Advertisement

Biochemistry (Moscow)

, Volume 83, Issue 11, pp 1399–1410 | Cite as

Comprehensive Analysis of Carbohydrate-Active Enzymes from the Filamentous Fungus Scytalidium candidum 3C

  • I. Yu. Pavlov
  • E. V. Eneyskaya
  • K. S. Bobrov
  • D. E. Polev
  • D. R. Ivanen
  • A. T. Kopylov
  • S. N. Naryzhny
  • A. A. KulminskayaEmail author
Article
  • 40 Downloads

Abstract

Complete enzymatic degradation of plant polysaccharides is a result of combined action of various carbohydrate-active enzymes (CAZymes). In this paper, we demonstrate the potential of the filamentous fungus Scytalidium candidum 3C for processing of plant biomass. Structural annotation of the improved assembly of S. candidum 3C genome and functional annotation of CAZymes revealed putative gene sequences encoding such proteins. A total of 190 CAZyme-encoding genes were identified, including 104 glycoside hydrolases, 52 glycosyltransferases, 28 oxidative enzymes, and 6 carbohydrate esterases. In addition, 14 carbohydrate-binding modules were found. Glycoside hydrolases secreted during the growth of S. candidum 3C in three media were analyzed with a variety of substrates. Mass spectrometry analysis of the fungal culture liquid revealed the presence of peptides identical to 36 glycoside hydrolases, three proteins without known enzymatic function belonging to the same group of families, and 11 oxidative enzymes. The activity of endohemicellulases was determined using specially synthesized substrates in which the glycosidic bond between monosaccharide residues was replaced by a thiolinkage. During analysis of the CAZyme profile of S. candidum 3C, four β-xylanases from the GH10 family and two β-glucanases from the GH7 and GH55 families were detected, partially purified, and identified.

Keywords

CAZymes lignocellulases glycoside hydrolases para-nitrophenyl β-S-D-glycobiosides 

Abbreviations

АА

auxiliary activities

CAZymes

carbohydrate-active enzymes

CBM

carbohydrate-binding module

CE

carbohydrate esterase

GH

glycoside hydrolase

pNP

para-nitrophenyl

pNPβSGlc2

para-nitrophenyl-β-D-thiocellobiopyranoside

pNPβSXyl2

para-nitrophenyl-β-D-thioxylobiopyranoside

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10541_2018_689_MOESM1_ESM.pdf (219 kb)
Supplement to: I. Yu. Pavlov, E. V. Eneyskaya, K. S. Bobrov, D. E. Polev, D. R. Ivanen, A. T. Kopylov, S. N. Naryzhny, and A. A. Kulminskaya, Comprehensive Analysis of Carbohydrate-Active Enzymes from the Filamentous Fungus Scytalidium candidum 3C (ISSN 0006-2979, Biochemistry (Moscow), 2018, Vol. 83, No. 11, pp. 1399-1410)

References

  1. 1.
    De Vries, R. P., and Visser, J. (2001) Aspergillus enzymes involved in degradation of plant cell wall polysaccharides, Microbiol. Mol. Biol. Rev., 65, 497–522.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Henrissat, B., Callebaut, I., Fabrega, S., Lehn, P., Mornon, J. P., and Davies, G. (1995) Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases, Proc. Natl. Acad. Sci. USA, 92, 7090–7094.CrossRefPubMedGoogle Scholar
  3. 3.
    Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M., and Henrissat, B. (2014) The carbohydrate-active enzymes database (CAZy) in 2013, Nucleic Acids Res., 42, D490–495.CrossRefPubMedGoogle Scholar
  4. 4.
    Henrissat, B., and Bairoch, A. (1996) Updating the sequence-based classification of glycosyl hydrolases, Biochem. J., 316, 695–696.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Davies, G. J., and Sinnott, M. L. (2008) Sorting the diverse: the sequence-based classifications of carbohydrate-active enzymes, Biochem. J., 30, 26–32.Google Scholar
  6. 6.
    Gupta, V. K., Steindorff, A. S., de Paula, R. G., Silva-Rocha, R., Mach-Aigner, A. R., Mach, R. L., and Silva, R. N. (2016) The post-genomic era of Trichoderma reesei: what’s next? Trends Biotechnol., 34, 970–982.CrossRefPubMedGoogle Scholar
  7. 7.
    Payne, C. M., Knott, B. C., Mayes, H. B., Hansson, H., Himmel, M. E., Sandgren, M., Stahlberg, J., and Beckham, G. T. (2015) Fungal cellulases, Chem. Rev., 115, 1308–1448.CrossRefPubMedGoogle Scholar
  8. 8.
    Peterson, R., and Nevalainen, H. (2012) Trichoderma reesei RUT-C30-thirty years of strain improvement, Microbiology, 158, 58–68.CrossRefPubMedGoogle Scholar
  9. 9.
    Culleton, H., McKie, V., and de Vries, R. P. (2013) Physiological and molecular aspects of degradation of plant polysaccharides by fungi: what have we learned from Aspergillus? Biotechnol. J., 8, 884–894.CrossRefPubMedGoogle Scholar
  10. 10.
    Rodionova, N. A., Tiunova, N. A., Feniksova, Р. В., Kudryashova, T. I., and Martinovich, L. I. (1974) Cellulolytic enzymes of Geotrichum candidum, Dokl. Akad. Nauk SSSR, 214, 1206–1209.PubMedGoogle Scholar
  11. 11.
    Tiunova, N. A., Rodionova, N. A., Martinovich, L. I., and Gogolev, M. N. (1980) Production of cellulolytic enzymes from Geotrichum candidum, Prikl. Biokhim. Mikrobiol., 16, 185–190.PubMedGoogle Scholar
  12. 12.
    Rodionova, N. A., Kobzeva, N. Ya., Zagustina, N. A., Maksimov, V. I., and Bezborodov, A. M. (1984) Cellulolytic enzymes of Geotrichum candidum, Mikrobiologiya, 53, 237–241.Google Scholar
  13. 13.
    Rodionova, N. A., Martinovich, L. I., Kurteva, I., Akparov, V. Kh., and Bezborodov, A. M. (1989) Purification and characterization of endo-1,4-β-glucanase I from Geotrichum candidum 3C, Prikl. Biokhim. Mikrobiol., 25, 172–177.Google Scholar
  14. 14.
    Vasilyeva, N. V., Rodionova, N. A., Martinovich, L. I., Tavobilov, I. M., and Bezborodov, A. M. (1989) Purification of endo-1,4-β-glucanase I binding to micro-crystalline cellulose from the cellulose preparation of Geotrichum candidum 3C, Prikl. Biokhim. Mikrobiol., 25, 322–332.Google Scholar
  15. 15.
    Rodionova, N. A., Martinovich, L. I., Rusakov, A. E., and Zakharov, V. I. (1989) Characterization of the products of hydrolysis of amorphous cellulose and cellooligosaccharides by endoglucanase I from Geotrichum candidum 3C, Prikl. Biokhim. Mikrobiol., 25, 473–477.Google Scholar
  16. 16.
    Rodionova, N. A., Dubovaya, N. V., Eneyskaya, E. V., Martinovich, L. I., Grasheva, I. M., and Bezborodov, A. M. (2000) Purification and characterization of endo-1,4-β-xylanase from Geotrichum candidum 3C, Prikl. Biokhim. Mikrobiol., 36, 535–540.PubMedGoogle Scholar
  17. 17.
    Lapin, V. V., Rodionova, N. A., Zagustina, N. A., Kapanchan, A. T., Dubovaya, N. V., and Bezborodov, A. M. (2002) Application of the Cellocandin enzyme preparation from Geotrichum candidum 3С-106 for waste paper recycling and dehydration of cellulose suspension, Prikl. Biokhim. Mikrobiol., 38, 452–454.PubMedGoogle Scholar
  18. 18.
    Borisova, A. S., Eneyskaya, E. V., Bobrov, K. S., Jana, S., Logachev, A., Polev, D. E., Lapidus, A. L., Ibatullin, F. M., Saleem, U., Sandgren, M., Payne, C. M., Kulminskaya, A. A., and Stahlberg, J. (2015) Sequencing, biochemical characterization, crystal structure and molecular dynamics of cellobiohydrolase Cel7A from Geotrichum candidum 3C, FEBS J., 282, 4515–4537.CrossRefPubMedGoogle Scholar
  19. 19.
    Polev, D. E., Bobrov, K. S., Eneyskaya, E. V., and Kulminskaya, A. A. (2014) Draft genome sequence of Geotrichum candidum strain 3C, Genome Announc., 2, e00956–14.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Morel, G., Sterck, L., Swennen, D., Marcet-Houben, M., Onesime, D., Levasseur, A., Jacques, N., Mallet, S., Couloux, A., Labadie, K., Amselem, J., Beckerich, J.-M., Henrissat, B., van de Peer, Y., Wincker, P., Souciet, J.-L., Gabaldon, T., Tinsley, C. R., and Casaregola, S. (2015) Differential gene retention as an evolutionary mechanism to generate biodiversity and adaptation in yeasts, Sci. Rep., 5, 11571.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Pavlov, I. Yu., Bobrov, K. S., Sumacheva, A. D., Masharsky, A. E., Polev, D. E., Zhurishkina, E. V., and Kulminskaya, A. A. (2018) Scytalidium candidum 3C is a new name for the Geotrichum candidum link 3C strain, J. Basic Microbiol., 58, 883–891.CrossRefPubMedGoogle Scholar
  22. 22.
    Giraldo, A., Sutton, D. A., Gene, J., Fothergill, A. W., Cano, J., and Guarro, J. (2013) Rare arthroconidial fungi in clinical samples: Scytalidium cuboideum and Arthropsis hispanica, Mycopathologia, 175, 115–121.CrossRefPubMedGoogle Scholar
  23. 23.
    Kaur, A. P., Nocek, B. P., Xu, X., Lowden, M. J., Leyva, J. F., Stogios, P. J., Cui, H., Di Leo, R., Powlowski, J., Tsang, A., and Savchenko, A. (2015) Functional and structural diversity in GH62 α-L-arabinofuranosidases from the thermophilic fungus Scytalidium thermophilum, Microb. Biotechnol., 8, 419–433.CrossRefPubMedGoogle Scholar
  24. 24.
    Basotra, N., Kaur, B., Di Falco, M., Tsang, A., and Chadha, B. S. (2016) Mycothermus thermophilus (syn. Scytalidium thermophilum): repertoire of a diverse array of efficient cellulases and hemicellulases in the secretome revealed, Biores. Technol., 222, 413–421.CrossRefGoogle Scholar
  25. 25.
    Boonlue, S., Aimi, T., and Morinaga, T. (2003) Molecular characterization of a xylanase-producing thermophilic fungus isolated from Japanese soil, Curr. Microbiol., 47, 119–124.CrossRefPubMedGoogle Scholar
  26. 26.
    Klingstrom, A., and Beyer, L. (1965) Two new species of Scytalidium, with antagonistic properties to Fomes annosus, Svensk Botanisk Tidskrift, 59, 30–36.Google Scholar
  27. 27.
    Klingstrom, A. E., and Johansson, S. M. (1973) Antagonism of Scytalidium isolates against wood decay fungi, Phytopathology, 63, 473–479.CrossRefGoogle Scholar
  28. 28.
    O’Connell, J., Schulz-Trieglaff, O., Carlson, E., Hims, M. M., Gormley, N. A., and Cox, A. J. (2015) NxTrim: optimized trimming of Illumina mate pair reads, Bioinformatics, 31, 2035–2037.CrossRefPubMedGoogle Scholar
  29. 29.
    Chevreux, B., Wetter, T., and Suhai, S. (1999) Genome sequence assembly using trace signals and additional sequence information, in Computer Science and Biology. Proc. German Conf. on Bioinformatics, 99, 45–56.Google Scholar
  30. 30.
    Cantarel, B. L., Korf, I., Robb, S. M. C., Parra, G., Ross, E., Moore, B., Holt, C., Sanchez Alvarado, A., and Yandell, M. (2008) MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes, Genome Res., 18, 188–196.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Korf, I. (2004) Gene finding in novel genomes, BMC Bio-informatics, 5,59.CrossRefGoogle Scholar
  32. 32.
    Conesa, A., Gotz, S., Garcia-Gomez, J. M., Terol, J., Talon, M., and Robles, M. (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research, Bioinformatics, 21, 3674–3676.CrossRefPubMedGoogle Scholar
  33. 33.
    Yin, Y., Mao, X., Yang, J., Chen, X., Mao, F., and Xu, Y. (2012) dbCAN: a web resource for automated carbohydrate-active enzyme annotation, Nucleic Acids Res., 40, W445–451.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Petersen, T. N., Brunak, S., von Heijne, G., and Nielsen, H. (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions, Nat. Meth., 8, 785–786.CrossRefGoogle Scholar
  35. 35.
    Helferich, B., and Schmitz-Hillebrecht, E. (1933) Eine neue methode zur synthese von glykosiden der phenole, Berichte Deutschen Chemischen Gesellschaft, 66, 378–383.CrossRefGoogle Scholar
  36. 36.
    Dess, D., Kleine, H. P., Weinberg, D. V., Kaufman, R. J., and Sidhu, R. S. (1981) Phase-transfer catalyzed synthesis of acetylated aryl β-D-glucopyranosides and aryl β-D-galactopyranosides, Synthesis, 1981, 883–885.CrossRefGoogle Scholar
  37. 37.
    Ibatullin, F. M., Selivanov, S. I., and Shavva, A. G. (2001) A general procedure for conversion of S-glycosyl isothiourea derivatives into thioglycosides, thiooligosaccharides and glycosyl thioesters, Synthesis, 3, 0419–0422.CrossRefGoogle Scholar
  38. 38.
    Ibatullin, F. M., Shabalin, K. A., Janis, J. V., and Selivanov, S. I. (2001) Stereoselective synthesis of thioxylooligosaccharides from S-glycosyl isothiourea precursors, Tetrahedr. Lett., 42, 4565–4567.CrossRefGoogle Scholar
  39. 39.
    Muhlmann, M., Kunze, M., Ribeiro, J., Geinitz, B., Lehmann, C., Schwaneberg, U., Commandeur, U., and Buchs, J. (2017) Cellulolytic RoboLector-towards an automated high-throughput screening platform for recombinant cellulase expression, J. Biol. Eng., 11,1.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Wisniewski, J. R., Zougman, A., Nagaraj, N., and Mann, M. (2009) Universal sample preparation method for proteome analysis, Nat. Meth., 6, 359–362.CrossRefGoogle Scholar
  41. 41.
    Naryzhny, S. N., Maynskova, M. A., Zgoda, V. G., Ronzhina, N. L., Kleyst, O. A., Vakhrushev, I. V., and Archakov, A. I. (2016) Virtual-experimental 2DE approach in chromosomecentric human proteome project, J. Proteome Res., 15, 525–530.CrossRefPubMedGoogle Scholar
  42. 42.
    Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein data-base search programs, Nucleic Acids Res., 25, 3389–3402.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Golubev, A. M., Brandao Neto, J. R., Eneyskaya, E. V., Kulminskaya, A. A., Kerzhner, M. A., Neustroev, K. N., and Polikarpov, I. (2000) Purification, crystallization and preliminary X-ray study of β-xylosidase from Trichoderma reesei, Acta Crystallogr. D Biol. Crystallogr., 56, 1058–1060.CrossRefPubMedGoogle Scholar
  44. 44.
    Shabalin, K. A., Kulminskaya, A. A., Savel’ev, A. N., Shishlyannikov, S. M., and Neustroev, K. N. (2002) Enzymatic properties of α-galactosidase from Trichoderma reesei in the hydrolysis of galactooligosaccharides, Enzyme Microb. Technol., 30, 231–239.CrossRefGoogle Scholar
  45. 45.
    Harris, P. V., Welner, D., McFarland, K. C., Re, E., Navarro Poulsen, J.-C., Brown, K., Salbo, R., Ding, H., Vlasenko, E., Merino, S., Xu, F., Cherry, J., Larsen, S., and Lo Leggio, L. (2010) Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family, Biochemistry, 49, 3305–3316.CrossRefPubMedGoogle Scholar
  46. 46.
    Hartland, R. P., Fontaine, T., Debeaupuis, J. P., Simenel, C., Delepierre, M., and Latge, J. P. (1996) A novel β-(1,3)-glucanosyltransferase from the cell wall of Aspergillus fumigatus, J. Biol. Chem., 271, 26843–26849.CrossRefPubMedGoogle Scholar
  47. 47.
    Liu, Q. P., Sulzenbacher, G., Yuan, H., Bennett, E. P., Pietz, G., Saunders, K., Spence, J., Nudelman, E., Levery, S. B., White, T., Neveu, J. M., Lane, W. S., Bourne, Y., Olsson, M. L., Henrissat, B., and Clausen, H. (2007) Bacterial glycosidases for the production of universal red blood cells, Nat. Biotechnol., 25, 454–464.CrossRefPubMedGoogle Scholar
  48. 48.
    Garron, M.-L., and Cygler, M. (2014) Uronic polysaccharide degrading enzymes, Curr. Opin. Struct. Biol., 28, 87–95.CrossRefPubMedGoogle Scholar
  49. 49.
    Kaoutari, A. E., Armougom, F., Gordon, J. I., Raoult, D., and Henrissat, B. (2013) The abundance and variety of carbohydrate-active enzymes in the human gut microbiota, Nat. Rev. Microbiol., 11, 497–504.CrossRefPubMedGoogle Scholar
  50. 50.
    Van Munster, J. M., Daly, P., Delmas, S., Pullan, S. T., Blythe, M. J., Malla, S., Kokolski, M., Noltorp, E. C. M., Wennberg, K., Fetherston, R., Beniston, R., Yu, X., Dupree, P., and Archer, D. B. (2014) The role of carbon starvation in the induction of enzymes that degrade plant-derived carbohydrates in Aspergillus niger, Fungal Genet. Biol., 72, 34–47.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Kubicek, C. P. (2013) System biological approaches towards understanding cellulase production by Trichoderma reesei, J. Biotechnol., 163, 133–142.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Alimova, F. K. (2006) Industrial Application of Fungi of the Genus Trichoderma [in Russian], Kazan State University, Kazan.Google Scholar
  53. 53.
    Tomaz, C. T., and Queiroz, J. A. (2004) Fractionation of Trichoderma reesei cellulases by hydrophobic interaction chromatography on phenyl-Sepharose, Biotechnol. Lett., 26, 223–227.CrossRefPubMedGoogle Scholar
  54. 54.
    Battaglia, E., Benoit, I., van den Brink, J., Wiebenga, A., Coutinho, P. M., Henrissat, B., and de Vries, R. P. (2011) Carbohydrate-active enzymes from the zygomycete fungus Rhizopus oryzae: a highly specialized approach to carbohydrate degradation depicted at genome level, BMC Genomics, 12, 38–50.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • I. Yu. Pavlov
    • 1
  • E. V. Eneyskaya
    • 1
  • K. S. Bobrov
    • 1
  • D. E. Polev
    • 2
  • D. R. Ivanen
    • 1
  • A. T. Kopylov
    • 3
  • S. N. Naryzhny
    • 1
    • 3
  • A. A. Kulminskaya
    • 1
    • 4
    Email author
  1. 1.National Research Center “Kurchatov Institute”B.P. Konstantinov Petersburg Nuclear Physics InstituteGatchina, Leningrad RegionRussia
  2. 2.Resource Center for Molecular and Cell Technologies and “Centre Biobank”St. Petersburg State University, Stary PeterhofSt. PetersburgRussia
  3. 3.Orekhovich Institute of Biomedical ChemistryRussian Academy of Medical SciencesMoscowRussia
  4. 4.Department of Medical PhysicsPeter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations