Biochemistry (Moscow)

, Volume 83, Issue 10, pp 1263–1278 | Cite as

Does Oxidation of Mitochondrial Cardiolipin Trigger a Chain of Antiapoptotic Reactions?

  • A. Y. MulkidjanianEmail author
  • D. N. Shalaeva
  • K. G. Lyamzaev
  • B. V. Chernyak


Oxidative stress causes selective oxidation of cardiolipin (CL), a fourtail lipid specific for the inner mitochondrial membrane. Interaction with oxidized CL transforms cytochrome c into peroxidase capable of oxidizing even more CL molecules. Ultimately, this chain of events leads to the pore formation in the outer mitochondrial membrane and release of mitochondrial proteins, including cytochrome c, into the cytoplasm. In the cytoplasm, cytochrome c promotes apoptosome assembly that triggers apoptosis (programmed cell death). Because of this amplification cascade, even an occasional oxidation of a single CL molecule by endogenously formed reactive oxygen species (ROS) might cause cell death, unless the same CL oxidation triggers a separate chain of antiapoptotic reactions that would prevent the CL-mediated apoptotic cascade. Here, we argue that the key function of CL in mitochondria and other coupling membranes is to prevent proton leak along the interface of interacting membrane proteins. Therefore, CL oxidation should increase proton permeability through the CL-rich clusters of membrane proteins (CL islands) and cause a drop in the mitochondrial membrane potential (MMP). On one hand, the MMP drop should hinder ROS generation and further CL oxidation in the entire mitochondrion. On the other hand, it is known to cause rapid fission of the mitochondrial network and formation of many small mitochondria, only some of which would contain oxidized CL islands. The fission of mitochondrial network would hinder apoptosome formation by preventing cytochrome c release from healthy mitochondria, so that slowly working protein quality control mechanisms would have enough time to eliminate mitochondria with the oxidized CL. Because of these two oppositely directed regulatory pathways, both triggered by CL oxidation, the fate of the cell appears to be determined by the balance between the CL-mediated proapoptotic and antiapoptotic reactions. Since this balance depends on the extent of CL oxidation, mito-chondria-targeted antioxidants might be able to ensure cell survival in many pathologies by preventing CL oxidation.


reactive oxygen species mitochondria-targeted antioxidants lipid peroxidation proton leak membrane potential mitophagy 





