Advertisement

Biochemistry (Moscow)

, Volume 83, Issue 12–13, pp 1477–1488 | Cite as

Elimination of Senescent Cells: Prospects According to the Subtelomere-Telomere Theory

  • G. LibertiniEmail author
  • N. Ferrara
  • G. Rengo
  • G. Corbi
Review

Abstract

Cell senescence is an artificially reversible condition activated by various factors and characterized by replicative senescence and typical general alteration of cell functions, including extra–cellular secretion. The number of senescent cells increases with age and contributes strongly to the manifestations of aging. For these reasons, research is under way to obtain “senolytic” compounds, defined as drugs that eliminate senescent cells and therefore reduce aging–associated decay, as already shown in some experiments on animal models. This objective is analyzed in the context of the programmed aging paradigm, as described by the mechanisms of the subtelomere–telomere theory. In this regard, positive effects of the elimination of senescent cells and limits of this method are discussed. For comparison, positive effects and limits of telomerase activation are also analyzed, as well of the combined action of the two methods and the possible association of opportune gene modifications. Ethical issues associated with the use of these methods are outlined.

Keywords

aging cell senescence gradual cell senescence senolytic drugs telomerase subtelomere programmed aging theory phenoptosis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ben–Porath, I., and Weinberg, R. A. (2005) The signals and pathways activating cellular senescence, Int. J. Biochem. Cell Biol., 37, 961–976.CrossRefPubMedGoogle Scholar
  2. 2.
    d’Adda di Fagagna, F., Reaper, P. M., Clay–Farrace, L., Fiegler, H., Carr, P., Von Zglinicki, T., Saretzki, G., Carter, N. P., and Jackson, S. P. (2003) A DNA damage checkpoint response in telomere–initiated senescence, Nature, 426, 194–198.CrossRefGoogle Scholar
  3. 3.
    Collado, M., Blasco, M. A., and Serrano, M. (2007) Cellular senescence in cancer and aging, Cell, 130, 223–233.CrossRefPubMedGoogle Scholar
  4. 4.
    Acosta, J. C., O’Loghlen, A., Banito, A., Guijarro, M. V., Augert, A., Raguz, S., Fumagalli, M., Da Costa, M., Brown, C., Popov, N., Takatsu, Y., Melamed, J., d’Adda di Fagagna, F., Bernard, D., Hernando, E., and Gil, J. (2008) Chemokine signaling via the CXCR2 receptor reinforces senescence, Cell, 133, 1006–1018.CrossRefPubMedGoogle Scholar
  5. 5.
    Cristofalo, V. J., and Pignolo, R. J. (1993) Replicative senescence of human fibroblast–like cells in culture, Physiol. Rev., 73, 617–638.CrossRefPubMedGoogle Scholar
  6. 6.
    Shelton, D. N., Chang, E., Whittier, P. S., Choi, D., and Funk, W. D. (1999) Microarray analysis of replicative senescence, Curr. Biol., 9, 939–945.CrossRefPubMedGoogle Scholar
  7. 7.
    Zhang, H., Pan, K. H., and Cohen, S. N. (2003) Senescence–specific gene expression fingerprints reveal cell–type–dependent physical clustering of up–regulated chromosomal loci, Proc. Natl. Acad. Sci. USA, 100, 3251–3256.CrossRefPubMedGoogle Scholar
  8. 8.
    Campisi, J., and d’Adda di Fagagna, F. (2007) Cellular senescence: when bad things happen to good cells, Nat. Rev. Mol. Cell. Biol., 8, 729–740.CrossRefPubMedGoogle Scholar
  9. 9.
    Kirkland, J. L., and Tchkonia, T. (2017) Cellular senescence: a translational perspective, EBioMedicine, 21, 21–28.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Van Deursen, J. M. (2014) The role of senescent cells in ageing, Nature, 509, 439–446.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Coppe, J.–P., Patil, C. K., Rodier, F., Sun, Y., Munoz, D. P., Goldstein, J., Nelson, P. S., Desprez, P. Y., and Campisi, J. (2008) Senescence–associated secretory pheno–types reveal cell–nonautonomous functions of oncogenic RAS and the p53 tumor suppressor, PLoS Biol., 6, 2853–2868.CrossRefPubMedGoogle Scholar
  12. 12.
    Rodier, F., Coppe, J. P., Patil, C. K., Hoeijmakers, W. A., Munoz, D. P., Raza, S. R., Freund, A., Campeau, E., Davalos, A. R., and Campisi, J. (2009) Persistent DNA damage signalling triggers senescence–associated inflammatory cytokine secretion, Nat. Cell. Biol., 11, 973–979; erratum (2009), 11, 1272.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Wang, E. (1995) Senescent human fibroblasts resist programmed cell death, and failure to suppress bcl2 is involved, Cancer Res., 55, 2284–2292.PubMedGoogle Scholar
  14. 14.
    Beausejour, C. M., Krtolica, A., Galimi, F., Narita, M., Lowe, S. W., Yaswen, P., and Campisi, J. (2003) Reversal of human cellular senescence: roles of the p53 and p16 path–ways, EMBO J., 22, 4212–4222.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Krishnamurthy, J., Torrice, C., Ramsey, M. R., Kovalev, G. I., Al–Regaiey, K., Su, L., and Sharpless, N. E. (2014) Ink4a/Arf expression is a biomarker of aging, J. Clin. Invest., 114, 1299–1307.CrossRefGoogle Scholar
  16. 16.
    Childs, B. G., Durik, M., Baker, D. J., and van Deursen, J. M. (2015) Cellular senescence in aging and age–related disease: from mechanisms to therapy, Nat. Med., 21, 1424–1435.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Baker, D. J., Childs, B. G., Durik, M., Wijers, M. E., Sieben, C. J., Zhong, J., Saltness, R. A., Jeganathan, K. B., Verzosa, G. C., Pezeshki, A., Khazaie, K., Miller, J. D., and van Deursen, J. M. (2016) Naturally occurring p16(Ink4a)–positive cells shorten healthy lifespan, Nature, 530, 184–189.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Baker, D. J., Jeganathan, K. B., Cameron, J. D., Thompson, M., Juneja, S., Kopecka, A., Kumar, R., Jenkins, R. B., de Groen, P. C., Roche, P., and van Deursen, J. M. (2004) BubR1 insufficiency causes early onset of aging–associated phenotypes and infertility in mice, Nat. Genet., 36, 744–749.CrossRefPubMedGoogle Scholar
  19. 19.
    Baker, D. J., Perez–Terzic, C., Jin, F., Pitel, K. S., Niederlander, N. J., Jeganathan, K., Yamada, S., Reyes, S., Rowe, L., Hiddinga, H. J., Eberhardt, N. L., Terzic, A., and van Deursen, J. M. (2008) Opposing roles for p16Ink4a and p19Arf in senescence and ageing caused by BubR1 insufficiency, Nat. Cell. Biol., 10, 825–836.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Baker, D. J., Wijshake, T., Tchkonia, T., LeBrasseur, N. K., Childs, B. G., van de Sluis, B., Kirkland, J. L., and van Deursen, J. M. (2011) Clearance of p16Ink4a–positive senescent cells delays ageing–associated disorders, Nature, 479, 232–236.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Chang, J., Wang, Y., Shao, L., Laberge, R. M., Demaria, M., Campisi, J., Janakiraman, K., Sharpless, N. E., Ding, S., Feng, W., Luo, Y., Wang, X., Aykin–Burns, N., Krager, K., Ponnappan, U., Hauer–Jensen, M., Meng, A., and Zhou, D. (2016) Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice, Nat. Med., 22, 78–83.CrossRefPubMedGoogle Scholar
  22. 22.
    Zhu, Y., Tchkonia, T., Pirtskhalava, T., Gower, A. C., Ding, H., Giorgadze, N., Palmer, A. K., Ikeno, Y., Hubbard, G. B., Lenburg, M., O’Hara, S. P., LaRusso, N. F., Miller, J. D., Roos, C. M., Verzosa, G. C., LeBrasseur, N. K., Wren, J. D., Farr, J. N., Khosla, S., Stout, M. B., McGowan, S. J., Fuhrmann–Stroissnigg, H., Gurkar, A. U., Zhao, J., Colangelo, D., Dorronsoro, A., Ling, Y. Y., Barghouthy, A. S., Navarro, D. C., Sano, T., Robbins, P. D., Niedernhofer, L. J., and Kirkland, J. L. (2015) The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs, Aging Cell, 14, 644–658.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Fuhrmann–Stroissnigg, H., Ling, Y. Y., Zhao, J., McGowan, S. J., Zhu, Y., Brooks, R. W., Grassi, D., Gregg, S. Q., Stripay, J. L., Dorronsoro, A., Corbo, L., Tang, P., Bukata, C., Ring, N., Giacca, M., Li, X., Tchkonia, T., Kirkland, J. L., Niedernhofer, L. J., and Robbins, P. D. (2017) Identification of HSP90 inhibitors as a novel class of senolytics, Nat. Commun., 8,422.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Schafer, M. J., White, T. A., Iijima, K., Haak, A. J., Ligresti, G., Atkinson, E. J., Oberg, A. L., Birch, J., Salmonowicz, H., Zhu, Y., Mazula, D. L., Brooks, R. W., Fuhrmann–Stroissnigg, H., Pirtskhalava, T., Prakash, Y. S., Tchkonia, T., Robbins, P. D., Aubry, M. C., Passos, J. F., Kirkland, J. L., Tschumperlin, D. J., Kita, H., and Le Brasseur, N. K. (2017) Cellular senescence mediates fibrotic pulmonary disease, Nat. Commun., 8, 14532.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Jeon, O. H., Kim, C., Laberge, R. M., Demaria, M., Rathod, S., Vasserot, A. P., Chung, J. W., Kim, D. H., Poon, Y., David, N., B1aker, D. J., van Deursen, J. M., Campisi, J., and Elisseeff, J. H. (2017) Local clearance of senescent cells attenuates the development of post–traumatic osteoarthritis and creates a pro–regenerative environment, Nat. Med., 23, 775–781.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Baar, M. P., Brandt, R. M. C., Putavet, D. A., Klein, J. D. D., Derks, K. W. J., Bourgeois, B. R. M., Stryeck, S., Rijksen, Y., van Willigenburg, H., Feijtel, D. A., van der Pluijm, I., Essers, J., van Cappellen, W. A., van Ijcken, W. F., Houtsmuller, A. B., Pothof, J., de Bruin, R. W. F., Madl, T., Hoeijmakers, J. H. J., Campisi, J., and de Keizer, P. L. J. (2017) Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging, Cell, 169, 132–147.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Yosef, R., Pilpel, N., Tokarsky–Amiel, R., Biran, A., Ovadya, Y., Cohen, S., Vadai, E., Dassa, L., Shahar, E., Condiotti, R., Ben–Porath, I., and Krizhanovsky, V. (2016) Directed elimination of senescent cells by inhibition of BCL–W and BCL–XL, Nat. Commun., 7, 11190.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Libertini, G. (1988) An adaptive theory of the increasing mortality with increasing chronological age in populations in the wild, J. Theor. Biol., 132, 145–162.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Holmes, D. J., and Austad, S. N. (1995) Birds as animal models for the comparative biology of aging: a prospectus, J. Gerontol. A Biol. Sci., 50, B59–B66.CrossRefGoogle Scholar
  30. 30.
    Nussey, D. H., Froy, H., Lemaitre, J. F., Gaillard, J. M., and Austad, S. N. (2013) Senescence in natural populations of animals: widespread evidence and its implications for bio–gerontology, Ageing Res. Rev., 12, 214–225.CrossRefPubMedGoogle Scholar
  31. 31.
    Jones, O. R., Scheuerlein, A., Salguero–Gomez, R., Camarda, C. G., Schaible, R., Casper, B. B., Dahlgren, J. P., Ehrlen, J., Garcia, M. B., Menges, E. S., Quintana–Ascencio, P. F., Caswell, H., Baudisch, A., and Vaupel, J. W. (2014) Diversity of ageing across the tree of life, Nature, 505, 169–173.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Finch, C. E. (1990) Longevity, Senescence, and the Genome, The University of Chicago Press, Chicago.Google Scholar
  33. 33.
    Comfort, A. (1979) The Biology of Senescence, Elsevier North Holland, New York.Google Scholar
  34. 34.
    Medvedev, Z. A. (1990) An attempt at a rational classification of theories of ageing, Biol. Rev. Camb. Philos. Soc., 65, 375–398.CrossRefPubMedGoogle Scholar
  35. 35.
    Weinert, B. T., and Timiras, P. S. (2003) Invited review: theories of aging, J. Appl. Physiol., 95, 1706–1716.CrossRefPubMedGoogle Scholar
  36. 36.
    Libertini, G. (2015) Non–programmed versus programmed aging paradigm, Curr. Aging Sci., 8, 56–68.CrossRefPubMedGoogle Scholar
  37. 37.
    Medawar, P. B. (1952) An Unsolved Problem in Biology, H. K. Lewis, London. Reprinted in: Medawar, P. B. (1957) The Uniqueness of the Individual, Methuen, London.Google Scholar
  38. 38.
    Hamilton, W. D. (1966) The moulding of senescence by natural selection, J. Theor. Biol., 12, 12–45.CrossRefPubMedGoogle Scholar
  39. 39.
    Edney, E. B., and Gill, R. W. (1968) Evolution of senescence and specific longevity, Nature, 220, 281–282.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Mueller, L. D. (1987) Evolution of accelerated senescence in laboratory populations of Drosophila, Proc. Natl. Acad. Sci. USA, 84, 1974–1977.CrossRefPubMedGoogle Scholar
  41. 41.
    Williams, G. C. (1957) Pleiotropy, natural selection and the evolution of senescence, Evolution, 11, 398–411.Google Scholar
  42. 42.
    Rose, M. R. (1991) Evolutionary Biology of Aging, Oxford University Press, New York.Google Scholar
  43. 43.
    Kirkwood, T. B. (1977) Evolution of ageing, Nature, 270, 301–304.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Kirkwood, T. B., and Holliday, R. (1979) The evolution of ageing and longevity, Proc. R. Soc. Lond. B Biol. Sci., 205, 531–546.CrossRefPubMedGoogle Scholar
  45. 45.
    Skulachev, V. P. (1997) Aging is a specific biological function rather than the result of a disorder in complex living systems: biochemical evidence in support of Weismann’s hypothesis, Biochemistry (Moscow), 62, 1191–1195.Google Scholar
  46. 46.
    Libertini, G. (2012) Classification of phenoptotic phenomena, Biochemistry (Moscow), 77, 707–715.CrossRefGoogle Scholar
  47. 47.
    Skulachev, V. P. (1999) Phenoptosis: programmed death of an organism, Biochemistry (Moscow), 64, 1418–1426.Google Scholar
  48. 48.
    Libertini, G. (2009) The role of telomere–telomerase system in age–related fitness decline, a tameable process, in Telomeres: Function, Shortening and Lengthening (Mancini, L., ed.) Nova Science Publishers, New York, pp. 77–132.Google Scholar
  49. 49.
    Libertini, G. (2009) Prospects of a longer life span beyond the beneficial effects of a healthy lifestyle, in Handbook on Longevity: Genetics, Diet and Disease (Bentely, J. V., and Keller, M. A., eds.) Nova Science Publishers Inc., New York, pp. 35–95.Google Scholar
  50. 50.
    Olshansky, S. J., Hayflick, L., and Carnes, B. A. (2002) Position statement on human aging, J. Gerontol. A Biol. Sci. Med. Sci., 57, B292–297.CrossRefPubMedGoogle Scholar
  51. 51.
    Hayflick, L. (2007) Biological aging is no longer an unsolved problem, Ann. N. Y. Acad. Sci., 1100, 1–13.CrossRefPubMedGoogle Scholar
  52. 52.
    Kirkwood, T. B., and Melov, S. (2011) On the programmed/non–programmed nature of ageing within the life history, Curr. Biol., 21, R701–707.CrossRefPubMedGoogle Scholar
  53. 53.
    De Grey, A. D. (2015) Do we have genes that exist to hasten aging? New data, new arguments, but the answer is still no, Curr. Aging Sci., 8, 24–33.CrossRefPubMedGoogle Scholar
  54. 54.
    Gladyshev, V. N. (2016) Aging: progressive decline in fitness due to the rising deleteriome adjusted by genetic, environmental, and stochastic processes, Aging Cell, 15, 594–602.PubMedGoogle Scholar
  55. 55.
    Kowald, A., and Kirkwood, T. B. (2016) Can aging be programmed? A critical literature review, Aging Cell, 15, 986–998.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Libertini, G. (2008) Empirical evidence for various evolutionary hypotheses on species demonstrating increasing mortality with increasing chronological age in the wild, ScientificWorldJournal, 8, 182–193.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Mitteldorf, J. (2013) Telomere biology: cancer firewall or aging clock? Biochemistry (Moscow), 78, 1054–1060.CrossRefGoogle Scholar
  58. 58.
    Fossel, M. B. (2004) Cells, Aging and Human Disease, Oxford University Press, New York.Google Scholar
  59. 59.
    Olovnikov, A. M. (2003) The redusome hypothesis of aging and the control of biological time during individual development, Biochemistry (Moscow), 68, 2–33.CrossRefGoogle Scholar
  60. 60.
    Olovnikov, A. M. (2015) Chronographic theory of development, aging, and origin of cancer: role of chronomeres and printomeres, Curr. Aging Sci., 8, 76–88.PubMedGoogle Scholar
  61. 61.
    Goldsmith, T. C. (2008) Aging, evolvability, and the individual benefit requirement; medical implications of aging theory controversies, J. Theor. Biol., 252, 764–768.PubMedGoogle Scholar
  62. 62.
    Goldsmith, T. C. (2012) On the programmed/non–programmed aging controversy, Biochemistry (Moscow), 77, 729–732.CrossRefGoogle Scholar
  63. 63.
    Skulachev, M. V., and Skulachev, V. P. (2014) New data on programmed aging–slow phenoptosis, Biochemistry (Moscow), 79, 977–993.CrossRefGoogle Scholar
  64. 64.
    Libertini, G. (2014) The programmed aging paradigm: how we get old, Biochemistry (Moscow), 79, 1004–1016.CrossRefGoogle Scholar
  65. 65.
    Libertini, G., and Ferrara, N. (2016) Possible interventions to modify aging, Biochemistry (Moscow), 81, 1413–1428.CrossRefGoogle Scholar
  66. 66.
    Moyzis, R. K., Buckingham, J. M., Cram, L. S., Dani, M., Deaven, L. L., Jones, M. D., Meyne, J., Ratliff, R. L., and Wu, J. R. (1988) A highly conserved repetitive DNA sequence (TTAGGG)n, present at the telomeres of human chromosomes, Proc. Natl. Acad. Sci. USA, 85, 6622–6626.CrossRefPubMedGoogle Scholar
  67. 67.
    Blackburn, E. H. (1991) Structure and function of telomeres, Nature, 350, 569–573.CrossRefPubMedGoogle Scholar
  68. 68.
    Olovnikov, A. M. (1971) Principle of marginotomy in template synthesis of polynucleotides, Doklady Biochem., 201, 394–397.Google Scholar
  69. 69.
    Watson, J. D. (1972) Origin of concatemeric T7 DNA, Nat. New Biol., 239, 197–201.CrossRefPubMedGoogle Scholar
  70. 70.
    Olovnikov, A. M. (1973) A theory of marginotomy: the incomplete copying of template margin in enzyme synthesis of polynucleotides and biological significance of the problem, J. Theor. Biol., 41, 181–190.CrossRefPubMedGoogle Scholar
  71. 71.
    Greider, C. W., and Blackburn, E. H. (1985) Identification of a specific telomere terminal transferase activity in Tetrahymena extracts, Cell, 43, 405–413.CrossRefPubMedGoogle Scholar
  72. 72.
    Van Steensel, B., and de Lange, T. (1997) Control of telomere length by the human telomeric protein TRF1, Nature, 385, 740–743.CrossRefPubMedGoogle Scholar
  73. 73.
    Hayflick, L., and Moorhead, P. S. (1961) The serial cultivation of human diploid cell strains, Exp. Cell Res., 25, 585–621.CrossRefPubMedGoogle Scholar
  74. 74.
    Hayflick, L. (1965) The limited in vitro lifetime of human diploid cell strains, Exp. Cell Res., 37, 614–636.CrossRefPubMedGoogle Scholar
  75. 75.
    Blackburn, E. H. (2000) Telomere states and cell fates, Nature, 408, 53–56.CrossRefPubMedGoogle Scholar
  76. 76.
    Mefford, H. C., and Trask, B. J. (2002) The complex structure and dynamic evolution of human subtelomeres, Nat. Rev. Genet., 3, 91–102.CrossRefPubMedGoogle Scholar
  77. 77.
    Torres, G. A., Gong, Z., Iovene, M., Hirsch, C. D., Buell, C. R., Bryan, G. J., Novak, P., Macas, J., and Jiang, J. (2011) Organization and evolution of subtelomeric satellite repeats in the potato genome, G3 (Bethesda), 1, 85–92.CrossRefPubMedCentralGoogle Scholar
  78. 78.
    Gottschling, D. E., Aparicio, O. M., Billington, B. L., and Zakian, V. A. (1990) Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription, Cell, 63, 751–762.CrossRefPubMedGoogle Scholar
  79. 79.
    Libertini, G. (2015) Phylogeny of aging and related phenoptotic phenomena, Biochemistry (Moscow), 80, 1529–1546.CrossRefGoogle Scholar
  80. 80.
    Kerr, J. F. R., Wyllie, A. H., and Currie, A. R. (1972) Apoptosis: a basic biological phenomenon with wide–ranging implications in tissue kinetics, Br. J. Cancer, 26, 239–257.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Wyllie, A. H., Kerr, J. F. R., and Currie, A. R. (1980) Cell death: the significance of apoptosis, Int. Rev. Cytol., 68, 251–306.CrossRefPubMedGoogle Scholar
  82. 82.
    Lynch, M. P., Nawaz, S., and Gerschenson, L. E. (1986) Evidence for soluble factors regulating cell death and cell proliferation in primary cultures of rabbit endometrial cells grown on collagen, Proc. Natl. Acad. Sci. USA, 83, 4784–4788.CrossRefPubMedGoogle Scholar
  83. 83.
    Medh, R. D., and Thompson, E. B. (2000) Hormonal regulation of physiological cell turnover and apoptosis, Cell Tissue Res., 301, 101–124.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Alberts, B., Bray, D., Hopkin, K., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P. (2013) Essential Cell Biology, 4th Edn., Garland Science, New York.Google Scholar
  85. 85.
    Anversa, P., Kajstura, J., Leri, A., and Bolli, R. (2006) Life and death of cardiac stem cells, Circulation, 113, 1451–1463.CrossRefPubMedGoogle Scholar
  86. 86.
    Richardson, B. R., Allan, D. S., and Le, Y. (2014) Greater organ involution in highly proliferative tissues associated with the early onset and acceleration of ageing in humans, Exp. Gerontol., 55, 80–91.CrossRefPubMedGoogle Scholar
  87. 87.
    Reed, J. C. (1999) Dysregulation of apoptosis in cancer, J. Clin. Oncol., 17, 2941–2953.CrossRefPubMedGoogle Scholar
  88. 88.
    Rao, M. S., and Mattson, M. P. (2001) Stem cells and aging: expanding the possibilities, Mech. Ageing Dev., 122, 713–734.CrossRefPubMedGoogle Scholar
  89. 89.
    Rando, T. A., and Wyss–Coray, T. (2014) Stem cells as vehicles for youthful regeneration of aged tissues, J. Gerontol. A Biol. Sci. Med. Sci., 69 (Suppl. 1), S39–S42.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Mistriotis, P., and Andreadis, S. T. (2017) Vascular aging: molecular mechanisms and potential treatments for vascular rejuvenation, Ageing Res. Rev., 37, 94–116.CrossRefPubMedGoogle Scholar
  91. 91.
    Libertini, G., and Ferrara, N. (2016) Aging of perennial cells and organ parts according to the programmed aging paradigm, Age (Dordr.), 38,35.CrossRefGoogle Scholar
  92. 92.
    Libertini, G. (2017) The feasibility and necessity of a revolution in geriatric medicine, OBM Geriatrics, 1, doi: 10.21926/obm.geriat.1702002.Google Scholar
  93. 93.
    DePinho, R. A. (2000) The age of cancer, Nature, 408, 248–254.CrossRefPubMedGoogle Scholar
  94. 94.
    Libertini, G., Rengo, G., and Ferrara, N. (2017) Aging and aging theories, J. Gerontol. Geriatr., 65, 59–77.Google Scholar
  95. 95.
    Campisi, J. (1997) The biology of replicative senescence, Eur. J. Cancer, 33, 703–709.CrossRefPubMedGoogle Scholar
  96. 96.
    Campisi, J. (2003) Cancer and ageing: rival demons? Nat. Rev. Cancer, 3, 339–349.CrossRefPubMedGoogle Scholar
  97. 97.
    Wright, W. E., and Shay, J. W. (2005) Telomere biology in aging and cancer, J. Am. Geriatr. Soc., 53, S292–S294.CrossRefPubMedGoogle Scholar
  98. 98.
    Campisi, J. (2000) Cancer, aging and cellular senescence, In vivo, 14, 183–188.PubMedGoogle Scholar
  99. 99.
    Libertini, G. (2013) Evidence for aging theories from the study of a hunter–gatherer people (Ache of Paraguay), Biochemistry (Moscow), 78, 1023–1032.CrossRefGoogle Scholar
  100. 100.
    Klapper, W., Heidorn, K., Kuhne, K., Parwaresch, R., and Krupp, G. (1998) Telomerase activity in “immortal” fish, FEBS Lett., 434, 409–412.CrossRefPubMedGoogle Scholar
  101. 101.
    Klapper, W., Kuhne, K., Singh, K. K., Heidorn, K., Parwaresch, R., and Krupp, G. (1998) Longevity of lobsters is linked to ubiquitous telomerase expression, FEBS Lett., 439, 143–146.CrossRefPubMedGoogle Scholar
  102. 102.
    Black, H. (2002) Fishing for answers to questions about the aging process, BioScience, 52, 15–18.CrossRefGoogle Scholar
  103. 103.
    Artandi, S. E., and DePinho, R. A. (2010) Telomeres and telomerase in cancer, Carcinogenesis, 31, 9–18.CrossRefPubMedGoogle Scholar
  104. 104.
    Dokal, I. (2000) Dyskeratosis congenita in all its forms, Br. J. Haematol., 110, 768–779.CrossRefPubMedGoogle Scholar
  105. 105.
    De Lange, T., and Jacks, T. (1999) For better or worse? Telomerase inhibition and cancer, Cell, 98, 273–275.CrossRefPubMedGoogle Scholar
  106. 106.
    Artandi, S. E., Chang, S., Lee, S. L., Alson, S., Gottlieb, G. J., Chin, L., and DePinho, R. A. (2000) Telomere dys–function promotes non–reciprocal translocations and epithelial cancers in mice, Nature, 406, 641–645.CrossRefPubMedGoogle Scholar
  107. 107.
    Artandi, S. E. (2002) Telomere shortening and cell fates in mouse models of neoplasia, Trends Mol. Med., 8, 44–47.CrossRefPubMedGoogle Scholar
  108. 108.
    Wu, X., Amos, C. I., Zhu, Y., Zhao, H., Grossman, B. H., Shay, J. W., Luo, S., Hong, W. K., and Spitz, M. R. (2003) Telomere dysfunction: a potential cancer predisposition factor, J. Natl. Cancer Inst., 95, 1211–1218.CrossRefPubMedGoogle Scholar
  109. 109.
    Ma, H., Zhou, Z., Wei, S., Liu, Z., Pooley, K. A., Dunning, A. M., Svenson, U., Roos, G., Hosgood, H. D., 3rd, Shen, M., and Wei, Q. (2011) Shortened telomere length is associated with increased risk of cancer: a metaanalysis, PLoS One, 6, e20466.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Bernardes de Jesus, B., Vera, E., Schneeberger, K., Tejera, A. M., Ayuso, E., Bosch, F., and Blasco, M. A. (2012) Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer, EMBO Mol. Med., 4, 691–704.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Rosen, P. (1985) Aging of the immune system, Med. Hypotheses, 18, 157–161.CrossRefPubMedGoogle Scholar
  112. 112.
    Hill, K., and Hurtado, A. M. (1996) Ache Life History, Aldine De Gruyter, New York.Google Scholar
  113. 113.
    Jazwinski, S. M. (1993) The genetics of aging in the yeast Saccharomyces cerevisiae, Genetica, 91, 35–51.CrossRefPubMedGoogle Scholar
  114. 114.
    Fabrizio, P., and Longo, V. D. (2007) The chronological life span of Saccharomyces cerevisiae, Methods Mol. Biol., 371, 89–95.CrossRefPubMedGoogle Scholar
  115. 115.
    Laun, P., Bruschi, C. V., Dickinson, J. R., Rinnerthaler, M., Heeren, G., Schwimbersky, R., Rid, R., and Breitenbach, M. (2007) Yeast mother cell–specific ageing, genetic (in)stability, and the somatic mutation theory of ageing, Nucleic Acids Res., 35, 7514–7526.Google Scholar
  116. 116.
    Kuilman, T., Michaloglou, C., Vredeveld, L. C., Douma, S., van Doorn, R., Desmet, C. J., Aarden, L. A., Mooi, W. J., and Peeper, D. S. (2008) Oncogene–induced senescence relayed by an interleukin–dependent inflammatory network, Cell, 133, 1019–1031.CrossRefPubMedGoogle Scholar
  117. 117.
    Demaria, M., O’Leary, M. N., Chang, J., Shao, L., Liu, S., Alimirah, F., Koenig, K., Le, C., Mitin, N., Deal, A. M., Alston, S., Academia, E. C., Kilmarx, S., Valdovinos, A., Wang, B., de Bruin, A., Kennedy, B. K., Melov, S., Zhou, D., Sharpless, N. E., Muss, H., and Campisi, J. (2017) Cellular senescence promotes adverse effects of chemotherapy and cancer relapse, Cancer Discov., 7, 165–176.CrossRefPubMedGoogle Scholar
  118. 118.
    Biran, A., Zada, L., Abou Karam, P., Vadai, E., Roitman, L., Ovadya, Y., Porat, Z., and Krizhanovsky, V. (2017) Quantitative identification of senescent cells in aging and disease, Aging Cell, 16, 661–671.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Campisi, J. (2013) Aging, cellular senescence, and cancer, Annu. Rev. Physiol., 75, 685–705.CrossRefGoogle Scholar
  120. 120.
    Jaskelioff, M., Muller, F. L., Paik, J. H., Thomas, E., Jiang, S., Adams, A. C., Sahin, E., Kost–Alimova, M., Protopopov, A., Cadinanos, J., Horner, J. W., Maratos–Flier, E., and Depinho, R. A. (2011) Telomerase reactivation reverses tissue degeneration in aged telomerase–deficient mice, Nature, 469, 102–106.CrossRefPubMedGoogle Scholar
  121. 121.
    Harley, C. B., Liu, W., Blasco, M., Vera, E., Andrews, W. H., Briggs, L. A., and Raffaele, J. M. (2011) A natural product telomerase activator as part of a health maintenance program, Rejuvenation Res., 14, 45–56.CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Harley, C. B., Liu, W., Flom, P. L., and Raffaele, J. M. (2013) A natural product telomerase activator as part of a health maintenance program: metabolic and cardiovascular response, Rejuvenation Res., 16, 386–395.CrossRefPubMedGoogle Scholar
  123. 123.
    Bernardes de Jesus, B., and Blasco, M. A. (2012) Potential of telomerase activation in extending health span and longevity, Curr. Opin. Cell Biol., 24, 739–743.CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Lopez–Leon, M., and Goya, R. G. (2017) The emerging view of aging as a reversible epigenetic process, Gerontology, 63, 426–431.CrossRefPubMedGoogle Scholar
  125. 125.
    Takahashi, K., and Yamanaka, S. (2013) Induced pluripotent stem cells in medicine and biology, Development, 140, 2457–2461.CrossRefPubMedGoogle Scholar
  126. 126.
    De Lazaro, I., Yilmazer, A., and Kostarelos, K. (2014) Induced pluripotent stem (iPS) cells: a new source for cell–based therapeutics? J. Control. Release, 185, 37–44.CrossRefPubMedGoogle Scholar
  127. 127.
    Tanabe, K., Takahashi, K., and Yamanaka, S. (2014) Induction of pluripotency by defined factors, Proc. Jpn. Acad. Ser. B Phys. Biol. Sci., 90, 83–96.CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Takahashi, K., and Yamanaka, S. (2016) A decade of transcription factor–mediated reprogramming to pluripotency, Nat. Rev. Mol. Cell Biol., 17, 183–193.CrossRefPubMedGoogle Scholar
  129. 129.
    Mendelsohn, A. R., Larrick, J. W., and Lei, J. L. (2017) Rejuvenation by partial reprogramming of the epigenome, Rejuvenation Res., 20, 146–150.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Department of Translational Medical SciencesFederico II UniversityNaplesItaly

Personalised recommendations