Biochemistry (Moscow)

, Volume 83, Issue 12–13, pp 1543–1551 | Cite as

Non-structural Functions of Hordeivirus Capsid Protein Identified in Plants Infected by a Chimeric Tobamovirus

  • S. S. Makarova
  • A. V. Makhotenko
  • A. V. Khromov
  • E. V. Skurat
  • A. G. Solovyev
  • V. V. Makarov
  • N. O. KalininaEmail author


Capsid proteins (CPs) of (+)RNA–containing plant viruses are multifunctional proteins involved in many stages of viral infection cycle, in addition to their main function of virus capsid formation. For example, the tobamoviral CP ensures virus systemic transport in plants and defines the virus–host interactions, thereby influencing the virus host range, virus infectivity, pathogenicity, and manifestation of infection symptoms. Hordeiviruses and tobamoviruses belong to the Virgaviridae family and have rod–shaped virions with a helical symmetry; their CPs are similar in structure. However, no non–structural functions of hordeiviral CPs have been described so far. In this study, we assayed possible non–structural functions of CP from the barley stripe mosaic virus (BSMV) (hordeivirus). To do this, the genome of turnip vein clearing virus (TVCV) (tobamovirus) was modified by substituting the TVCV CP gene with the BSMV CP gene or its mutants. We found that BSMV CP efficiently replaced TVCV CP at all stages of viral infection. In particular, BSMV CP performed the role of tobamoviral CP in the long–distance transport of the chimeric virus, acted as a hypersensitive response elicitor, and served as a pathogenicity determinant that influenced the symptoms of the viral infection. The chimeric tobamovirus coding for the C–terminally truncated BSMV CP displayed an increased infectivity and was transported in plants in a form of atypical virions (ribonucleoprotein complexes).


plant viruses chimeric tobamovirus hordeivirus coat protein transport infection symptoms 



barley stripe mosaic virus


circular dichroism


coat protein (capsid protein)


dynamic light scattering


hypersensitive response


movement protein


potato mop–top virus


ribonucleoprotein complex

TGB proteins

movement proteins encoded by the triple gene block


tobacco mosaic virus


(wild–type) turnip vein clearing virus


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ni, P., and Kao, C. C. (2013) Non–encapsidation activities of the capsid proteins of positive–strand RNA viruses, Virology, 446, 123–132.CrossRefGoogle Scholar
  2. 2.
    Weber, P. H., and Bujarski, J. J. (2015) Multiple functions of capsid proteins in (+) stranded RNA viruses during plant–virus interactions, Virus Res., 22, 140–149.CrossRefGoogle Scholar
  3. 3.
    Makarov, V. V., and Kalinina, N. O. (2016) Structure and noncanonical activities of capsid proteins of helical plant viruses, Biochemistry (Moscow), 81, 1–18.CrossRefGoogle Scholar
  4. 4.
    Solovyev, A. G., and Makarov, V. V. (2016) Helical capsids of plant viruses: architecture with structural lability, J. Gen. Virol., 97, 1739–1754.CrossRefGoogle Scholar
  5. 5.
    Carrington, J. C., Kasschau, K. D., Mahajan, S. K., and Schaad, M. C. (1996) Cell–to–cell and long–distance transport of viruses in plants, Plant Cell, 8, 1669–1681.CrossRefGoogle Scholar
  6. 6.
    Ryabov, E. V., Robinson, D. J., and Taliansky, M. E. (1999) A plant virus–encoded protein facilitates long–distance movement of heterologous viral RNA, Proc. Natl. Acad. Sci. USA, 96, 1212–1217.CrossRefGoogle Scholar
  7. 7.
    Bendahmane, M., Szecsi, J., Chen, I., Berg, R. H., and Beachy, R. N. (2002) Characterization of mutant tobacco mosaic virus capsid protein that interferes with virus cell–to–cell movement, Proc. Natl. Acad. Sci. USA, 99, 3645–3650.CrossRefGoogle Scholar
  8. 8.
    Asurmendi, S., Berg, R. H., Koo, J. C., and Beachy, R. N. (2004) Coat protein regulates formation of replication complexes during tobacco mosaic virus infection, Proc. Natl. Acad. Sci. USA, 101, 1415–1420.CrossRefGoogle Scholar
  9. 9.
    Saito, T., Yamanaka, K., and Okada, Y. (1990) Long distance movement and viral assembly of tobacco mosaic virus mutants, Virology, 176, 329–336.CrossRefGoogle Scholar
  10. 10.
    Ding, S. W., Li, W. X., and Symons, R. H. (1995) A novel naturally occurring hybrid gene encoded by a plant RNA virus facilitates long distance virus movement, EMBO J., 14, 5762–5772.CrossRefGoogle Scholar
  11. 11.
    Conti, G., Zavallo, D., Venturuzzi, A. L., Rodriguez, M. C., Crespi, M., and Asurmendi, S. (2017) TMV induces RNA decay pathways to modulate gene silencing and disease symptoms, Plant J., 89, 73–84.CrossRefGoogle Scholar
  12. 12.
    Culver, J. N. (2002) Tobacco mosaic virus assembly and disassembly: determinants in pathogenicity and resistance, Annu. Rev. Phytopathol., 40, 287–308.CrossRefGoogle Scholar
  13. 13.
    Taraporewala, Z. F., and Culver, J. N. (1997) Structural and functional conservation of the tobamovirus capsid protein elicitor active site, Mol. Plant Microbe Interact., 10, 597–604.CrossRefGoogle Scholar
  14. 14.
    Huh, S. U., Choi, L. M., Lee, G. J., Kim, Y. J., and Paek, K. H. (2012) Capsicum annuum WRKY transcription factor d (CaWRKYd) regulates hypersensitive response and defense response upon tobacco mosaic viral infection, Plant Sci., 197, 50–58.CrossRefGoogle Scholar
  15. 15.
    Gilardi, P., Garcia–Luque, I., and Serra, M. T. (2004) The coat protein of tobamovirus acts as elicitor of both L2 and L4 gene–mediated resistance in Capsicum, J. Gen. Virol., 85, 2077–2085.CrossRefGoogle Scholar
  16. 16.
    Berzal–Herranz, A., de la Cruz, A., Tenllado, F., Diaz–Ruiz, J. R., Lopez, L., Sanz, A. I., Vaquero, C., Serra, M. T., and Garcia–Luque, I. (1995) The Capsicum L3 gene–mediated resistance against the tobamoviruses is elicited by the coat protein, Virology, 209, 498–505.CrossRefGoogle Scholar
  17. 17.
    Conti, G., Rodriguez, M. C., Manacorda, C. A., and Asurmendi, S. (2012) Transgenic expression of tobacco mosaic virus capsid and movement proteins modulate plant basal defense and biotic stress responses in Nicotiana tabacum, Mol. Plant Microbe Interact., 10, 1370–1384.CrossRefGoogle Scholar
  18. 18.
    Rodriguez, M., Conti, G., Zavallo, D., Manacorda, C., and Asurmendi, S. (2014) TMV Cg capsid protein stabilizes DELLA proteins and in turn negatively modulates salicylic acid–mediated defense pathway during Arabidopsis thaliana viral infection, BMC Plant Biol., 14, 210–216.CrossRefGoogle Scholar
  19. 19.
    Jackson, A. O., Lim, H. S., Bragg, J., Ganesan, U., and Lee, M. Y. (2009) Hordeivirus replication, movement, and pathogenesis, Annu. Rev. Phytopathol., 47, 385–422.CrossRefGoogle Scholar
  20. 20.
    Verchot–Lubicz, J., Torrance, L., Solovyev, A. G., Morozov, S. Y., Jackson, A. O., and Gilmer, D. (2010) Varied movement strategies employed by triple gene block–encoding viruses, Mol. Plant Microbe Interact., 23, 1231–1247.CrossRefGoogle Scholar
  21. 21.
    Hipper, C., Brault, V., Ziegler–Graff, V., and Revers, F. (2013) Viral and cellular factors involved in phloem transport of plant viruses, Front. Plant Sci., 4,154.CrossRefGoogle Scholar
  22. 22.
    Lee, M. Y., Yan, L., Gorter, F. A., Kim, B. Y., Cui, Y., Hu, Y., Yuan, C., Grindheim, J., Ganesan, U., Liu, Z., Han, C., Yu, J., Li, D., and Jackson, A. O. (2012) Brachypodium distachyon line Bd3–1 resistance is elicited by the barley stripe mosaic virus triple gene block 1 movement protein, J. Gen. Virol., 93, 2729–2739.CrossRefGoogle Scholar
  23. 23.
    Clare, D. K., Pechnikova, E. V., Skurat, E. V., Makarov, V. V., Sokolova, O. S., Solovyev, A. G., and Orlova, E. V. (2015) Novel inter–subunit c contacts in barley stripe mosaic virus revealed by cryo–electron microscopy, Structure, 23, 1815–1826.CrossRefGoogle Scholar
  24. 24.
    Edward, S., and Reynolds, E. S. (1963) The use of lead citrate at high pH as an electron–opaque stain in electron microscopy, J. Cell Biol., 17, 208–212.CrossRefGoogle Scholar
  25. 25.
    Makarov, V. V., Skurat, E. V., Semenyuk, P. I., Abashkin, D. A., Kalinina, N. O., Arutyunyan, A. M., Solovyev, A. G., and Dobrov, E. N. (2013) Structural lability of barley stripe mosaic virus virions, PLoS One, 8, e60942.CrossRefGoogle Scholar
  26. 26.
    Xue, B., Blocquel, D., Habchi, J., Uversky, A. V., Kurgan, L., Uversky, V. N., and Longhi, S. (2014) Structural disorder in viral proteins, Chem. Rev., 114, 6880–6911.CrossRefGoogle Scholar
  27. 27.
    Daudi, A., and O’Brien, J. (2012) Detection of hydrogen peroxide by DAB staining in Arabidopsis leaves, Bio. Protoc., 2, e263.CrossRefGoogle Scholar
  28. 28.
    Mehdy, M. C. (1994) Active oxygen species in plant defense against pathogens, Plant Physiol., 105, 467–472.CrossRefGoogle Scholar
  29. 29.
    Conti, G., Rodriguez, M. C., Manacorda, C. A., and Asurmendi, S. (2012) Transgenic expression of tobacco mosaic virus capsid and movement proteins modulate plant basal defense and biotic stress responses in Nicotiana tabacum, Mol. Plant Microbe Interact., 10, 1370–1384.CrossRefGoogle Scholar
  30. 30.
    Solovyev, A. G., and Savenkov, E. I. (2014) Factors involved in the systemic transport of plant RNA viruses: the emerging role of the nucleus, J. Exp. Bot., 65, 1689–1697.CrossRefGoogle Scholar
  31. 31.
    Conti, G., Rodriguez, M. C., Venturuzzi, A. L., and Asurmendi, S. (2017) Modulation of host plant immunity by tobamovirus proteins, Ann. Bot., 119, 737–747.Google Scholar
  32. 32.
    Culver, J. N., Stubbs, G., and Dawson, W. O. (1994) Structure–function relationship between tobacco mosaic virus coat protein and hypersensitivity in Nicotiana sylvestris, J. Mol. Biol., 242, 130–138.CrossRefGoogle Scholar
  33. 33.
    Kurihara, Y., and Watanabe, Y. A. (2004) TMV–Cg mutant with a truncated coat protein induces cell death resembling the hypersensitive response in Arabidopsis, Mol. Cells., 17, 334–339.Google Scholar
  34. 34.
    Li, M., Li, P., Song, R., and Xu, Z. (2010) An induced hypersensitive–like response limits expression of foreign peptides via a recombinant TMV–based vector in a susceptible tobacco, PLoS One, 5, e15087.CrossRefGoogle Scholar
  35. 35.
    Rao, A. L., and Grantham, G. L. (1995) Biological significance of the seven amino–terminal basic residues of brome mosaic virus coat protein, Virology, 211, 42–52.CrossRefGoogle Scholar
  36. 36.
    Kim, S. H., MacFarlane, S., Kalinina, N. O., Rakitina, D. V., Ryabov, E. V., Gillespie, T., Haupt, S., Brown, J. W., and Taliansky, M. (2007) Interaction of a plant virusencoded protein with the major nucleolar protein fibrillarin is required for systemic virus infection, Proc. Natl. Acad. Sci. USA, 104, 11115–11120.CrossRefGoogle Scholar
  37. 37.
    Makarov, V. V., Makarova, S. S., Makhotenko, A. V., Obraztsova, E. A., and Kalinina, N. O. (2015) In vitro properties of hordeivirus TGB1 protein forming ribonucle–oprotein complexes, J. Gen. Virol., 96, 3422–3431.CrossRefGoogle Scholar
  38. 38.
    Kiselyova, O. I., Yaminsky, I. V., Karger, E. M., Frolova, O. Y., Dorokhov, Y. L., and Atabekov, J. G. (2001) Visualization by atomic force microscopy of tobacco mosaic virus movement protein–RNA complexes formed in vitro, J. Gen. Virol., 82, 1503–1508.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • S. S. Makarova
    • 1
  • A. V. Makhotenko
    • 1
  • A. V. Khromov
    • 1
  • E. V. Skurat
    • 1
  • A. G. Solovyev
    • 2
    • 3
  • V. V. Makarov
    • 2
  • N. O. Kalinina
    • 2
    Email author
  1. 1.Biological FacultyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
  3. 3.All-Russia Research Institute of Agricultural BiotechnologyMoscowRussia

Personalised recommendations