Biochemistry (Moscow)

, Volume 83, Issue 11, pp 1289–1298 | Cite as

Regulation of Tumor Suppressor Gene CDKN2A and Encoded p16-INK4a Protein by Covalent Modifications

  • Yang Jiao
  • Yunpeng Feng
  • Xiuli WangEmail author


CDKN2A is one of the most studied tumor suppressor genes. It encodes the p16-INK4a protein that plays a critical role in the cell cycle progression, differentiation, senescence, and apoptosis. Mutations in CDKN2A or dysregulation of its functional activity are frequently associated with various types of human cancer. As a cyclin-dependent kinase inhibitor, p16-INK4a forms a complex with cyclin-dependent kinases 4/6 (CDK4/6) thereby competing with cyclin D. It is believed that the helix-turn-helix structures in the content of tandem ankyrin repeats in p16-INK4a are required for the protein interaction with CDK4. Until recently, the mechanisms considered to be involved in the regulation of p16-INK4a functions and cancer development have been mutations in DNA, homozygous or heterozygous gene loss, and methylation of CDKN2A promoter region. In this review, we discuss recent findings on the regulation of p16-INK4a by covalent modifications at both transcriptional and post-translational levels.


p16-INK4a modification methylation phosphorylation acetylation 


ANRIL (gene)

antisense noncoding RNA in the INK4-ARF locus


cyclin-dependent kinase


his-tone acetyltransferase


histone deacetylase


mitogen-and stress-activated protein kinase 1


Polycomb group proteins


Polycomb repressive complex 1/2


protein arginine methyltransferase




regulatory sequence of the INK4-ARF locus


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gil, J., and Peters, G. (2006) Regulation of the INK4b-ARF-INK4a tumour suppressor locus: all for one or one for all, Nat. Rev. Mol. Cell Biol., 7, 667–677.CrossRefPubMedGoogle Scholar
  2. 2.
    Sharpless, N. E. (2005) INK4a/ARF: a multifunctional tumor suppressor locus, Mutat. Res., 576, 22–38.CrossRefPubMedGoogle Scholar
  3. 3.
    Collado, M., Blasco, M. A., and Serrano, M. (2007) Cellular senescence in cancer and aging, Cell, 130, 223–233.CrossRefPubMedGoogle Scholar
  4. 4.
    Wang, X., Pan, L., Feng, Y., Wang, Y., Han, Q., Han, L., Han, S., Guo, J., Huang, B., and Lu, J. (2008) P300 plays a role in p16(INK4a) expression and cell cycle arrest, Oncogene, 27, 1894–1904.CrossRefPubMedGoogle Scholar
  5. 5.
    Russo, A. A., Tong, L., Lee, J. O., Jeffrey, P. D., and Pavletich, N. P. (1998) Structural basis for inhibition of the cyclin-dependent kinase Cdk6 by the tumour suppressor p16INK4a, Nature, 395, 237–243.CrossRefPubMedGoogle Scholar
  6. 6.
    Li, J., Poi, M. J., and Tsai, M. D. (2011) Regulatory mechanisms of tumor suppressor P16(INK4A) and their relevance to cancer, Biochemistry, 50, 5566–5582.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ruas, M., and Peters, G. (1998) The p16INK4a/CDKN2A tumor suppressor and its relatives, Biochim. Biophys. Acta, 1378, 115–177.Google Scholar
  8. 8.
    Ohtani, N., Zebedee, Z., Huot, T. J., Stinson, J. A., Sugimoto, M., Ohashi, Y., Sharrocks, A. D., Peters, G., and Hara, E. (2001) Opposing effects of Ets and Id proteins on p16INK4a expression during cellular senescence, Nature, 409, 1067–1070.CrossRefPubMedGoogle Scholar
  9. 9.
    Poi, M. J., Knobloch, T. J., and Li, J. (2017) Deletion of RD(INK4/ARF) enhancer: a novel mutation to “inactivate” the INK4-ARF locus, DNA Repair (Amst.), 57, 50–55.CrossRefGoogle Scholar
  10. 10.
    Kotake, Y., Cao, R., Viatour, P., Sage, J., Zhang, Y., and Xiong, Y. (2007) pRB family proteins are required for H3K27 trimethylation and Polycomb repression complexes binding to and silencing p16INK4alpha tumor suppressor gene, Genes Dev., 21, 48–54.CrossRefGoogle Scholar
  11. 11.
    Bracken, A. P., Kleine-Kohlbrecher, D., Dietrich, N., Pasini, D., Gargiulo, G., Beekman, C., Theilgaard-Monch, K., Minucci, S., Porse, B. T., Marine, J. C., Hansen, K. H., and Helin, K. (2007) The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells, Genes Dev., 21, 525–530.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kotake, Y., Nakagawa, T., Kitagawa, K., Suzuki, S., Liu, N., Kitagawa, M., and Xiong, Y. (2011) Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene, Oncogene, 30, 1956–1962.CrossRefPubMedGoogle Scholar
  13. 13.
    Yap, K. L., Li, S., Munoz-Cabello, A. M., Raguz, S., Zeng, L., Mujtaba, S., Gil, J., Walsh, M. J., and Zhou, M. M. (2010) Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a, Mol. Cell, 38, 662–674.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ortega, S., Malumbres, M., and Barbacid, M. (2002) Cyclin D-dependent kinases, INK4 inhibitors and cancer, Biochim. Biophys. Acta, 1602, 73–87.PubMedGoogle Scholar
  15. 15.
    Lang, J. C., Borchers, J., Danahey, D., Smith, S., Stover, D. G., Agrawal, A., Malone, J. P., Schuller, D. E., Weghorst, C. M., Holinga, A. J., Lingam, K., Patel, C. R., and Esham, B. (2002) Mutational status of overexpressed p16 in head and neck cancer: evidence for germline mutation of p16/p14ARF, Int. J. Oncol., 21, 401–408.PubMedGoogle Scholar
  16. 16.
    Kamb, A., Gruis, N. A., Weaver-Feldhaus, J., Liu, Q., Harshman, K., Tavtigian, S. V., Stockert, E., Day, R. S., Johnson, B. E., and Skolnick, M. H. (1994) A cell cycle regulator potentially involved in genesis of many tumor types, Science, 264, 436–440.CrossRefPubMedGoogle Scholar
  17. 17.
    Yang, C., Gu, L., and Deng, D. (2014) Distinct susceptibility of induction of methylation of p16ink4a and p19arf CpG islands by X-radiation and chemical carcinogen in mice, Mutat. Res. Genet. Toxicol. Environ. Mutagen., 768, 42–50.CrossRefPubMedGoogle Scholar
  18. 18.
    Wachter, E., Quante, T., Merusi, C., Arczewska, A., Stewart, F., Webb, S., and Bird, A. (2014) Synthetic CpG islands reveal DNA sequence determinants of chromatin structure, Elife, 3, e03397.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Li, L., Li, C., Mao, H., Du, Z., Chan, W. Y., Murray, P., Luo, B., Chan, A. T., Mok, T. S., Chan, F. K., Ambinder, R. F., and Tao, Q. (2016) Epigenetic inactivation of the CpG demethylase TET1 as a DNA methylation feedback loop in human cancers, Sci. Rep., 6, 26591.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Lu, R., Wang, X., Chen, Z. F., Sun, D. F., Tian, X. Q., and Fang, J. Y. (2007) Inhibition of the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway decreases DNA methylation in colon cancer cells, J. Biol. Chem., 282, 12249–12259.CrossRefPubMedGoogle Scholar
  21. 21.
    Zhu, B., Gong, Y., Yan, G., Wang, D., Wang, Q., Qiao, Y., Hou, J., Liu, B., and Tang, C. (2017) Atorvastatin treatment modulates p16 promoter methylation to regulate p16 expression, FEBS J., 284, 1868–1881.CrossRefPubMedGoogle Scholar
  22. 22.
    Yuan, D., Ye, S., Pan, Y., Bao, Y., Chen, H., and Shao, C. (2013) Long-term cadmium exposure leads to the enhancement of lymphocyte proliferation via down-regulating p16 by DNA hypermethylation, Mutat. Res., 757, 125–131.CrossRefPubMedGoogle Scholar
  23. 23.
    Cui, C., Gan, Y., Gu, L., Wilson, J., Liu, Z., Zhang, B., and Deng, D. (2015) P16-specific DNA methylation by engineered zinc finger methyltransferase inactivates gene transcription and promotes cancer metastasis, Genome Biol., 16,252.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Majid, S., Kikuno, N., Nelles, J., Noonan, E., Tanaka, Y., Kawamoto, K., Hirata, H., Li, L. C., Zhao, H., Okino, S. T., Place, R. F., Pookot, D., and Dahiya, R. (2008) Genistein induces the p21WAF1/CIP1 and p16INK4a tumor suppressor genes in prostate cancer cells by epigenetic mechanisms involving active chromatin modification, Cancer Res., 68, 2736–2744.CrossRefPubMedGoogle Scholar
  25. 25.
    Goto, T., Mizukami, H., Shirahata, A., Sakata, M., Saito, M., Ishibashi, K., Kigawa, G., Nemoto, H., Sanada, Y., and Hibi, K. (2009) Aberrant methylation of the p16 gene is frequently detected in advanced colorectal cancer, Anticancer Res., 29, 275–277.PubMedGoogle Scholar
  26. 26.
    Jablonowski, Z., Reszka, E., Gromadzinska, J., Wasowicz, W., and Sosnowski, M. (2011) Hypermethylation of p16 and DAPK promoter gene regions in patients with non-invasive urinary bladder cancer, Arch. Med. Sci., 7, 512–516.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Zhang, Y., Wang, R., Song, H., Huang, G., Yi, J., Zheng, Y., Wang, J., and Chen, L. (2011) Methylation of multiple genes as a candidate biomarker in non-small cell lung cancer, Cancer Lett., 303, 21–28.CrossRefPubMedGoogle Scholar
  28. 28.
    Cao, J., Zhou, J., Gao, Y., Gu, L., Meng, H., Liu, H., and Deng, D. (2009) Methylation of p16 CpG island associated with malignant progression of oral epithelial dysplasia: a prospective cohort study, Clin. Cancer Res., 15, 5178–5183.CrossRefPubMedGoogle Scholar
  29. 29.
    Fujiwara-Igarashi, A., Goto-Koshino, Y., Mochizuki, H., Sato, M., Fujino, Y., Ohno, K., and Tsujimoto, H. (2014) Inhibition of p16 tumor suppressor gene expression via promoter hypermethylation in canine lymphoid tumor cells, Res. Vet. Sci., 97, 60–63.CrossRefPubMedGoogle Scholar
  30. 30.
    Prueitt, R. L., Goodman, J. E., and Valberg, P. A. (2009) Radionuclides in cigarettes may lead to carcinogenesis via p16(INK4a) inactivation, J. Environ. Radioact., 100, 157–161.CrossRefPubMedGoogle Scholar
  31. 31.
    Kashiwabara, K., Oyama, T., Sano, T., Fukuda, T., and Nakajima, T. (1998) Correlation between methylation status of the p16/CDKN2 gene and the expression of p16 and Rb proteins in primary non-small cell lung cancers, Int. J. Cancer, 79, 215–220.CrossRefPubMedGoogle Scholar
  32. 32.
    Belinsky, S. A. (2005) Silencing of genes by promoter hypermethylation: key event in rodent and human lung cancer, Carcinogenesis, 26, 1481–1487.CrossRefPubMedGoogle Scholar
  33. 33.
    Kaneto, H., Sasaki, S., Yamamoto, H., Itoh, F., Toyota, M., Suzuki, H., Ozeki, I., Iwata, N., Ohmura, T., Satoh, T., Karino, Y., Satoh, T., Toyota, J., Satoh, M., Endo, T., Omata, M., and Imai, K. (2001) Detection of hypermethylation of the p16(INK4A) gene promoter in chronic hepatitis and cirrhosis associated with hepatitis B or C virus, Gut, 48, 372–377.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Bian, Y. S., Osterheld, M. C., Fontolliet, C., Bosman, F. T., and Benhattar, J. (2002) p16 inactivation by methylation of the CDKN2A promoter occurs early during neoplastic progression in Barrett’s esophagus, Gastroenterology, 122, 1113–1121.CrossRefPubMedGoogle Scholar
  35. 35.
    Hardie, L. J., Darnton, S. J., Wallis, Y. L., Chauhan, A., Hainaut, P., Wild, C. P., and Casson, A. G. (2005) p16 expression in Barrett’s esophagus and esophageal adeno-carcinoma: association with genetic and epigenetic alterations, Cancer Lett., 217, 221–230.CrossRefPubMedGoogle Scholar
  36. 36.
    Alabert, C., and Groth, A. (2012) Chromatin replication and epigenome maintenance, Nat. Rev. Mol. Cell Biol., 13, 153–167.CrossRefPubMedGoogle Scholar
  37. 37.
    Alaskhar Alhamwe, B., Khalaila, R., Wolf, J., von Bulow, V., Harb, H., Alhamdan, F., Hii, C. S., Prescott, S. L., Ferrante, A., Renz, H., Garn, H., and Potaczek, D. P (2018) Histone modifications and their role in epigenetics of atopy and allergic diseases, Allergy Asthma Clin. Immunol., 14,39.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Margueron, R., and Reinberg, D. (2010) Chromatin structure and the inheritance of epigenetic information, Nat. Rev. Genet., 11, 285–296.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Wang, X., Feng, Y., Xu, L., Chen, Y., Zhang, Y., Su, D., Ren, G., Lu, J., and Huang, B. (2008) YY1 restrained cell senescence through repressing the transcription of p16, Biochim. Biophys. Acta, 1783, 1876–1883.CrossRefPubMedGoogle Scholar
  40. 40.
    Feng, Y., Wang, X., Xu, L., Pan, H., Zhu, S., Liang, Q., Huang, B., and Lu, J. (2009) The transcription factor ZBP-89 suppresses p16 expression through a histone modification mechanism to affect cell senescence, FEBS J., 276, 4197–4206.CrossRefPubMedGoogle Scholar
  41. 41.
    Hyun, K., Jeon, J., Park, K., and Kim, J. (2017) Writing, erasing and reading histone lysine methylations, Exp. Mol. Med., 49, e324.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Yoruker, E. E., Mert, U., Bugra, D., Yamaner, S., and Dalay, N. (2012) Promoter and histone methylation and p16(INK4A) gene expression in colon cancer, Exp. Ther. Med., 4, 865–870.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Stoll, S., Wang, C., and Qiu, H. (2018) DNA methylation and histone modification in hypertension, Int. J. Mol. Sci., 19, E1174.CrossRefPubMedGoogle Scholar
  44. 44.
    Kondo, Y., Shen, L., and Issa, J. P. (2003) Critical role of histone methylation in tumor suppressor gene silencing in colorectal cancer, Mol. Cell Biol., 23, 206–215.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Ito, T., Teo, Y. V., Evans, S. A., Neretti, N., and Sedivy, J. M. (2018) Regulation of cellular senescence by polycomb chromatin modifiers through distinct DNA damage- and histone methylation-dependent pathways, Cell Rep., 22, 3480–3494.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Kotake, Y., Naemura, M., Murasaki, C., Inoue, Y., and Okamoto, H. (2015) Transcriptional regulation of the p16 tumor suppressor gene, Anticancer Res., 35, 4397–4401.PubMedGoogle Scholar
  47. 47.
    Ren, C., Smith, S. G., Yap, K., Li, S., Li, J., Mezei, M., Rodriguez, Y., Vincek, A., Aguilo, F., Walsh, M. J., and Zhou, M. M. (2016) Structure-guided discovery of selective antagonists for the chromodomain of polycomb repressive protein CBX7, ACS Med. Chem. Lett., 7, 601–605.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Culerrier, R., Carraz, M., Mann, C., and Djabali, M. (2016) MSK1 triggers the expression of the INK4AB/ARF locus in oncogene-induced senescence, Mol. Biol. Cell, 27, 2726–2734.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Meng, C. F., Zhu, X. J., Peng, G., and Dai, D. Q. (2009) Promoter histone H3 lysine 9 dimethylation is associated with DNA methylation and aberrant expression of p16 in gastric cancer cells, Oncol. Rep., 22, 1221–1227.PubMedGoogle Scholar
  50. 50.
    Ding, R., Jin, Y., Liu, X., Ye, H., Zhu, Z., Zhang, Y., Wang, T., and Xu, Y. (2017) Dose- and time-effect responses of DNA methylation and histone H3K9 acetylation changes induced by traffic-related air pollution, Sci. Rep., 7, 43737.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Thambirajah, A. A., Ng, M. K., Frehlick, L. J., Li, A., Serpa, J. J., Petrotchenko, E. V., Silva-Moreno, B., Missiaen, K. K., Borchers, C. H., Adam Hall, J., Mackie, R., Lutz, F., Gowen, B. E., Hendzel, M., Georgel, P. T., and Ausio, J. (2012) MeCP2 binds to nucleosome free (linker DNA) regions and to H3K9/H3K27 methylated nucleosomes in the brain, Nucleic Acids Res., 40, 2884–2897.CrossRefPubMedGoogle Scholar
  52. 52.
    Nady, N., Lemak, A., Walker, J. R., Avvakumov, G. V., Kareta, M. S., Achour, M., Xue, S., Duan, S., Allali-Hassani, A., Zuo, X., Wang, Y. X., Bronner, C., Chedin, F., Arrowsmith, C. H., and Dhe-Paganon, S. (2011) Recognition of multivalent histone states associated with heterochromatin by UHRF1 protein, J. Biol. Chem., 286, 24300–24311.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Meng, C. F., Zhu, X. J., Peng, G., and Dai, D. Q. (2009) Promoter histone H3 lysine 9 dimethylation is associated with DNA methylation and aberrant expression of p16 in gastric cancer cells, Oncol. Rep., 22, 1221–1227.PubMedGoogle Scholar
  54. 54.
    Hinshelwood, R. A., Melki, J. R., Huschtscha, L. I., Paul, C., Song, J. Z., Stirzaker, C., Reddel, R. R., and Clark, S. J. (2009) Aberrant de novo methylation of the p16INK4A CpG island is initiated post gene silencing in association with chromatin remodelling and mimics nucleosome positioning, Hum. Mol. Genet., 18, 3098–3109.CrossRefPubMedGoogle Scholar
  55. 55.
    Chang, P. B., Choi, K., Moon, Y., Lee, H. Y., and Park, H. (2016) Hypoxic reprograming of H3K27me3 and H3K4me3 at the INK4A locus, FEBS Lett., 19, 3407–3415.CrossRefGoogle Scholar
  56. 56.
    Li, J., Poi, M. J., and Tsai, M. D. (2011) Regulatory mechanisms of tumor suppressor P16(INK4A) and their relevance to cancer, Biochemistry, 50, 5566–5582.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Sandhu, C., Peehl, D. M., and Slingerland, J. (2000) p16INK4A mediates cyclin dependent kinase 4 and 6 inhibition in senescent prostatic epithelial cells, Cancer Res., 60, 2616–2622.PubMedGoogle Scholar
  58. 58.
    Gump, J., Stokoe, D., and McCormick, F. (2003) Phosphorylation of p16INK4A correlates with Cdk4 association, J. Biol. Chem., 278, 6619–6622.CrossRefPubMedGoogle Scholar
  59. 59.
    Al-Khalaf, H. H., Hendrayani, S. F., and Aboussekhra, A. (2011) The Atr protein kinase controls UV-dependent upregulation of p16INK4A through inhibition of Skp2-related polyubiquitination/degradation, Mol. Cancer Res., 9, 311–319.CrossRefPubMedGoogle Scholar
  60. 60.
    Guo, Y., Yuan, C., Weghorst, C. M., and Li, J. (2010) IKKbeta specifically binds to P16 and phosphorylates Ser8 of P16, Biochem. Biophys. Res. Commun., 393, 504–508.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Wang, X., Huang, Y., Zhao, J., Zhang, Y., Lu, J., and Huang, B. (2012) Suppression of PRMT6-mediated arginine methylation of p16 protein potentiates its ability to arrest A549 cell proliferation, Int. J. Biochem. Cell Biol., 44, 2333–2341.CrossRefPubMedGoogle Scholar
  62. 62.
    Lu, Y., Ma, W., Li, Z., Lu, J., and Wang, X. (2017) The interplay between p16 serine phosphorylation and arginine methylation determines its function in modulating cellular apoptosis and senescence, Sci. Rep., 7, 41390.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Lilischkis, R., Sarcevic, B., Kennedy, C., Warlters, A., and Sutherland, R. L. (1996) Cancer-associated missense and deletion mutations impair p16INK4 CDK inhibitory activity, Int. J. Cancer, 66, 249–254.CrossRefPubMedGoogle Scholar
  64. 64.
    Mori, T., Miura, K., Aoki, T., Nishihira, T., Mori, S., and Nakamura, Y. (1994) Frequent somatic mutation of the MTS1/CDK4I (multiple tumor suppressor/cyclin-dependent kinase 4 inhibitor) gene in esophageal squamous cell carcinoma, Cancer Res., 54, 3396–3397.PubMedGoogle Scholar
  65. 65.
    Soufir, N., Avril, M. F., Chompret, A., Demenais, F., Bombled, J., Spatz, A., Stoppa-Lyonnet, D., Benard, J., and Bressac-de Paillerets, B. (1998) Prevalence of p16 and CDK4 germline mutations in 48 melanoma-prone families in France. The French Familial Melanoma Study Group, Hum. Mol. Genet., 7, 209–216.CrossRefPubMedGoogle Scholar
  66. 66.
    Yakobson, E., Shemesh, P., Azizi, E., Winkler, E., Lassam, N., Hogg, D., Brookes, S., Peters, G., Lotem, M., Zlotogorski, A., Landau, M., Safro, M., Shafir, R., Friedman, E., and Peretz, H. (2000) Two p16 (CDKN2A) germline mutations in 30 Israeli melanoma families, Eur. J. Hum. Genet., 8, 590–596.CrossRefPubMedGoogle Scholar
  67. 67.
    Debniak, T., Scott, R. J., Huzarski, T., Byrski, T., Rozmiarek, A., Debniak, B., Gorski, B., Cybulski, C., Medrek, K., Mierzejewski, M., Masojc, B., Matyjasik, J., Zlowocka, E., Teodorczyk, U., Lener, M., Klujszo-Grabowska, E., Nej-Wolosiak, K., Jaworowska, E., Oszutowska, D., Szymanska, A., Szymanska, J., Castaneda, J., van de Wetering, T., Suchy, J., Kurzawski, G., Oszurek, O., Narod, S., and Lubinski, J. (2006) CDKN2A common variant and multi-organ cancer risk-a population-based study, Int. J. Cancer, 118, 3180–3182.CrossRefPubMedGoogle Scholar
  68. 68.
    Scaini, M. C., Rossi, E., de Siqueira Torres, P. L., Zullato, D., Callegaro, M., Casella, C., Quaggio, M., Agata, S., Malacrida, S., Chiarion-Sileni, V., Vecchiato, A., Alaibac, M., Montagna, M., Mann, G. J., Menin, C., and D’Andrea, E. (2009) Functional impairment of p16(INK4A) due to CDKN2A p.Gly23Asp missense mutation, Mutat. Res., 671, 26–32.CrossRefPubMedGoogle Scholar
  69. 69.
    Ruas, M., Brookes, S., McDonald, N. Q., and Peters, G. (1999) Functional evaluation of tumour-specific variants of p16INK4a/CDKN2A: correlation with protein structure information, Oncogene, 18, 5423–5434.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.School of Physical EducationNortheast Normal UniversityChangchun, JilinP. R. China
  2. 2.Key Laboratory of Molecular Epigenetics, Ministry of EducationNortheast Normal UniversityChangchun, JilinP. R. China
  3. 3.Central Laboratory of General Biology, School of Life SciencesNortheast Normal UniversityChangchun, JilinP. R. China

Personalised recommendations