Ban, N., and Frank, J. (2005) Structure of the E. coli protein-conducting channel bound to a translating ribosome, Nature, 438, 318–324.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Szymanski, M., Barciszewska, M. Z., Erdmann, V. A., and Barciszewski, J. (2002) 5S ribosomal RNA database, Nucleic Acids Res., 30, 176–178.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Gongadze, G. M., Korepanov, A. P., Korobeinikova, A. V., and Garber, M. B. (2008) Bacterial 5S rRNA-binding proteins of the CTC family, Biochemistry (Moscow), 73, 1405–1417.CrossRefGoogle Scholar
  74. 74.
    Gongadze, G. M. (2011) 5S rRNA and ribosome, Biochemistry (Moscow), 76, 1450–1464.CrossRefGoogle Scholar
  75. 75.
    Selivanova, O. M., Gongadze, G. M., Gudkov, A. T., and Vasiliev, V. D. (1986) Structure of protein-deficient 50S ribosomal subunits. Particles without 5S RNA–protein complex retain the L7/L12 stalk and associate with 30S subunits, FEBS Lett., 197, 79–83.PubMedCrossRefGoogle Scholar
  76. 76.
    Gongadze, G. M., Perederina, A. A., Meshcheriakov, V. A., Fedorov, R. V., Moskalenko, S. E., Rak, A. V., Serganov, A. A., Shcherbakov, D. V., Nikonov, S. V., and Garber, M. B. (2001) The Thermus thermophilus 5S rRNA–protein complex: identifications of specific binding sites for proteins L5 and L18 in 5S rRNA, Mol. Biol. (Moscow), 35, 610–616.CrossRefGoogle Scholar
  77. 77.
    Shpanchenko, O. V., Zvereva, M. I., Dontsova, O. A., Nierhaus, K. H., and Bogdanov, A. A. (1996) 5S rRNA sugar-phosphate backbone protection in complexes with specific ribosomal proteins, FEBS Lett., 394, 71–75.PubMedCrossRefGoogle Scholar
  78. 78.
    Spierer, P., and Zimmermann, R. A. (1978) Stoichiometry, cooperativity, and stability of interactions between 5S RNA and proteins L5, L18, and L25 from the 50S ribosomal subunit of Escherichia coli, Biochemistry, 17, 2474–2479.PubMedGoogle Scholar
  79. 79.
    Korepanov, A. P., Gongadze, G. M., Garber, M. B., Court, D. L., and Bubunenko, M. G. (2007) Importance of the 5S rRNA-binding ribosomal proteins for cell viability and translation in Escherichia coli, J. Mol. Biol., 366, 1199–1208.PubMedCrossRefGoogle Scholar
  80. 80.
    Osswald, M., Doring, T., and Brimacombe, R. (1995) The ribosomal neighborhood of the central fold of tRNA: cross-links from position 47 of tRNA located at the A, P or E site, Nucleic Acids Res., 23, 4635–4641.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Korepanov, A. P., Korobeinikova, A. V., Shestakov, S. A., Garber, M. B., and Gongadze, G. M. (2012) Protein L5 is crucial for in vivo assembly of the bacterial 50S ribosomal subunit central protuberance, Nucleic Acids Res., 40, 9153–9159.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Nakashima, T., Yao, M., Kawamura, S., Iwasaki, K., Kimura, M., and Tanaka, I. (2001) Ribosomal protein L5 has a highly twisted concave surface and flexible arms responsible for rRNA binding, RNA, 7, 692–701.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Perederina, A., Nevskaya, N., Nikonov, O., Nikulin, A., Dumas, P., Yao, M., Tanaka, I., Garber, M., Gongadze, G., and Nikonov, S. (2002) Detailed analysis of RNA–protein interactions within the bacterial ribosomal protein L5/5S rRNA complex, RNA, 8, 1548–1557.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Spierer, P., Wang, C. C., Marsh, T. L., and Zimmermann, R. A. (1979) Cooperative interactions among protein and RNA components of the 50S ribosomal subunit of Escherichia coli, Nucleic Acids Res., 6, 1669–1682.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Woestenenk, E. A., Gongadze, G. M., Shcherbakov, D. V., Rak, A. V., Garber, M. B., Hard, T., and Berglund, H. (2002) The solution structure of ribosomal protein L18 from Thermus thermophilus reveals a conserved RNA-binding fold, Biochem. J., 363, 553–561.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Turner, C. F., and Moore, P. B. (2004) The solution structure of ribosomal protein L18 from Bacillus stearother-mophilus, J. Mol. Biol., 335, 679–684.PubMedCrossRefGoogle Scholar
  87. 87.
    Ciesiolka, J., Lorenz, S., and Erdmann, V. A. (1992) Structural analysis of three prokaryotic 5S rRNA species and selected 5S rRNA-ribosomal–protein complexes by means of Pb(II)-induced hydrolysis, Eur. J. Biochem., 204, 575–581.PubMedCrossRefGoogle Scholar
  88. 88.
    Newberry, V., and Garrett, R. A. (1980) The role of the basic N-terminal region of protein L18 in 5S RNA–23S RNA complex formation, Nucleic Acids Res., 8, 4131–4142.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Szymanski, M., Barciszewska, M. Z., Erdmann, V., and Barciszewski, J. (2003) 5S rRNA: structure and interactions, Biochem. J., 371, 641–651.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Douthwaite, S., Garrett, R. A., Wagner, R., and Feunteun, J. (1979) A ribonuclease-resistant region of 5S RNA and its relation to the RNA binding sites of proteins L18 and L25, Nucleic Acids Res., 6, 2453–2470.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Harms, J., Schluenzen, F., Zarivach, R., Bashan, A., Gat, S., Agmon, I., Bartels, H., Franceschi, F., and Yonath, A. (2001) High resolution structure of the large ribosomal subunit from a mesophilic eubacterium, Cell, 107, 679–688.PubMedCrossRefGoogle Scholar
  92. 92.
    Stoldt, M., Wohnert, J., Gorlach, M., and Brown, L. R. (1998) The NMR structure of Escherichia coli ribosomal protein L25 shows homology to general stress proteins and glutaminyl-tRNA synthetases, EMBO J., 17, 6377–6384.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Lu, M., and Steitz, T. A. (2000) Structure of Escherichia coli ribosomal protein L25 complexed with a 5S rRNA fragment at 1.8 Å resolution, Proc. Natl. Acad. Sci. USA, 97, 2023–2028.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Fedorov, R., Meshcheryakov, V., Gongadze, G., Fomenkova, N., Nevskaya, N., Selmer, M., Laurberg, M., Kristensen, O., Al-Karadaghi, S., Liljas, A., Garber, M., and Nikonov, S. (2001) Structure of ribosomal protein TL5 complexed with RNA provides new insights into the CTC family of stress proteins, Acta Crystallogr. D, 57, 968–976.PubMedCrossRefGoogle Scholar
  95. 95.
    Gongadze, G. M., Korepanov, A. P., Korobeinikova, A. V., and Garber, M. B. (2008) Bacterial 5S rRNA-binding proteins of the CTC family, Biochemistry (Moscow), 73, 1405–1417.CrossRefGoogle Scholar
  96. 96.
    Petrov, A. S., Bernier, C. R., Gulen, B., Waterbury, C. C., Hershkovits, E., Hsiao, C., Harvey, S. C., Hud, N. V., Fox, G. E., Wartell, R. M., and Williams, L. D. (2014) Secondary structures of rRNAs from all three domains of life, PLoS One, 9, e88222.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Nowotny, V., and Nierhaus, K. H. (1988) Assembly of the 30S subunit from Escherichia coli ribosomes occurs via two assembly domains which are initiated by S4 and S7, Biochemistry, 27, 7051–7055.PubMedCrossRefGoogle Scholar
  98. 98.
    Stern, S., Powers, T., Changchien, L. M., and Noller, H. F. (1989) RNA–protein interactions in 30S ribosomal subunits: folding and function of 16S rRNA, Science, 244, 783–790.PubMedCrossRefGoogle Scholar
  99. 99.
    Mayerle, M., and Woodson, S. A. (2013) Specific contacts between protein S4 and ribosomal RNA are required at multiple stages of ribosome assembly, RNA, 19, 574–585.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Ramaswamy, P., and Woodson, S. A. (2009) Global stabilization of rRNA structure by ribosomal proteins S4, S17, and S20, J. Mol. Biol., 392, 666–677.PubMedCrossRefGoogle Scholar
  101. 101.
    Powers, T., and Noller, H. F. (1995) Hydroxyl radical foot-printing of ribosomal proteins on 16S rRNA, RNA, 1, 194–209.PubMedPubMedCentralGoogle Scholar
  102. 102.
    Davies, C., Gerstner, R. B., Draper, D. E., Ramakrishnan, V., and White, S. W. (1998) The crystal structure of ribosomal protein S4 reveals a two-domain molecule with an extensive RNA-binding surface: one domain shows structural homology to the ETS DNA-binding motif, EMBO J., 17, 4545–4558.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Markus, M. A., Gerstner, R. B., Draper, D. E., and Torchia, D. A. (1998) The solution structure of ribosomal protein S4 delta41 reveals two subdomains and a positively charged surface that may interact with RNA, EMBO J., 17, 4559–4571.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Greuer, B., Thiede, B., and Brimacombe, R. (1999) The cross-link from the upstream region of mRNA to ribosomal protein S7 is located in the C-terminal peptide: experimental verification of a prediction from modeling studies, RNA, 5, 1521–1525.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Osswald, M., Doring, T., and Brimacombe, R. (1995) The ribosomal neighborhood of the central fold of tRNA: cross-links from position 47 of tRNA located at the A, P or E site, Nucleic Acids Res., 23, 4635–4641.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Hosaka, H., Nakagawa, A., Tanaka, I., Harada, N., Sano, K., Kimura, M., Yao, M., and Wakatsuki, S. (1997) Ribosomal protein S7: a new RNA-binding motif with structural similarities to a DNA architectural factor, Structure, 5, 1199–1208.PubMedCrossRefGoogle Scholar
  107. 107.
    Wimberly, B. T., White, S. W., and Ramakrishnan, V. (1997) The structure of ribosomal protein S7 at 1.9 Å resolution reveals a beta-hairpin motif that binds double-stranded nucleic acids, Structure, 5, 1187–1198.PubMedCrossRefGoogle Scholar
  108. 108.
    Held, W. A., Ballou, B., Mizushima, S., and Nomura, M. (1974) Assembly mapping of 30S ribosomal proteins from Escherichia coli, further studies, J. Biol. Chem., 249, 3103–3111.PubMedGoogle Scholar
  109. 109.
    Ramakrishnan, V., Wimberly, B. T., Brodersen, D. E., Clemons, W. M., Morgan-Warren, R. J., Carter, A. P., Vonrhein, C., and Hartsch, T. (2000) Structure of the 30S ribosomal subunit, Nature, 407, 327–339.PubMedCrossRefGoogle Scholar
  110. 110.
    Svensson, P., Changchien, L. M., Craven, G. R., and Noller, H. F. (1988) Interaction of ribosomal proteins, S6, S8, S15 and S18 with the central domain of 16S ribosomal RNA, J. Mol. Biol., 200, 301–308.PubMedGoogle Scholar
  111. 111.
    Allmang, C., Mougel, M., Westhof, E., Ehresmann, B., and Ehresmann, C. (1994) Role of conserved nucleotides in building the 16S rRNA binding site of E. coli ribosomal protein S8, Nucleic Acids Res., 22, 3708–3714.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Mougel, M., Allmang, C., Eyermann, F., Cachia, C., Ehresmann, B., and Ehresmann, C. (1993) Minimal 16S rRNA binding site and role of conserved nucleotides in Escherichia coli ribosomal protein S8 recognition, Eur. J. Biochem., 215, 787–792.PubMedCrossRefGoogle Scholar
  113. 113.
    Tishchenko, S., Nikulin, A., Fomenkova, N., Nevskaya, N., Nikonov, O., Dumas, P., Moine, H., Ehresmann, B., Ehresmann, C., Piendl, W., Lamzin, V., Garber, M., and Nikonov, S. (2001) Detailed analysis of RNA–protein interactions within the ribosomal protein S8–rRNA complex from the archaeon Methanococcus jannaschii, J. Mol. Biol., 311, 311–324.PubMedCrossRefGoogle Scholar
  114. 114.
    Davlieva, M., Donarski, J., Wang, J., Shamoo, Y., and Nikonowicz, E. P. (2014) Structure analysis of free and bound states of an RNA aptamer against ribosomal protein S8 from Bacillus anthracis, Nucleic Acids Res., 42, 10795–10808.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Davies, C., Ramakrishnan, V., and White, S. W. (1996) Structural evidence for specific S8–RNA and S8–protein interactions within the 30S ribosomal subunit: ribosomal protein S8 from Bacillus stearothermophilus at 1.9 Å resolution, Structure, 4, 1093–1104.PubMedCrossRefGoogle Scholar
  116. 116.
    Nevskaya, N., Tishchenko, S., Nikulin, A., Al-Karadaghi, S., Liljas, A., Ehresmann, B., Ehresmann, C., Garber, M., and Nikonov, S. (1998) Crystal structure of ribosomal protein S8 from Thermus thermophilus reveals a high degree of structural conservation of a specific RNA binding site, J. Mol. Biol., 279, 233–244.PubMedCrossRefGoogle Scholar
  117. 117.
    Menichelli, E., Edgcomb, S. P., Recht, M. I., and Williamson, J. R. (2012) The structure of Aquifex aeolicus ribosomal protein S8 reveals a unique subdomain that contributes to an extremely tight association with 16S rRNA, J. Mol. Biol., 415, 489–502.PubMedCrossRefGoogle Scholar
  118. 118.
    Nikulin, A., Serganov, A., Ennifar, E., Tishchenko, S., Nevskaya, N., Shepard, W., Portier, C., Garber, M., Ehresmann, B., Ehresmann, C., Nikonov, S., and Dumas, P. (2000) Crystal structure of the S15–rRNA complex, Nat. Struct. Mol. Biol., 7, 273–277.CrossRefGoogle Scholar
  119. 119.
    Agalarov, S. C. (2000) Structure of the S15, S6, S18–rRNA complex: assembly of the 30S ribosome central domain, Science, 288, 107–112.PubMedCrossRefGoogle Scholar
  120. 120.
    Berglund, H., Rak, A., Serganov, A., Garber, M., and Hard, T. (1997) Solution structure of the ribosomal RNA binding protein S15 from Thermus thermophiles, Nat. Struct. Biol., 4, 20–23.PubMedCrossRefGoogle Scholar
  121. 121.
    Clemons, W. M., Davies, C., White, S. W., and Ramakrishnan, V. (1998) Conformational variability of the N-terminal helix in the structure of ribosomal protein S15, Structure, 6, 429–438.PubMedCrossRefGoogle Scholar
  122. 122.
    Yaguchi, M., Wittmann, H. G., Cabezon, T., DeWilde, M., Villarroel, R., Herzog, A., and Bollen, A. (1976) Alteration of ribosomal protein S17 by mutation linked to neamine resistance in Escherichia coli. II. Localization of the amino acid replacement in protein S17 from a meaA mutant, J. Mol. Biol., 104, 617–620.PubMedCrossRefGoogle Scholar
  123. 123.
    Bollen, A., Cabezon, T., De Wilde, M., Villarroel, R., and Herzog, A. (1975) Alteration of ribosomal protein S17 by mutation linked to neamine resistance in Escherichia coli. I. General properties of neaA mutants, J. Mol. Biol., 99, 795–806.PubMedCrossRefGoogle Scholar
  124. 124.
    Golden, B. L., Hoffman, D. W., Ramakrishnan, V., and White, S. W. (1993) Ribosomal protein S17: characterization of the three-dimensional structure by proton and nitrogen-15 NMR, Biochemistry, 32, 12812–12820.PubMedCrossRefGoogle Scholar
  125. 125.
    Hedrick, E. G., and Hill, W. E. (2010) Protein S20 binds two 16S rRNA sites as assembly is initiated, J. Mol. Biol., 401, 493–502.PubMedCrossRefGoogle Scholar
  126. 126.
    Tobin, C., Mandava, C. S., Ehrenberg, M., Andersson, D. I., and Sanyal, S. (2010) Ribosomes lacking protein S20 are defective in mRNA binding and subunit association, J. Mol. Biol., 397, 767–776.PubMedCrossRefGoogle Scholar
  127. 127.
    Ryden-Aulin, M., Shaoping, Z., Kylsten, P., and Isaksson, L. A. (1993) Ribosome activity and modification of 16S RNA are influenced by deletion of ribosomal protein S20, Mol. Microbiol., 7, 983–992.PubMedCrossRefGoogle Scholar
  128. 128.
    Gotz, F., Dabbs, E. R., and Gualerzi, C. O. (1990) Escherichia coli 30S mutants lacking protein S20 are defective in translation initiation, Biochim. Biophys. Acta, 1050, 93–97.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Protein ResearchRussian Academy of SciencesPushchinoRussia

Personalised recommendations