Biochemistry (Moscow)

, Volume 83, Issue 11, pp 1411–1421 | Cite as

Aggregation of Influenza A Virus Nuclear Export Protein

  • A. O. Golovko
  • O. N. KorolevaEmail author
  • A. P. Tolstova
  • N. V. Kuz’mina
  • E. V. Dubrovin
  • V. L. Drutsa


Influenza A virus nuclear export protein (NEP) plays an important role in the viral life cycle. Recombinant NEP proteins containing (His)6-tag at either N-or C-terminus were obtained by heterologous expression in Escherichia coli cells and their high propensity for aggregation was demonstrated. Dynamic light scattering technique was used to study the kinetics and properties of NEP aggregation in solutions under different conditions (pH, ionic strength, presence of low-molecular-weight additives and organic solvents). Using atomic force microscopy, the predominance of spherical aggregates in all examined NEP preparations was shown, with some amyloid-like structures being observed in the case of NEP-C protein. A number of structure prediction programs were used to identify aggregation-prone regions in the NEP structure. All-atom molecular dynamics simulations indicate a high rate of NEP molecule aggregation and reveal the regions preferentially involved in the intermolecular contacts that are located at the edges of the rod-like protein molecule. Our results suggest that NEP aggregation is determined by different types of interactions and represents an intrinsic property of the protein that appears to be necessary for its functioning in vivo.


influenza A virus nuclear export protein NEP protein aggregation 



amino acid


atomic force microscopy




dynamic light scattering


guanidine hydrochloride


nuclear export protein


recombinant NEP proteins with (His)6-tag at the C-and N-termini, respectively


polydis-persity index


hydrodynamic radius


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Manz, B., Schwemmle, M., and Brunotte, L. (2013) Adaptation of avian Influenza A virus polymerase in mammals to overcome the host species barrier, J. Virol., 87, 7200–7209.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Brunotte, L., Flies, J., and Bolte, H. (2014) The nuclear export protein of H5N1 influenza A viruses recruits matrix 1 (M1) protein to the viral ribonucleoprotein to mediate nuclear export, J. Biol. Chem., 289, 20067–20077.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Watanabe, K., Shimizu, T., Noda, S., Tsukahara, F., Maru, Y., and Kobayashi, N. (2014) Nuclear export of the influenza virus ribonucleoprotein complex: interaction of Hsc70 with viral proteins M1 and NS2, FEBS Open Bio, 4, 683–688.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Gorai, T., Goto, H., Noda, T., Watanabe, T., Kozuka-Hata, H., Oyama, M., Takano, R., Neumann, G., Watanabe, S., and Kawaoka, Y. (2012) F1F0-ATPase, F-type proton-translocating ATPase, at the plasma membrane is critical for efficient influenza virus budding, Proc. Natl. Acad. Sci. USA, 109, 4615–4620.CrossRefPubMedGoogle Scholar
  5. 5.
    Akarsu, H., Burmeister, W. P., Petosa, C., Petit, I., Muller, C. W., Ruigrok, R. W., and Baudin, F. (2003) Crystal structure of the M1 protein-binding domain of the influenza A virus nuclear export protein (NEP/NS2), EMBO J., 22, 4646–4655.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Lommer, B. S., and Luo, M. (2002) Structural plasticity in influenza virus protein NS2 (NEP), J. Biol. Chem., 277, 7108–7117.CrossRefPubMedGoogle Scholar
  7. 7.
    Darapaneni, V., Prabhaker, V. K., and Kukol, A. (2009) Large-scale analysis of influenza A virus sequences reveals potential drug target sites of non-structural proteins, J. Gen. Virol., 90, 2124–2133.CrossRefPubMedGoogle Scholar
  8. 8.
    Golovko, A. O., Koroleva, O. N., and Drutsa, V. L. (2017) Heterologous expression and isolation of influenza A virus nuclear export protein NEP, Biochemistry (Moscow), 82, 1529–1537.CrossRefGoogle Scholar
  9. 9.
    Gomez-Puertas, P., Albo, C., Perez-Pastrana, E., Vivo, A., and Portela, A. (2000) Influenza virus matrix protein is the major driving force in virus budding, J. Virol., 74, 11538–11547.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Rossman, J. S., and Lamb, R. A. (2011) Influenza virus assembly and budding, Virology, 411, 229–236.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Calder, L. J., Wasilewski, S., Berriman, J. A., and Rosenthal, P. B. (2010) Structural organization of a filamentous influenza A virus, Proc. Natl. Acad. Sci. USA, 107, 10685–10690.CrossRefPubMedGoogle Scholar
  12. 12.
    Vidic, J., Richard, C. A., Pechoux, C., Da Costa, B., Bertho, N., Mazerat, S., Delmas, B., and Chevalier, C. (2016) Amyloid assemblies of influenza A virus PB1-F2 protein damage membrane and induce cytotoxicity, J. Biol. Chem., 291, 739–751.CrossRefPubMedGoogle Scholar
  13. 13.
    Uversky, V. N. (2008) Amyloidogenesis of natively unfolded proteins, Curr. Alzheimer Res., 5, 260–287.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Laemmli, U. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227, 680–685.CrossRefPubMedGoogle Scholar
  15. 15.
    Jachimska, B., Wasilewska, M., and Adamczyk, Z. (2008) Characterization of globular protein solutions by dynamic light scattering, electrophoretic mobility, and viscosity measurements, Langmuir, 24, 6866–6872.CrossRefPubMedGoogle Scholar
  16. 16.
    Muller, D. J., Janovjak, H., Lehto, T., Kuerschner, L., and Anderson, K. (2002) Observing structure, function and assembly of single proteins by AFM, Prog. Biophys. Mol. Biol., 79, 1–43.CrossRefPubMedGoogle Scholar
  17. 17.
    Fernandez-Escamilla, A. M., Rousseau, F., Schymkowitz, J., and Serrano, L. (2004) Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins, Nat. Biotechnol., 22, 1302–1306.CrossRefPubMedGoogle Scholar
  18. 18.
    Conchillo-Sole, O., de Groot, N. S., Aviles, F. X., Vendrell, J., Daura, X., and Ventura, S. (2007) AGGRESCAN: a server for the prediction and evaluation of “hot spots” of aggregation in polypeptides, BMC Bioinformatics, 8,65.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Garbuzynskiy, S. O., Lobanov, M. Y., and Galzitskaya, O. V. (2010) FoldAmyloid: a method of prediction of amyloidogenic regions from protein sequence, Bioinformatics, 26, 326–332.CrossRefPubMedGoogle Scholar
  20. 20.
    Walsh, I., Seno, F., Tosatto, S. C. E., and Trovato, A. (2014) PASTA2: an improved server for protein aggregation prediction, Nucleic Acids Res., 42 (Web Server issue), W301–W307.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Maurer-Stroh, S., Debulpaep, M., Kuemmerer, N., Lopez de la Paz, M., Martins, I. C., Reumers, J., Morris, K. L., Copland, A., Serpell, L., Serrano, L., Schymkowitz, J. W., and Rousseau, F. (2010) Exploring the sequence determinants of amyloid structure using position-specific scoring matrices, Nat. Methods, 7, 237–242.CrossRefPubMedGoogle Scholar
  22. 22.
    O’Donnell, C. W., Waldispuhl, J., Lis, M., Halfmann, R., Devadas, S., Lindquist, S., and Berger, B. (2011) A method for probing the mutational landscape of amyloid structure, Bioinformatics, 27, i34–i42.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Gasior, P., and Kotulska, M. (2014) FISH amyloid-a new method for finding amyloidogenic segments in proteins based on site-specific co-occurrence of amino acids, BMC Bioinformatics, 15,54.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Thangakani, A. M., Kumar, S., Nagarajan, R., Velmurugan, D., and Gromiha, M. M. (2014) GAP: towards almost hundred percent prediction of β-strand mediated aggregating peptides with distinct morphologies, Bioinformatics, 30, 1983–1990.CrossRefPubMedGoogle Scholar
  25. 25.
    Emily, M., Talvas, A., and Delamarche, C. (2013) MetAmyl: a METa-predictor for AMYLoid proteins, PLoS One, 8, e79722.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., and Zhang, Y. (2015) The I-TASSER suite: protein structure and function prediction, Nat. Methods, 12, 7–8.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Abraham, M. J., Murtola, T., Schulz, R., Pall, S., Smith, J. C., Hess, B., and Lindahl, E. (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers, SoftwareX, 1, 19–25.CrossRefGoogle Scholar
  28. 28.
    Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., and Simmerling, C. (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters, Proteins, 65, 712–725.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Chaichian, M., and Demichev, A. (2001) Path Integrals in Physics. Volume 1: Stochastic Process and Quantum Mechanics, Taylor & Francis.CrossRefGoogle Scholar
  30. 30.
    Zimmerman, K. (1991) All purpose molecular mechanics simulator and energy minimize, J. Comp. Chem., 12, 310–319.CrossRefGoogle Scholar
  31. 31.
    Khan, M. V., Zakariya, S. M., and Khan, R. H. (2018) Protein folding, misfolding and aggregation: a tale of constructive to destructive assembly, Int. J. Biol. Macromol., 112, 217–229.CrossRefPubMedGoogle Scholar
  32. 32.
    Jeong, J. S., Ansaloni, A., Mezzenga, R., Lashuel, H. A., and Dietler, G. (2013) Novel mechanistic insight into the molecular basis of amyloid polymorphism and secondary nucleation during amyloid formation, J. Mol. Biol., 425, 1765–1781.CrossRefPubMedGoogle Scholar
  33. 33.
    Nehete, J. Y., Bhambar, R. S., Narkhede, M. R., and Gawali, S. R. (2013) Natural proteins: sources, isolation, characterization and applications, Pharmacogn. Rev., 7, 107–116.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Lange, C., and Rudolph, R. (2009) Suppression of protein aggregation by L-arginine, Curr. Pharm. Biotechnol., 10, 408–414.CrossRefPubMedGoogle Scholar
  35. 35.
    Shukla, D., and Trout, B. L. (2010) Interaction of arginine with proteins and the mechanism by which it inhibits aggregation, J. Phys. Chem. B, 114, 13426–13438.CrossRefPubMedGoogle Scholar
  36. 36.
    Gao, S., Wang, S., Cao, S., Sun, L., Li, J., Bi, Y., Gao, G. F., and Liu, W. (2014) Characteristics of nucleocytoplasmic transport of H1N1 influenza A virus nuclear export protein, J. Virol., 88, 7455–7463.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Paterson, D., and Fodor, E. (2012) Emerging roles for the influenza A virus nuclear export protein (NEP), PLoS Pathog., 8, e1003019.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Robb, N. C., Smith, M., Vreede, F. T., and Fodor, E. (2009) NS2/NEP protein regulates transcription and replication of the influenza virus RNA genome, J. Gen. Virol., 90, 1398–1407.CrossRefPubMedGoogle Scholar
  39. 39.
    Manz, B., Schwemmle, M., and Brunotte, L. (2013) Adaptation of avian influenza A virus polymerase in mammals to overcome the host species barrier, J. Virol., 87, 7200–7209.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Reuther, P., Giese, S., Gotz, V., Kilb, N., Manz, B., Brunotte, L., and Schwemmle, M. (2014) Adaptive mutations in the nuclear export protein of human-derived H5N1 strains facilitate a polymerase activity-enhancing conformation, J. Virol., 88, 263–271.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Smirnova, T. D., Danilenko, D. M., and Slita, A. V. (2013) Role of cellular cytoskeleton in influenza A infection cycle, Tsitologiya, 55, 92–100.Google Scholar
  42. 42.
    Calder, L. J., Wasilewski, S., Berriman, J. A., and Rosenthal, P. B. (2010) Structural organization of a filamentous influenza A virus, Proc. Natl. Acad. Sci. USA, 107, 10685–10690.CrossRefPubMedGoogle Scholar
  43. 43.
    Martyna, A., and Rossman, J. (2014) Alterations of membrane curvature during influenza virus budding, J. Biochem. Soc. Trans., 42, 1425–1428.CrossRefGoogle Scholar
  44. 44.
    Terakawa, M. S., Lin, Y., Kinoshita, M., Kanemura, S., Itoh, D., Sugiki, T., Okumura, M., Ramamoorthy, A., and Lee, Y. H. (2018) Impact of membrane curvature on amyloid aggregation, Biochim. Biophys. Acta, 1860, 1741–1764.CrossRefGoogle Scholar
  45. 45.
    Milanesi, L., Sheynis, T., Xue, W. F., Orlova, E. V., Hellewell, A. L., Jelinek, R., Hewitt, E. W., Radford, S. E., and Saibil, H. R. (2012) Direct three-dimensional visualization of membrane disruption by amyloid fibrils, Proc. Natl. Acad. Sci. USA, 109, 20455–22460.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. O. Golovko
    • 1
  • O. N. Koroleva
    • 2
    Email author
  • A. P. Tolstova
    • 3
  • N. V. Kuz’mina
    • 4
    • 5
  • E. V. Dubrovin
    • 3
  • V. L. Drutsa
    • 6
  1. 1.Department of Bioengineering and BioinformaticsLomonosov Moscow State UniversityMoscowRussia
  2. 2.Department of ChemistryLomonosov Moscow State UniversityMoscowRussia
  3. 3.Department of PhysicsLomonosov Moscow State UniversityMoscowRussia
  4. 4.Department of BiologyLomonosov Moscow State UniversityMoscowRussia
  5. 5.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia
  6. 6.Belozersky Research Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations