Biochemistry (Moscow)

, Volume 83, Issue 11, pp 1380–1387 | Cite as

Lymphocyte Phosphatase-Associated Phosphoprotein Is a Substrate of Protein Kinase CK2

  • T. D. Tsoy
  • N. A. Kruglova
  • A. V. FilatovEmail author


Lymphocyte phosphatase-associated phosphoprotein (LPAP) is a molecular partner of CD45 phosphatase that plays a key role in the regulation of antigen-specific activation of lymphocytes. The functions of LPAP still remain unknown. We believe that studying LPAP phosphorylation pathways could shed light on its functions. In this work, we studied the phosphorylation of LPAP ectopically expressed in non-lymphoid cells in order to determine the effect of LPAP interaction partners on its phosphorylation. We found that phosphorylation at Ser153 and Ser163 in non-hematopoietic HEK293 cells was conserved, while phosphorylation at Ser99 and Ser172 was almost absent. The pattern of LPAP phosphorylation in K562 erythroid and U937 myeloid cells expressing endogenous CD45 protein was similar to that observed in T and B lymphocytes. We demonstrated for the first time that LPAP is a substrate for protein kinase CK2 that phosphorylates it at Ser153, presumably ensuring LPAP resistance to degradation.


LPAP phosphorylation ectopic expression casein kinase 2 human lymphocytes 



calf intestinal phosphatase


casein kinase 2


two-dimensional difference gel electrophoresis




isoelectric focusing


lymphocyte phosphatase-associated phosphoprotein


polyacrylamide gel electrophoresis


phorbol 12-myristate 13-acetate


sodium dodecyl sulfate




Western blotting


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schraven, B., Schoenhaut, D., Bruyns, E., Koretzky, G., Eckerskorn, C., Wallich, R., Kirchgessner, H., Sakorafas, P., Labkovsky, B., Ratnofsky, S., and Meuer, S. (1994) LPAP, a novel 32-kDa phosphoprotein that interacts with CD45 in human lymphocytes, J. Biol. Chem., 269, 29102–29111.PubMedGoogle Scholar
  2. 2.
    Matsuda, A., Motoya, S., Kimura, S., McInnis, R., Maizel, A. L., and Takeda, A. (1998) Disruption of lymphocyte function and signaling in CD45-associated protein-null mice, J. Exp. Med., 187, 1863–1870.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Kung, C., Okumura, M., Seavitt, J. R., Noll, M. E., White, L. S., Pingel, J. T., and Thomas, M. L. (1999) CD45-associated protein is not essential for the regulation of antigen receptor-mediated signal transduction, Eur. J. Immunol., 29, 3951–3955.CrossRefPubMedGoogle Scholar
  4. 4.
    Ding, I., Bruyns, E., Li, P., Magada, D., Paskind, M., Rodman, L., Seshadri, T., Alexander, D., Giese, T., and Schraven, B. (1999) Biochemical and functional analysis of mice deficient in expression of the CD45-associated phosphoprotein LPAP, Eur. J. Immunol., 29, 3956–3961.CrossRefPubMedGoogle Scholar
  5. 5.
    Kleiman, E., Salyakina, D., De Heusch, M., Hoek, K. L., Llanes, J. M., Castro, I., Wright, J. A., Clark, E. S., Dykxhoorn, D. M., Capobianco, E., Takeda, A., Renauld, J.-C., and Khan, W. N. (2015) Distinct transcriptomic features are associated with transitional and mature B-cell populations in the mouse spleen, Front. Immunol., 6,30.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Wolf, I., Bouquet, C., and Melchers, F. (2016) cDNA-library testing identifies transforming genes cooperating with c-myc in mouse pre-B cells, Eur. J. Immunol., 46, 2555–2565.CrossRefPubMedGoogle Scholar
  7. 7.
    Ju, H., Lim, B., Kim, M., Kim, Y. S., Kim, W. H., Ihm, C., Noh, S.-M., Han, D. S., Yu, H.-J., Choi, B. Y., and Kang, C. (2009) A regulatory polymorphism at position-309 in PTPRCAP is associated with susceptibility to diffuse-type gastric cancer and gene expression, Neoplasia, 11, 1340–1347.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Krotov, G. I., Krutikova, M. P., Zgoda, V. G., and Filatov, A. V. (2007) Profiling of the CD4 receptor complex proteins, Biochemistry (Moscow), 72, 1216–1224.CrossRefGoogle Scholar
  9. 9.
    Leitenberg, D., Falahati, R., Lu, D. D., and Takeda, A. (2007) CD45-associated protein promotes the response of primary CD4 T cells to low-potency T-cell receptor (TCR) stimulation and facilitates CD45 association with CD3/TCR and Lck, Immunology, 121, 545–554.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kruglova, N. A., Meshkova, T. D., Kopylov, A. T., Mazurov, D. V., and Filatov, A. V. (2017) Constitutive and activation-dependent phosphorylation of lymphocyte phosphatase-associated phosphoprotein (LPAP), PLoS One, 12, e0182468.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Filatov, A., Kruglova, N., Meshkova, T., and Mazurov, D. (2015) Lymphocyte phosphatase-associated phosphoprotein proteoforms analyzed using monoclonal antibodies, Clin. Transl. Immunol., 4, e44.CrossRefGoogle Scholar
  12. 12.
    Pierre, F., Chua, P. C., O’Brien, S. E., Siddiqui-Jain, A., Bourbon, P., Haddach, M., Michaux, J., Nagasawa, J., Schwaebe, M. K., Stefan, E., Vialettes, A., Whitten, J. P., Chen, T. K., Darjania, L., Stansfield, R., Anderes, K., Bliesath, J., Drygin, D., Ho, C., Omori, M., Proffitt, C., Streiner, N., Trent, K., Rice, W. G., and Ryckman, D. M. (2011) Discovery and SAR of 5-(3-chlorophenyl-amino)benzo[c][2,6]naphthyridine-8-carboxylic acid (CX-4945), the first clinical stage inhibitor of protein kinase CK2 for the treatment of cancer, J. Med. Chem., 54, 635–654.CrossRefPubMedGoogle Scholar
  13. 13.
    Franchin, C., Borgo, C., Zaramella, S., Cesaro, L., Arrigoni, G., Salvi, M., and Pinna, L. (2017) Exploring the CK2 paradox: restless, dangerous, dispensable, Pharmaceuticals, 10, E11.CrossRefPubMedGoogle Scholar
  14. 14.
    Pinna, L. A. (2002) Protein kinase CK2: a challenge to canons, J. Cell Sci., 115, 3873–3878.CrossRefPubMedGoogle Scholar
  15. 15.
    Kuenzel, E., Mulligan, J., and Sommercorn, J. (1987) Substrate specificity determinants for casein kinase II as deduced from studies with synthetic peptides, J. Biol. Chem., 262, 9136–9140.PubMedGoogle Scholar
  16. 16.
    Ahmad, K. A., Wang, G., Unger, G., Slaton, J., and Ahmed, K. (2008) Protein kinase CK2-a key suppressor of apoptosis, Adv. Enzyme Regul., 48, 179–187.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ruzzene, M., Penzo, D., and Pinna, L. A. (2002) Protein kinase CK2 inhibitor 4,5,6,7-tetrabromobenzotriazole (TBB) induces apoptosis and caspase-dependent degradation of haematopoietic lineage cell-specific protein 1 (HS1) in Jurkat cells, Biochem. J., 364, 41–47.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ulges, A., Witsch, E. J., Pramanik, G., Klein, M., Birkner, K., Buhler, U., Wasser, B., Luessi, F., Stergiou, N., Dietzen, S., Bruhl, T.-J., Bohn, T., Bundgen, G., Kunz, H., Waisman, A., Schild, H., Schmitt, E., Zipp, F., and Boppa, T. (2016) Protein kinase CK2 governs the molecular decision between encephalitogenic TH17 cell and Treg cell development, PNAS, 113, 10145–10150.CrossRefPubMedGoogle Scholar
  19. 19.
    Ampofo, E., Sokolowsky, T., Gotz, C., and Montenarh, M. (2013) Functional interaction of protein kinase CK2 and activating transcription factor 4 (ATF4), a key player in the cellular stress response, Biochim. Biophys. Acta, 1833, 439–451.CrossRefPubMedGoogle Scholar
  20. 20.
    Scaglioni, P. P., Yung, T. M., Cai, L. F., Erdjument-Bromage, H., Kaufman, A. J., Singh, B., Teruya-Feldstein, J., Tempst, P., and Pandolfi, P. P. (2006) A CK2-dependent mechanism for degradation of the PML tumor suppressor, Cell, 126, 269–283.CrossRefPubMedGoogle Scholar
  21. 21.
    Ampofo, E., Kietzmann, T., Zimmer, A., Jakupovic, M., Montenarh, M., and Gotz, C. (2010) Phosphorylation of the von Hippel-Lindau protein (VHL) by protein kinase CK2 reduces its protein stability and affects p53 and HIF-1α mediated transcription, IJBCB, 42, 1729–1735.Google Scholar
  22. 22.
    Desagher, S., Osen-Sand, A., Montessuit, S., Magnenat, E., Vilbois, F., Hochmann, A., Journot, L., Antonsson, B., and Martinou, J.-C. (2001) Phosphorylation of Bid by casein kinases I and II regulates its cleavage by caspase 8, Mol. Cell, 8, 601–611.CrossRefPubMedGoogle Scholar
  23. 23.
    Krippner-Heidenreich, A., Talanian, R. V., Sekul, R., Kraft, R., Thole, H., Ottleben, H., and Lu, B. (2001) Targeting of the transcription factor Max during apoptosis: phosphorylation-regulated cleavage by caspase-5 at an unusual glutamic acid residue in position P11, Biochem. J., 358, 705–715.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Channavajhala, P., and Seldin, D. C. (2002) Functional interaction of protein kinase CK2 and c-Myc in lymphomagenesis, Oncogene, 21, 5280–5288.CrossRefPubMedGoogle Scholar
  25. 25.
    Vazquez, F., Grossman, S. R., Takahashi, Y., Rokas, M. V., Nakamura, N., and Sellers, W. R. (2001) Phosphorylation of the PTEN tail acts as an inhibitory switch by preventing its recruitment into a protein complex, J. Biol. Chem., 276, 48627–48630.CrossRefPubMedGoogle Scholar
  26. 26.
    Yin, X., Gu, S., and Jiang, J. X. (2001) The development-associated cleavage of lens connexin 45.6 by caspase-3-like protease is regulated by casein kinase II-mediated phosphorylation, J. Biol. Chem., 276, 34567–34572.CrossRefPubMedGoogle Scholar
  27. 27.
    Walter, J., Schindzielorz, A., Grunberg, J., and Haass, C. (1999) Phosphorylation of presenilin-2 regulates its cleavage by caspases and retards progression of apoptosis, PNAS, 96, 1391–1396.CrossRefPubMedGoogle Scholar
  28. 28.
    Zhirnov, O. P., and Syrtzev, V. V. (2009) Influenza virus pathogenicity is determined by caspase cleavage motifs located in the viral proteins, J. Mol. Genet. Med., 3, 124–132.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • T. D. Tsoy
    • 1
    • 2
  • N. A. Kruglova
    • 1
    • 2
  • A. V. Filatov
    • 1
    • 2
    Email author
  1. 1.Institute of Immunology National Research CenterFederal Medical-Biological AgencyMoscowRussia
  2. 2.Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations