Advertisement

Biochemistry (Moscow)

, Volume 83, Supplement 1, pp S62–S80 | Cite as

Studies of the Process of Amyloid Formation by Aβ Peptide

  • O. V. GalzitskayaEmail author
  • E. I. Galushko
  • O. M. Selivanova
Review

Abstract

Studies of the process of amyloid formation by Aβ peptide have been topical due to the critical role of this peptide in the pathogenesis of Alzheimer’s disease. Many articles devoted to this process are available in the literature; however, none of them gives a detailed description of the mechanism of the process of generation of amyloids. Moreover, there are no reliable data on the influence of modified forms of Aβ peptide on its amyloid formation. To appreciate the role of Aβ aggregation in the pathogenesis of Alzheimer’s disease and to develop a strategy for its treatment, it is necessary to have a well-defined description of the molecular mechanism underlying the formation of amyloids as well as the contribution of each intermediate to this process. We are convinced that a combined analysis of theoretical and experimental methods is a way for understanding molecular mechanisms of numerous diseases. Based on our experimental data and molecular modeling, we have constructed a general model of the process of amyloid formation by Aβ peptide. Using the data described in our previous publications, we propose a model of amyloid formation by this peptide that differs from the generally accepted model. Our model can be applied to other proteins and peptides as well. According to this model, the main building unit for the formation of amyloid fibrils is a ring-like oligomer. Upon interaction with each other, ring-like oligomers form long fibrils of different morphology. This mechanism of generation of amyloid fibrils may be common for other proteins and peptides.

Keywords

Aβ peptide oligomer amyloid X-ray electron microscopy polymorphism 

Abbreviations

a.a.

amino acid residue

AD

Alzheimer’s disease

AFM

atomic force microscopy

AMP

antimicrobial peptide

APP

amyloid precursor protein

APPsα

oluble extracellular fragments of APP

cryo-EM

cryoelectron microscopy

EM

electron microscopy

HN

humanin

NUCB1

calcium-binding protein nucleobindin-1

ThT

thioflavin T

References

  1. 1.
    Uberti, D., Cenini, G., Bonini, S. A., Barcikowska, M., Styczynska, M., Szybinska, A., and Memo, M. (2010) Increased CD44 gene expression in lymphocytes derived from Alzheimer’s disease patients, Neurodegener. Dis., 7, 143–147.PubMedCrossRefGoogle Scholar
  2. 2.
    Song, J., Wang, S., Tan, M., and Jia, J. (2012) G1/S check-point proteins in peripheral blood lymphocytes are potentially diagnostic biomarkers for Alzheimer’s disease, Neurosci. Lett., 526, 144–149.PubMedCrossRefGoogle Scholar
  3. 3.
    Saha, A. R., Ninkina, N. N., Hanger, D. P., Anderton, B. H., Davies, A. M., and Buchman, V. L. (2000) Induction of neuronal death by alpha-synuclein, Eur. J. Neurosci., 12, 3073–3077.PubMedCrossRefGoogle Scholar
  4. 4.
    Caughey, B., and Lansbury, P. T. (2003) Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders, Annu. Rev. Neurosci., 26, 267–298.PubMedGoogle Scholar
  5. 5.
    Lesne, S., Koh, M. T., Kotilinek, L., Kayed, R., Glabe, C. G., Yang, A., Gallagher, M., and Ashe, K. H. (2006) A specific amyloidbeta protein assembly in the brain impairs memory, Nature, 440, 352–357.PubMedCrossRefGoogle Scholar
  6. 6.
    Shankar, G. M., Li, S., Mehta, T. H., Garcia-Munoz, A., Shepardson, N. E., Smith, I., Brett, F. M., Farrell, M. A., Rowan, M. J., Lemere, C. A., Regan, C. M., Walsh, D. M., Sabatini, B. L., and Selkoe, D. J. (2008) Amyloid-β protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory, Nat. Med., 14, 837–842.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Hardy, J., and Selkoe, D. J. (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics, Science, 297, 353–356.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Burns, A., and Iliffe, S. (2009) Alzheimer’s disease, BMJ, 338, b158.PubMedCrossRefGoogle Scholar
  9. 9.
    Chartier-Harlin, M. C., Crawford, F., Houlden, H., Warren, A., Hughes, D., Fidani, L., Goate, A., Rossor, M., Roques, P., and Hardy, J. (1991) Early-onset Alzheimer’s disease caused by mutations at codon 717 of the beta-amyloid precursor protein gene, Nature, 353, 844–846.PubMedCrossRefGoogle Scholar
  10. 10.
    Czlonkowska, A., and Kurkowska-Jastrzebska, I. (2011) Inflammation and gliosis in neurological diseases–clinical implications, J. Neuroimmunol., 231, 78–85.PubMedCrossRefGoogle Scholar
  11. 11.
    Maltsev, A. V., Santockyte, R., Bystryak, S., and Galzitskaya, O. V. (2014) Activation of neuronal defense mechanisms in response to pathogenic factors triggering induction of amyloidosis in Alzheimer’s disease, J. Alzheimer’s Dis., 40, 19–32.CrossRefGoogle Scholar
  12. 12.
    Brookmeyer, R., Johnson, E., Ziegler-Graham, K., and Arrighi, H. M. (2007) Forecasting the global burden of Alzheimer’s disease, Alzheimers Dement. J. Alzheimer’s Assoc., 3, 186–191.CrossRefGoogle Scholar
  13. 13.
    Astbury, W. T., Dickinson, S., and Bailey, K. (1935) The X-ray interpretation of denaturation and the structure of the seed globulins, Biochem. J., 29, 2351–2360.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Inouye, H., Fraser, P. E., and Kirschner, D. A. (1993) Structure of beta-crystallite assemblies formed by Alzheimer beta-amyloid protein analogues: analysis by X-ray diffraction, Biophys. J., 64, 502–519.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Malinchik, S. B., Inouye, H., Szumowski, K. E., and Kirschner, D. A. (1998) Structural analysis of Alzheimer’s beta(1-40) amyloid: protofilament assembly of tubular fibrils, Biophys. J., 74, 537–545.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Serpell, L. C., Fraser, P. E., and Sunde, M. (1999) X-ray fiber diffraction of amyloid fibrils, Methods Enzymol., 309, 526–536.PubMedCrossRefGoogle Scholar
  17. 17.
    Sunde, M., and Blake, C. (1997) The structure of amyloid fibrils by electron microscopy and X-ray diffraction, Adv. Protein Chem., 50, 123–159.PubMedCrossRefGoogle Scholar
  18. 18.
    Sunde, M., Serpell, L. C., Bartlam, M., Fraser, P. E., Pepys, M. B., and Blake, C. C. (1997) Common core structure of amyloid fibrils by synchrotron X-ray diffraction, J. Mol. Biol., 273, 729–739.PubMedCrossRefGoogle Scholar
  19. 19.
    Chiti, F., and Dobson, C. M. (2006) Protein misfolding, functional amyloid, and human disease, Annu. Rev. Biochem., 75, 333–366.CrossRefGoogle Scholar
  20. 20.
    Cohen, S. I. A., Linse, S., Luheshi, L. M., Hellstrand, E., White, D. A., Rajah, L., Otzen, D. E., Vendruscolo, M., Dobson, C. M., and Knowles, T. P. J. (2013) Proliferation of amyloid-β42 aggregates occurs through a secondary nucleation mechanism, Proc. Natl. Acad. Sci. USA, 110, 9758–9763.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Meisl, G., Yang, X., Hellstrand, E., Frohm, B., Kirkegaard, J. B., Cohen, S. I. A., Dobson, C. M., Linse, S., and Knowles, T. P. J. (2014) Differences in nucleation behavior underlie the contrasting aggregation kinetics of the Aβ40 and Aβ42 peptides, Proc. Natl. Acad. Sci. USA, 111, 9384–9389.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Dovidchenko, N. V., Finkelstein, A. V., and Galzitskaya, O. V. (2014) How to determine the size of folding nuclei of protofibrils from the concentration dependence of the rate and lagtime of aggregation. I. Modeling the amyloid protofibril formation, J. Phys. Chem. B, 118, 1189–1197.PubMedCrossRefGoogle Scholar
  23. 23.
    Dovidchenko, N. V., and Galzitskaya, O. V. (2015) Computational approaches to identification of aggregation sites and the mechanism of amyloid growth, Adv. Exp. Med. Biol., 855, 213–239.PubMedCrossRefGoogle Scholar
  24. 24.
    Dovidchenko, N. V., Glyakina, A. V., Selivanova, O. M., Grigorashvili, E. I., Suvorina, M. Y., Dzhus, U. F., Mikhailina, A. O., Shiliaev, N. G., Marchenkov, V. V., Surin, A. K., and Galzitskaya, O. V. (2016) One of the possible mechanisms of amyloid fibrils formation based on the sizes of primary and secondary folding nuclei of Aβ40 and Aβ42, J. Struct. Biol., 194, 404–414.PubMedCrossRefGoogle Scholar
  25. 25.
    Tanzi, R. E., Gusella, J. F., Watkins, P. C., Bruns, G. A., St. George-Hyslop, P., Van Keuren, M. L., Patterson, D., Pagan, S., Kurnit, D. M., and Neve, R. L. (1987) Amyloid beta protein gene: cDNA, mRNA distribution, and genetic linkage near the Alzheimer locus, Science, 235, 880–884.PubMedGoogle Scholar
  26. 26.
    Goate, A., Chartier-Harlin, M. C., Mullan, M., Brown, J., Crawford, F., Fidani, L., Giuffra, L., Haynes, A., Irving, N., and James, L. (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease, Nature, 349, 704–706.PubMedCrossRefGoogle Scholar
  27. 27.
    Kang, J., Lemaire, H. G., Unterbeck, A., Salbaum, J. M., Masters, C. L., Grzeschik, K. H., Multhaup, G., Beyreuther, K., and Muller-Hill, B. (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor, Nature, 325, 733–736.PubMedCrossRefGoogle Scholar
  28. 28.
    Eschenko, N. D. (2004) Biochemistry of Mental and Nervous Diseases [in Russian], SPbSU, St. Petersburg.Google Scholar
  29. 29.
    Stanton, L. R., and Coctzee, R. H. (2004) Down’s syndrome and dementia, Adv. Psych. Treatment, 10, 50–58.CrossRefGoogle Scholar
  30. 30.
    Molinari, M., Eriksson, K. K., Calanca, V., Galli, C., Cresswell, P., Michalak, M., and Helenius, A. (2004) Contrasting functions of calreticulin and calnexin in glycoprotein folding and ER quality control, Mol. Cell, 13, 125–135.PubMedCrossRefGoogle Scholar
  31. 31.
    Van Nostrand, W. E., Melchor, J. P., Cho, H. S., Greenberg, S. M., and Rebeck, G. W. (2001) Pathogenic effects of D23N Iowa mutant amyloid betaprotein, J. Biol. Chem., 276, 32860–32866.PubMedCrossRefGoogle Scholar
  32. 32.
    Nilsberth, C., Westlind-Danielsson, A., Eckman, C. B., Condron, M. M., Axelman, K., Forsell, C., Stenh, C., Luthman, J., Teplow, D. B., Younkin, S. G., Naslund, J., and Lannfelt, L. (2001) The “Arctic” APP mutation (E693G) causes Alzheimer’s disease by enhanced Abeta protofibril formation, Nat. Neurosci., 4, 887–893.PubMedCrossRefGoogle Scholar
  33. 33.
    Priller, C., Bauer, T., Mitteregger, G., Krebs, B., Kretzschmar, H. A., and Herms, J. (2006) Synapse formation and function is modulated by the amyloid precursor protein, J. Neurosci. Off. J. Soc. Neurosci., 26, 7212–7221.CrossRefGoogle Scholar
  34. 34.
    Mal’tsev, A. V., and Galzitskaya, O. (2010) Formation and participation of nonamyloid in the pathogenesis of Alzheimer’s disease and other amyloidogenic diseases, Biomed. Khim., 56, 624–638.PubMedCrossRefGoogle Scholar
  35. 35.
    Hefter, D., and Draguhn, A. (2017) APP as a protective factor in acute neuronal insults, Front. Mol. Neurosci., 10,22.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Pardossi-Piquard, R., Petit, A., Kawarai, T., Sunyach, C., Alves da Costa, C., Vincent, B., Ring, S., D’Adamio, L., Shen, J., Muller, U., St. George Hyslop, P., and Checler, F. (2005) Presenilin-dependent transcriptional control of the Abeta-degrading enzyme neprilysin by intracellular domains of betaAPP and APLP, Neuron, 46, 541–554.PubMedCrossRefGoogle Scholar
  37. 37.
    Belyaev, N. D., Nalivaeva, N. N., Makova, N. Z., and Turner, A. J. (2009) Neprilysin gene expression requires binding of the amyloid precursor protein intracellular domain to its promoter: implications for Alzheimer’s disease, EMBO Rep., 10, 94–100.PubMedCrossRefGoogle Scholar
  38. 38.
    Fraering, P. C. (2007) Structural and functional determinants of gammasecretase, an intramembrane protease implicated in Alzheimer’s disease, Curr. Genomics, 8, 531–549.PubMedGoogle Scholar
  39. 39.
    Citron, M., Westaway, D., Xia, W., Carlson, G., Diehl, T., Levesque, G., Johnson-Wood, K., Lee, M., Seubert, P., Davis, A., Kholodenko, D., Motter, R., Sherrington, R., Perry, B., Yao, H., Strome, R., Lieberburg, I., Rommens, J., Kim, S., Schenk, D., Fraser, P., St George Hyslop, P., and Selkoe, D. J. (1997) Mutant presenilins of Alzheimer’s disease increase production of 42-residue amyloid beta-protein in both transfected cells and transgenic mice, Nat. Med., 3, 67–72.PubMedCrossRefGoogle Scholar
  40. 40.
    Sun, L., Zhou, R., Yang, G., and Shi, Y. (2017) Analysis of 138 pathogenic mutations in presenilin1 on the in vitro production of Aβ42 and Aβ40 peptides by γ-secretase, Proc. Natl. Acad. Sci. USA, 114, E476–E485.PubMedCrossRefGoogle Scholar
  41. 41.
    Vetrivel, K. S., Cheng, H., Lin, W., Sakurai, T., Li, T., Nukina, N., Wong, P. C., Xu, H., and Thinakaran, G. (2004) Association of gamma-secretase with lipid rafts in post-Golgi and endosome membranes, J. Biol. Chem., 279, 44945–44954.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Paschkowsky, S., Hamze, M., Oestereich, F., and Munter, L. M. (2016) Alternative processing of the amyloid precursor protein family by rhomboid protease RHBDL4, J. Biol. Chem., 291, 21903–21912.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Willem, M., Tahirovic, S., Busche, M. A., Ovsepian, S. V., Chafai, M., Kootar, S., Hornburg, D., Evans, L. D. B., Moore, S., Daria, A., Hampel, H., Muller, V., Giudici, C., Nuscher, B., Wenninger-Weinzierl, A., Kremmer, E., Heneka, M. T., Thal, D. R., Giedraitis, V., Lannfelt, L., Mbller, U., Livesey, F. J., Meissner, F., Herms, J., Konnerth, A., Marie, H., and Haass, C. (2015) η-Secretase processing of APP inhibits neuronal activity in the hip-pocampus, Nature, 526, 443–447.PubMedCrossRefGoogle Scholar
  44. 44.
    Nussbaum, J. M., Seward, M. E., and Bloom, G. S. (2013) Alzheimer’s disease: a tale of two prions, Prion, 7, 14–19.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Marcelli, S., Corbo, M., Iannuzzi, F., Negri, L., Blandini, F., Nistico, R., and Feligioni, M. (2017) The involvement of post-translational modifications in Alzheimer’s disease, Curr. Alzheimer Res., doi: 10.2174/1567205014666170505095109.Google Scholar
  46. 46.
    Guntupalli, S., Jang, S. E., Zhu, T., Huganir, R. L., Widagdo, J., and Anggono, V. (2017) GluA1 subunit ubiquitination mediates amyloid-β-induced loss of surface a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, J. Biol. Chem., 292, 8186–8194.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Girvan, P., Miyake, T., Teng, X., Branch, T., and Ying, L. (2016) Kinetics of the interactions between copper and amyloid-β with FAD mutations and phosphorylation at the N-terminus, ChemBioChem, 17, 1732–1737.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Ahmed, M., Davis, J., Aucoin, D., Sato, T., Ahuja, S., Aimoto, S., Elliott, J. I., Van Nostrand, W. E., and Smith, S. O. (2010) Structural conversion of neurotoxic amyloid-beta(1-42) oligomers to fibrils, Nat. Struct. Mol. Biol., 17, 561–567.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Yu, L., Edalji, R., Harlan, J. E., Holzman, T. F., Lopez, A. P., Labkovsky, B., Hillen, H., Barghorn, S., Ebert, U., Richardson, P. L., Miesbauer, L., Solomon, L., Bartley, D., Walter, K., Johnson, R. W., Hajduk, P. J., and Olejniczak, E. T. (2009) Structural characterization of a soluble amyloid beta-peptide oligomer, Biochemistry (Moscow), 48, 1870–1877.CrossRefGoogle Scholar
  50. 50.
    Bitan, G., Kirkitadze, M. D., Lomakin, A., Vollers, S. S., Benedek, G. B., and Teplow, D. B. (2003) Amyloid beta-protein (Abeta) assembly: Abeta 40 and Abeta 42 oligomerize through distinct pathways, Proc. Natl. Acad. Sci. USA, 100, 330–335.PubMedCrossRefGoogle Scholar
  51. 51.
    Bernstein, S. L., Dupuis, N. F., Lazo, N. D., Wyttenbach, T., Condron, M. M., Bitan, G., Teplow, D. B., Shea, J.-E., Ruotolo, B. T., Robinson, C. V., and Bowers, M. T. (2009) Amyloid-β protein oligomerization and the importance of tetramers and dodecamers in the etiology of Alzheimer’s disease, Nat. Chem., 1, 326–331.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Garai, K., and Frieden, C. (2013) Quantitative analysis of the time course of Aβ oligomerization and subsequent growth steps using tetramethylrhodamine-labeled Aβ, Proc. Natl. Acad. Sci. USA, 110, 3321–3326.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Jeong, J. S., Ansaloni, A., Mezzenga, R., Lashuel, H. A., and Dietler, G. (2013) Novel mechanistic insight into the molecular basis of amyloid polymorphism and secondary nucleation during amyloid formation, J. Mol. Biol., 425, 1765–1781.PubMedCrossRefGoogle Scholar
  54. 54.
    Selivanova, O. M., Surin, A. K., Marchenkov, V. V., Dzhus, U. F., Grigorashvili, E. I., Suvorina, M. Y., Glyakina, A. V., Dovidchenko, N. V., and Galzitskaya, O. V. (2016) The mechanism underlying amyloid polymorphism is opened for Alzheimer’s disease amyloid-β peptide, J. Alzheimer’s Dis., 54, 821–830.CrossRefGoogle Scholar
  55. 55.
    Selivanova, O. M., Suvorina, M. Y., Dovidchenko, N. V., Eliseeva, I. A., Surin, A. K., Finkelstein, A. V., Schmatchenko, V. V., and Galzitskaya, O. V. (2014) How to determine the size of folding nuclei of protofibrils from the concentration dependence of the rate and lag-time of aggregation. II. Experimental application for insulin and LysPro insulin: aggregation morphology, kinetics, and sizes of nuclei, J. Phys. Chem. B, 118, 1198–1206.PubMedGoogle Scholar
  56. 56.
    Selivanova, O. M., Suvorina, M. Y., Surin, A. K., Dovidchenko, N. V., and Galzitskaya, O. V. (2017) Insulin and lispro insulin: what is common and different in their behavior? Curr. Protein Pept. Sci., 18, 57–64.PubMedCrossRefGoogle Scholar
  57. 57.
    Walti, M. A., Ravotti, F., Arai, H., Glabe, C. G., Wall, J. S., Bockmann, A., Guntert, P., Meier, B. H., and Riek, R. (2016) Atomic-resolution structure of a disease-relevant Aβ(1-42) amyloid fibril, Proc. Natl. Acad. Sci. USA, doi: 10.1073/pnas.1600749113.Google Scholar
  58. 58.
    Lu, J.-X., Qiang, W., Yau, W.-M., Schwieters, C. D., Meredith, S. C., and Tycko, R. (2013) Molecular structure of β-amyloid fibrils in Alzheimer’s disease brain tissue, Cell, 154, 1257–1268.PubMedCrossRefGoogle Scholar
  59. 59.
    Sgourakis, N. G., Merced-Serrano, M., Boutsidis, C., Drineas, P., Du, Z., Wang, C., and Garcia, A. E. (2011) Atomic-level characterization of the ensemble of the Aβ(1-42) monomer in water using unbiased molecular dynamics simulations and spectral algorithms, J. Mol. Biol., 405, 570–583.PubMedCrossRefGoogle Scholar
  60. 60.
    Cho, K. R., Huang, Y., Yu, S., Yin, S., Plomp, M., Qiu, S. R., Lakshminarayanan, R., Moradian-Oldak, J., Sy, M.-S., and De Yoreo, J. J. (2011) A multistage pathway for human prion protein aggregation in vitro: from multimeric seeds to β-oligomers and nonfibrillar structures, J. Am. Chem. Soc., 133, 8586–8593.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Bieschke, J., Zhang, Q., Powers, E. T., Lerner, R. A., and Kelly, J. W. (2005) Oxidative metabolites accelerate Alzheimer’s amyloidogenesis by a two-step mechanism, eliminating the requirement for nucleation, Biochemistry (Moscow), 44, 4977–4983.Google Scholar
  62. 62.
    Suvorina, M. Y., Selivanova, O. M., Grigorashvili, E. I., Nikulin, A. D., Marchenkov, V. V., Surin, A. K., and Galzitskaya, O. V. (2015) Studies of polymorphism of amyloid-β 42 peptide from different suppliers, J. Alzheimer’s Dis., 47, 583–593.CrossRefGoogle Scholar
  63. 63.
    Derrick, J. S., and Lim, M. H. (2015) Tools of the trade: investigations into design strategies of small molecules to target components in Alzheimer’s disease, ChemBioChem, 16, 887–898.PubMedCrossRefGoogle Scholar
  64. 64.
    Cohen, A. S., and Calkins, E. (1959) Electron microscopic observations on a fibrous component in amyloid of diverse origins, Nature, 183, 1202–1203.PubMedCrossRefGoogle Scholar
  65. 65.
    Gueft, B., and Ghidoni, J. J. (1963) The site of formation and ultrastructure of amyloid, Am. J. Pathol., 43, 837–854.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Terry, R. D., Gonatas, N. K., and Weiss, M. (1964) Ultrastructural studies in Alzheimer’s presenile dementia, Am. J. Pathol., 44, 269–297.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Shirahama, T., and Cohen, A. S. (1967) Fine structure of the glomerulus in human and experimental renal amyloidosis, Am. J. Pathol., 51, 869–911.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Shirahama, T., and Cohen, A. S. (1965) Structure of amyloid fibrils after negative staining and high-resolution electron microscopy, Nature, 206, 737–738.PubMedCrossRefGoogle Scholar
  69. 69.
    Benditt, E. P., and Eriksen, N. (1966) Amyloid. 3. A protein related to the subunit structure of human amyloid fibrils, Proc. Natl. Acad. Sci. USA, 55, 308–316.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Glenner, G. G., and Bladen, H. A. (1966) Purification and reconstitution of the periodic fibril and unit structure of human amyloid, Science, 154, 271–272.PubMedCrossRefGoogle Scholar
  71. 71.
    Shirahama, T., and Cohen, A. S. (1967) High-resolution electron microscopic analysis of the amyloid fibril, J. Cell Biol., 33, 679–708.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Shirahama, T., and Cohen, A. S. (1967) Reconstitution of amyloid fibrils from alkaline extracts, J. Cell Biol., 35, 459–464.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Pras, M., Schubert, M., Zucker-Franklin, D., Rimon, A., and Franklin, E. C. (1968) The characterization of soluble amyloid prepared in water, J. Clin. Invest., 47, 924–933.PubMedCrossRefGoogle Scholar
  74. 74.
    Glenner, G. G., Eanes, E. D., Bladen, H. A., Linke, R. P., and Termine, J. D. (1974) Beta-pleated sheet fibrils. A comparison of native amyloid with synthetic protein fibrils, J. Histochem. Cytochem. Off. J. Histochem. Soc., 22, 1141–1158.CrossRefGoogle Scholar
  75. 75.
    Kirschner, D. A., Inouye, H., Duffy, L. K., Sinclair, A., Lind, M., and Selkoe, D. J. (1987) Synthetic peptide homologous to beta protein from Alzheimer’s disease forms amyloid-like fibrils in vitro, Proc. Natl. Acad. Sci. USA, 84, 6953–6957.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Goldsbury, C. S., Wirtz, S., Muller, S. A., Sunderji, S., Wicki, P., Aebi, U., and Frey, P. (2000) Studies on the in vitro assembly of a beta 1-40: implications for the search for a beta fibril formation inhibitors, J. Struct. Biol., 130, 217–231.PubMedCrossRefGoogle Scholar
  77. 77.
    Goldsbury, C., Frey, P., Olivieri, V., Aebi, U., and Muller, S. A. (2005) Multiple assembly pathways underlie amyloid-beta fibril polymorphisms, J. Mol. Biol., 352, 282–298.PubMedCrossRefGoogle Scholar
  78. 78.
    Nielsen, E. H., Nybo, M., and Svehag, S. E. (1999) Electron microscopy of prefibrillar structures and amyloid fibrils, Methods Enzymol., 309, 491–496.PubMedCrossRefGoogle Scholar
  79. 79.
    Bhak, G., Lee, J.-H., Hahn, J.-S., and Paik, S. R. (2009) Granular assembly of alpha-synuclein leading to the accelerated amyloid fibril formation with shear stress, PLoS One, 4, e4177.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Hill, S. E., Robinson, J., Matthews, G., and Muschol, M. (2009) Amyloid protofibrils of lysozyme nucleate and grow via oligomer fusion, Biophys. J., 96, 3781–3790.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Quist, A., Doudevski, I., Lin, H., Azimova, R., Ng, D., Frangione, B., Kagan, B., Ghiso, J., and Lal, R. (2005) Amyloid ion channels: a common structural link for protein-misfolding disease, Proc. Natl. Acad. Sci. USA, 102, 10427–10432.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Roychaudhuri, R., Yang, M., Hoshi, M. M., and Teplow, D. B. (2009) Amyloid beta-protein assembly and Alzheimer’s disease, J. Biol. Chem., 284, 4749–4753.PubMedCrossRefGoogle Scholar
  83. 83.
    Kumar, S., and Udgaonkar, J. B. (2009) Conformational conversion may precede or follow aggregate elongation on alternative pathways of amyloid protofibril formation, J. Mol. Biol., 385, 1266–1276.PubMedCrossRefGoogle Scholar
  84. 84.
    Walsh, D. M., Lomakin, A., Benedek, G. B., Condron, M. M., and Teplow, D. B. (1997) Amyloid beta-protein fibrillogenesis. Detection of a protofibrillar intermediate, J. Biol. Chem., 272, 22364–22372.PubMedCrossRefGoogle Scholar
  85. 85.
    Morris, A. M., Watzky, M. A., and Finke, R. G. (2009) Protein aggregation kinetics, mechanism, and curve-fitting: a review of the literature, Biochim. Biophys. Acta, 1794, 375–397.PubMedGoogle Scholar
  86. 86.
    Grigorashvili, E. I., Selivanova, O. M., Dovidchenko, N. V., Dzhus, U. F., Mikhailina, A. O., Suvorina, M. Y., Marchenkov, V. V., Surin, A. K., and Galzitskaya, O. V. (2016) Determination of size of folding nuclei of fibrils formed from recombinant Aβ(1-40) peptide, Biochemistry (Moscow), 81, 538–547.CrossRefGoogle Scholar
  87. 87.
    Selivanova, O. M., Glyakina, A. V., Gorbunova, E. Y., Mustaeva, L. G., Suvorina, M. Y., Grigorashvili, E. I., Nikulin, A. D., Dovidchenko, N. V., Rekstina, V. V., Kalebina, T. S., Surin, A. K., and Galzitskaya, O. V. (2016) Structural model of amyloid fibrils for amyloidogenic peptide from Bgl2p-glucantransferase of S. cerevisiae cell wall and its modifying analog. New morphology of amyloid fibrils, Biochim. Biophys. Acta, 1864, 1489–1499.PubMedCrossRefGoogle Scholar
  88. 88.
    Selivanova, O. M., Gorbunova, E. Y., Mustaeva, L. G., Grigorashvili, E. I., Suvorina, M. Y., Surin, A. K., and Galzitskaya, O. V. (2016) Peptide Aβ(16-25) forms nanofilms in the process of its aggregation, Biochemistry (Moscow), 81, 755–761.CrossRefGoogle Scholar
  89. 89.
    Galzitskaya, O. V., and Selivanova, O. M. (2017) Rosetta stone for amyloid fibrils: the key role of ring-like oligomers in amyloidogenesis, J. Alzheime’rs Dis., 59, 785–795.CrossRefGoogle Scholar
  90. 90.
    Terry, R. D., Masliah, E., Salmon, D. P., Butters, N., DeTeresa, R., Hill, R., Hansen, L. A., and Katzman, R. (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment, Ann. Neurol., 30, 572–580.PubMedCrossRefGoogle Scholar
  91. 91.
    Ferreira, S. T., Vieira, M. N. N., and De Felice, F. G. (2007) Soluble protein oligomers as emerging toxins in Alzheimer’s and other amyloid diseases, IUBMB Life, 59, 332–345.PubMedCrossRefGoogle Scholar
  92. 92.
    Sakono, M., and Zako, T. (2010) Amyloid oligomers: formation and toxicity of Aβ oligomers: formation of toxic Aβ oligomers, FEBS J., 277, 1348–1358.PubMedCrossRefGoogle Scholar
  93. 93.
    Stroud, J. C., Liu, C., Teng, P. K., and Eisenberg, D. (2012) Toxic fibrillar oligomers of amyloid-β have cross-β structure, Proc. Natl. Acad. Sci. USA, 109, 7717–7722.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Friedrich, R. P., Tepper, K., Ronicke, R., Soom, M., Westermann, M., Reymann, K., Kaether, C., and Fandrich, M. (2010) Mechanism of amyloid plaque formation suggests an intracellular basis of A pathogenicity, Proc. Natl. Acad. Sci. USA, 107, 1942–1947.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Gouras, G. K., Tampellini, D., Takahashi, R. H., and Capetillo-Zarate, E. (2010) Intraneuronal β-amyloid accumulation and synapse pathology in Alzheimer’s disease, Acta Neuropathol. (Berl.), 119, 523–541.CrossRefGoogle Scholar
  96. 96.
    Canter, R. G., Penney, J., and Tsai, L.-H. (2016) The road to restoring neural circuits for the treatment of Alzheimer’s disease, Nature, 539, 187–196.PubMedCrossRefGoogle Scholar
  97. 97.
    Mattson, M. P. (2004) Pathways towards and away from Alzheimer’s disease, Nature, 430, 631–639.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Kayed, R., and Lasagna-Reeves, C. A. (2013) Molecular mechanisms of amyloid oligomers toxicity, J. Alzheimer’s Dis., 33, Suppl. 1, S67–78.Google Scholar
  99. 99.
    Fu, L., Sun, Y., Guo, Y., Chen, Y., Yu, B., Zhang, H., Wu, J., Yu, X., Kong, W., and Wu, H. (2017) Comparison of neurotoxicity of different aggregated forms of Aβ40, Aβ42 and Aβ43 in cell cultures, J. Pept. Sci. Off. Publ. Eur. Pept. Soc., 23, 245–251.Google Scholar
  100. 100.
    Connelly, L., Jang, H., Arce, F. T., Capone, R., Kotler, S. A., Ramachandran, S., Kagan, B. L., Nussinov, R., and Lal, R. (2012) Atomic force microscopy and MD simulations reveal pore-like structures of all-D-enantiomer of Alzheimer’s β-amyloid peptide: relevance to the ion channel mechanism of AD pathology, J. Phys. Chem. B, 116, 1728–1735.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Soscia, S. J., Kirby, J. E., Washicosky, K. J., Tucker, S. M., Ingelsson, M., Hyman, B., Burton, M. A., Goldstein, L. E., Duong, S., Tanzi, R. E., and Moir, R. D. (2010) The Alzheimer’s disease-associated amyloid beta-protein is an antimicrobial peptide, PLoS One, 5, e9505.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Clare, D. K., Vasishtan, D., Stagg, S., Quispe, J., Farr, G. W., Topf, M., Horwich, A. L., and Saibil, H. R. (2012) ATP-triggered conformational changes delineate substrate-binding and -folding mechanics of the GroEL chaperonin, Cell, 149, 113–123.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Koike-Takeshita, A., Arakawa, T., Taguchi, H., and Shimamura, T. (2014) Crystal structure of a symmetric football-shaped GroEL:GroES2-ATP14 complex determined at 3.8 Å reveals rearrangement between two GroEL rings, J. Mol. Biol., 426, 3634–3641.PubMedCrossRefGoogle Scholar
  104. 104.
    Horwich, A. L. (2011) Protein folding in the cell: an inside story, Nat. Med., 17, 1211–1216.PubMedCrossRefGoogle Scholar
  105. 105.
    Marchenkov, V. V., Sokolovskii, I. V., Kotova, N. V., Galzitskaya, O. V., Bochkareva, E. S., Girshovich, A. S., and Semisotnov, G. V. (2004) The interaction of the GroEL chaperone with early kinetic intermediates of renaturing proteins inhibits the formation of their native structure, Biofizika, 49, 987–994.PubMedGoogle Scholar
  106. 106.
    Yagi-Utsumi, M., Kunihara, T., Nakamura, T., Uekusa, Y., Makabe, K., Kuwajima, K., and Kato, K. (2013) NMR characterization of the interaction of GroEL with amyloid β as a model ligand, FEBS Lett., 587, 1605–1609.PubMedCrossRefGoogle Scholar
  107. 107.
    Fukui, N., Araki, K., Hongo, K., Mizobata, T., and Kawata, Y. (2016) Modulating the effects of the bacterial chaperonin GroEL on fibrillogenic polypeptides through modification of domain hinge architecture, J. Biol. Chem., 291, 25217–25226.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Haslbeck, M., Peschek, J., Buchner, J., and Weinkauf, S. (2016) Structure and function of a-crystallins: traversing from in vitro to in vivo, Biochim. Biophys. Acta, 1860, 149–166.PubMedCrossRefGoogle Scholar
  109. 109.
    Shammas, S. L., Waudby, C. A., Wang, S., Buell, A. K., Knowles, T. P. J., Ecroyd, H., Welland, M. E., Carver, J. A., Dobson, C. M., and Meehan, S. (2011) Binding of the molecular chaperone aB-crystallin to Aβ amyloid fibrils inhibits fibril elongation, Biophys. J., 101, 1681–1689.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Dehle, F. C., Ecroyd, H., Musgrave, I. F., and Carver, J. A. (2010) αB-Crystallin inhibits the cell toxicity associated with amyloid fibril formation by k-casein and the amyloid-β peptide, Cell Stress Chaperones, 15, 1013–1026.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Bonito-Oliva, A., Barbash, S., Sakmar, T. P., and Graham, W. V. (2017) Nucleobindin 1 binds to multiple types of prefibrillar amyloid and inhibits fibrillization, Sci. Rep., 7, 42880.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Soper-Hopper, M. T., Eschweiler, J. D., and Ruotolo, B. T. (2017) Ion mobilitymass spectrometry reveals a dipeptide that acts as a molecular chaperone for amyloid β, ACS Chem. Biol., 12, 1113–1120.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Romeo, M., Stravalaci, M., Beeg, M., Rossi, A., Fiordaliso, F., Corbelli, A., Salmona, M., Gobbi, M., Cagnotto, A., and Diomede, L. (2017) Humanin specifically interacts with amyloid-β oligomers and counteracts their in vivo toxicity, J. Alzheimer’s Dis., 57, 857–871.CrossRefGoogle Scholar
  114. 114.
    Li, J., Zhu, M., Manning-Bog, A. B., Di Monte, D. A., and Fink, A. L. (2004) Dopamine and L-DOPA disaggregate amyloid fibrils: implications for Parkinsonn’s and Alzheimer’s disease, FASEB J., 18, 962–964.PubMedCrossRefGoogle Scholar
  115. 115.
    Eanes, E. D., and Glenner, G. G. (1968) X-ray diffraction studies on amyloid filaments, J. Histochem. Cytochem., 16, 673–677.PubMedCrossRefGoogle Scholar
  116. 116.
    Petkova, A. T., Buntkowsky, G., Dyda, F., Leapman, R. D., Yau, W.-M., and Tycko, R. (2004) Solid state NMR reveals a pH-dependent antiparallel beta-sheet registry in fibrils formed by a beta-amyloid peptide, J. Mol. Biol., 335, 247–260.PubMedCrossRefGoogle Scholar
  117. 117.
    Petkova, A. T., Ishii, Y., Balbach, J. J., Antzutkin, O. N., Leapman, R. D., Delaglio, F., and Tycko, R. (2002) A structural model for Alzheimer’s beta-amyloid fibrils based on experimental constraints from solid state NMR, Proc. Natl. Acad. Sci. USA, 99, 16742–16747.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Paravastu, A. K., Leapman, R. D., Yau, W.-M., and Tycko, R. (2008) Molecular structural basis for polymor-phism in Alzheimer’s beta-amyloid fibrils, Proc. Natl. Acad. Sci. USA, 105, 18349–18354.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Schmidt, M., Rohou, A., Lasker, K., Yadav, J. K., Schiene-Fischer, C., Fandrich, M., and Grigorieff, N. (2015) Peptide dimer structure in an Aβ(1-42) fibril visu-alized with cryo-EM, Proc. Natl. Acad. Sci. USA, 112, 11858–11863.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Zhang, R., Hu, X., Khant, H., Ludtke, S. J., Chiu, W., Schmid, M. F., Frieden, C., and Lee, J.-M. (2009) Interprotofilament interactions between Alzheimer’s Abeta1-42 peptides in amyloid fibrils revealed by cryo-EM, Proc. Natl. Acad. Sci. USA, 106, 4653–4658.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Xiao, Y., Ma, B., McElheny, D., Parthasarathy, S., Long, F., Hoshi, M., Nussinov, R., and Ishii, Y. (2015) Aβ(1-42) fibril structure illuminates self-recognition and replication of amyloid in Alzheimer’s disease, Nat. Struct. Mol. Biol., 22, 499–505.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Colvin, M. T., Silvers, R., Ni, Q. Z., Can, T. V., Sergeyev, I., Rosay, M., Donovan, K. J., Michael, B., Wall, J., Linse, S., and Griffin, R. G. (2016) Atomic resolution structure of monomorphic Aβ42 amyloid fibrils, J. Am. Chem. Soc., 138, 9663–9674.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Waugh, D. F. (1948) Regeneration of insulin from insulin fibrils by the action of alkali, J. Am. Chem. Soc., 70, 1850–1857.PubMedCrossRefGoogle Scholar
  124. 124.
    Waugh, D. F. (1947) A comparison of the regeneration products of fibrous insulin with native insulin, Fed. Proc., 6,223.PubMedGoogle Scholar
  125. 125.
    Elliott, A., Ambrose, E. J., and Robinson, C. (1950) Chain configurations in natured and denatured insulin: evidence from infrared spectra, Nature, 166,194.PubMedCrossRefGoogle Scholar
  126. 126.
    Koltun, W. L., Waugh, D. F., and Bear, R. S. (1954) An X-ray diffraction investigation of selected types of insulin fibrils, J. Am. Chem. Soc., 76, 413–417.CrossRefGoogle Scholar
  127. 127.
    Reithel, F. J. (1963) The dissociation and association of protein structures, Adv. Protein Chem., 18, 123–226.PubMedCrossRefGoogle Scholar
  128. 128.
    Beaven, G. H., Gratzer, W. B., and Davies, H. G. (1969) Formation and structure of gels and fibrils from glucagon, Eur. J. Biochem., 11, 37–42.PubMedCrossRefGoogle Scholar
  129. 129.
    Burke, M. J., and Rougvie, M. A. (1972) Cross-protein structures. I. Insulin fibrils, Biochemistry (Moscow), 11, 2435–2439.CrossRefGoogle Scholar
  130. 130.
    Geddes, A. J., Parker, K. D., Atkins, E. D., and Beighton, E. (1968) “Cross-beta” conformation in proteins, J. Mol. Biol., 32, 343–358.PubMedCrossRefGoogle Scholar
  131. 131.
    Lim, K. H., Dasari, A. K. R., Hung, I., Gan, Z., Kelly, J. W., Wright, P. E., and Wemmer, D. E. (2016) Solid-state NMR studies reveal native-like β-sheet structures in transthyretin amyloid, Biochemistry (Moscow), 55, 5272–5278.CrossRefGoogle Scholar
  132. 132.
    Economou, N. J., Giammona, M. J., Do, T. D., Zheng, X., Teplow, D. B., Buratto, S. K., and Bowers, M. T. (2016) Amyloid β-protein assembly and Alzheimer’s disease: dodecamers of Aβ42, but not of Aβ40, seed fibril formation, J. Am. Chem. Soc., 138, 1772–1775.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Tran, J., Chang, D., Hsu, F., Wang, H., and Guo, Z. (2017) Cross-seeding between Aβ40 and Aβ42 in Alzheimer’s disease, FEBS Lett., 591, 177–185.PubMedCrossRefGoogle Scholar
  134. 134.
    Pauwels, K., Williams, T. L., Morris, K. L., Jonckheere, W., Vandersteen, A., Kelly, G., Schymkowitz, J., Rousseau, F., Pastore, A., Serpell, L. C., and Broersen, K. (2012) Structural basis for increased toxicity of pathological Aβ42: Aβ40 ratios in Alzheimer’s disease, J. Biol. Chem., 287, 5650–5660.PubMedCrossRefGoogle Scholar
  135. 135.
    Cukalevski, R., Yang, X., Meisl, G., Weininger, U., Bernfur, K., Frohm, B., Knowles, T. P. J., and Linse, S. (2015) The Aβ40 and Aβ42 peptides self-assemble into separate homomolecular fibrils in binary mixtures but cross-react during primary nucleation, Chem. Sci., 6, 4215–4233.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Pauling, L., and Corey, R. B. (1953) Two rippled-sheet configurations of polypeptide chains, and a note about the pleated sheets, Proc. Natl. Acad. Sci. USA, 39, 253–256.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Glenner, G. G., Keiser, H. R., Bladen, H. A., Cuatrecasas, P., Eanes, E. D., Ram, J. S., Kanfer, J. N., and DeLellis, R. A. (1968) Amyloid. VI. A comparison of two morphologic components of human amyloid deposits, J. Histochem. Cytochem., 16, 633–644.PubMedCrossRefGoogle Scholar
  138. 138.
    Inoue, S., Skinner, M., Leblond, C. P., Shirahama, T., and Cohen, A. S. (1986) Isolation of the amyloid P component from the Engelbreth–Holm–Swarm (EHS) tumor of the mouse, Biochem. Biophys. Res. Commun., 134, 995–999.PubMedCrossRefGoogle Scholar
  139. 139.
    Glenner, G. G., Terry, W., Harada, M., Isersky, C., and Page, D. (1971) Amyloid fibril proteins: proof of homology with immunoglobulin light chains by sequence analyses, Science, 172, 1150–1151.PubMedCrossRefGoogle Scholar
  140. 140.
    Dean, D. N., Das, P. K., Rana, P., Burg, F., Levites, Y., Morgan, S. E., Ghosh, P., and Rangachari, V. (2017) Strain-specific fibril propagation by an Aβ dodecamer, Sci. Rep., 7, 40787.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Makin, O. S., and Serpell, L. C. (2005) X-ray diffraction studies of amyloid structure, Methods Mol. Biol., 299, 67–80.PubMedGoogle Scholar
  142. 142.
    Kirschner, D. A., Abraham, C., and Selkoe, D. J. (1986) X-ray diffraction from intraneuronal paired helical fila-ments and extraneuronal amyloid fibers in Alzheimer’s disease indicates cross-beta conformation, Proc. Natl. Acad. Sci. USA, 83, 503–507.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Selivanova, O. M., Grigorashvili, E. I., Suvorina, M. Y., Dzhus, U. F., Nikulin, A. D., Marchenkov, V. V., Surin, A. K., and Galzitskaya, O. V. (2016) X-ray diffraction and electron microscopy data for amyloid formation of Aβ40 and Aβ42, Data Brief, 8, 108–113.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • O. V. Galzitskaya
    • 1
    Email author
  • E. I. Galushko
    • 1
  • O. M. Selivanova
    • 1
  1. 1.Institute of Protein ResearchRussian Academy of SciencesPushchinoRussia

Personalised recommendations