cardiolipin peroxide radical


inner mitochondrial membrane


mitochondrial anion carrier


mitochondrial membrane potential


outer mitochondrial membrane


outermembrane pore


reactive oxygen species


uncoupling protein


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zhivotovsky, B., Samali, A., and Orrenius, S. (2001) Determination of apoptosis and necrosis, Curr. Protoc. Toxicol., Chap. 2, Unit 2.2.Google Scholar
  2. 2.
    Skulachev, V. P. (1996) Role of uncoupled and non-coupled oxidations in maintenance of safely low levels of oxygen and its one-electron reductants, Q. Rev. Biophys., 29, 169–202.PubMedCrossRefGoogle Scholar
  3. 3.
    Scherz-Shouval, R., and Elazar, Z. (2007) ROS, mitochondria and the regulation of autophagy, Trends Cell Biol., 17, 422–427.PubMedCrossRefGoogle Scholar
  4. 4.
    Youle, R. J., and van der Bliek, A. M. (2012) Mitochondrial fission, fusion, and stress, Science, 337, 1062–1065.Google Scholar
  5. 5.
    Skulachev, V. P. (1996) Why are mitochondria involved in apoptosis? Permeability transition pores and apoptosis as selective mechanisms to eliminate superoxide-producing mitochondria and cell, FEBS Lett., 397, 7–10.PubMedCrossRefGoogle Scholar
  6. 6.
    Hampton, M. B., Zhivotovsky, B., Slater, A. F., Burgess, D. H., and Orrenius, S. (1998) Importance of the redox state of cytochrome c during caspase activation in cytosolic extracts, Biochem. J., 329 (Pt. 1), 95–99.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Robertson, J. D., Gogvadze, V., Zhivotovsky, B., and Orrenius, S. (2000) Distinct pathways for stimulation of cytochrome c release by etoposide, J. Biol. Chem., 275, 32438–32443.PubMedCrossRefGoogle Scholar
  8. 8.
    Zhivotovsky, B., Hanson, K. P., and Orrenius, S. (1998) Back to the future: the role of cytochrome c in cell death, Cell Death Differ., 5, 459–460.PubMedCrossRefGoogle Scholar
  9. 9.
    Liu, X., Kim, C. N., Yang, J., Jemmerson, R., and Wang, X. (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c, Cell, 86, 147–157.PubMedCrossRefGoogle Scholar
  10. 10.
    Skulachev, V. P. (1998) Cytochrome c in the apoptotic and antioxidant cascades, FEBS Lett., 423, 275–280.PubMedCrossRefGoogle Scholar
  11. 11.
    Huttemann, M., Pecina, P., Rainbolt, M., Sanderson, T. H., Kagan, V. E., Samavati, L., Doan, J. W., and Lee, I. (2011) The multiple functions of cytochrome c and their regulation in life and death decisions of the mammalian cell: from respiration to apoptosis, Mitochondrion, 11, 369–381.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Kagan, V. E., Chu, C. T., Tyurina, Y. Y., Cheikhi, A., and Bayir, H. (2014) Cardiolipin asymmetry, oxidation and signaling, Chem. Phys. Lipids, 179, 64–69.PubMedCrossRefGoogle Scholar
  13. 13.
    Paradies, G., Paradies, V., De Benedictis, V., Ruggiero, F. M., and Petrosillo, G. (2014) Functional role of cardiolipin in mitochondrial bioenergetics, Biochim. Biophys. Acta, 1837, 408–417.PubMedCrossRefGoogle Scholar
  14. 14.
    Skulachev, V. P., Anisimov, V. N., Antonenko, Y. N., Bakeeva, L. E., Chernyak, B. V., Erichev, V. P., Filenko, O. F., Kalinina, N. I., Kapelko, V. I., Kolosova, N. G., Kopnin, B. P., Korshunova, G. A., Lichinitser, M. R., Obukhova, L. A., Pasyukova, E. G., Pisarenko, O. I., Roginsky, V. A., Ruuge, E. K., Senin, I. I., Severina, I. I., Skulachev, M. V., Spivak, I. M., Tashlitsky, V. N., Tkachuk, V. A., Vyssokikh, M. Y., Yaguzhinsky, L. S., and Zorov, D. B. (2009) An attempt to prevent senescence: a mitochondrial approach, Biochim. Biophys. Acta, 1787, 437–461.PubMedCrossRefGoogle Scholar
  15. 15.
    Ji, J., Kline, A. E., Amoscato, A., Samhan-Arias, A. K., Sparvero, L. J., Tyurin, V. A., Tyurina, Y. Y., Fink, B., Manole, M. D., Puccio, A. M., Okonkwo, D. O., Cheng, J. P., Alexander, H., Clark, R. S., Kochanek, P. M., Wipf, P., Kagan, V. E., and Bayir, H. (2012) Lipidomics identi-fies cardiolipin oxidation as a mitochondrial target for redox therapy of brain injury, Nat. Neurosci., 15, 1407–1413.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Barclay, L. R. C. (1992) Model biomembranes: quantitative studies of peroxidation, antioxidant action, partitioning, and oxidative stress, Can. J. Chem., 71, 1–16.CrossRefGoogle Scholar
  17. 17.
    Niki, E., Yoshida, Y., Saito, Y., and Noguchi, N. (2005) Lipid peroxidation: mechanisms, inhibition, and biological effects, Biochem. Biophys. Res. Commun., 338, 668–676.PubMedCrossRefGoogle Scholar
  18. 18.
    Kagan, V. E., Tyurin, V. A., Jiang, J., Tyurina, Y. Y., Ritov, V. B., Amoscato, A. A., Osipov, A. N., Belikova, N. A., Kapralov, A. A., Kini, V., Vlasova, I. I., Zhao, Q., Zou, M., Di, P., Svistunenko, D. A., Kurnikov, I. V., and Borisenko, G. G. (2005) Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors, Nat. Chem. Biol., 1, 223–232.PubMedCrossRefGoogle Scholar
  19. 19.
    Kagan, V. E., Bayir, A., Bayir, H., Stoyanovsky, D., Borisenko, G. G., Tyurina, Y. Y., Wipf, P., Atkinson, J., Greenberger, J. S., Chapkin, R. S., and Belikova, N. A. (2009) Mitochondria-targeted disruptors and inhibitors of cytochrome c/cardiolipin peroxidase complexes: a new strategy in anti-apoptotic drug discovery, Mol. Nutr. Food Res., 53, 104–114.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Atkinson, J., Kapralov, A. A., Yanamala, N., Tyurina, Y. Y., Amoscato, A. A., Pearce, L., Peterson, J., Huang, Z., Jiang, J., Samhan-Arias, A. K., Maeda, A., Feng, W., Wasserloos, K., Belikova, N. A., Tyurin, V. A., Wang, H., Fletcher, J., Wang, Y., Vlasova, I. I., Klein-Seetharaman, J., Stoyanovsky, D. A., Bayir, H., Pitt, B. R., Epperly, M. W., Greenberger, J. S., and Kagan, V. E. (2011) A mito-chondria-targeted inhibitor of cytochrome c peroxidase mitigates radiation-induced death, Nat. Commun., 2, 497.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Jiang, J., Bakan, A., Kapralov, A. A., Silva, K. I., Huang, Z., Amoscato, A. A., Peterson, J., Garapati, V. K., Saxena, S., Bayir, H., Atkinson, J., Bahar, I., and Kagan, V. E. (2014) Designing inhibitors of cytochrome c/cardiolipin peroxidase complexes: mitochondria-targeted imidazole-substituted fatty acids, Free Radic. Biol. Med., 71, 221–230.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Gonzalvez, F., Pariselli, F., Dupaigne, P., Budihardjo, I., Lutter, M., Antonsson, B., Diolez, P., Manon, S., Martinou, J. C., Goubern, M., Wang, X., Bernard, S., and Petit, P. X. (2005) tBid interaction with cardiolipin primari-ly orchestrates mitochondrial dysfunctions and subsequent-ly activates Bax and Bak, Cell Death Differ., 12, 614–626.PubMedCrossRefGoogle Scholar
  23. 23.
    Chen, Q., Vazquez, E. J., Moghaddas, S., Hoppel, C. L., and Lesnefsky, E. J. (2003) Production of reactive oxygen species by mitochondria: central role of complex III, J. Biol. Chem., 278, 36027–36031.PubMedCrossRefGoogle Scholar
  24. 24.
    Drose, S., and Brandt, U. (2008) The mechanism of mitochondrial superoxide production by the cytochrome bc1 complex, J. Biol. Chem., 283, 21649–21654.PubMedCrossRefGoogle Scholar
  25. 25.
    Grivennikova, V. G., and Vinogradov, A. D. (2013) Partitioning of superoxide and hydrogen peroxide production by mitochondrial respiratory complex I, Biochim. Biophys. Acta, 1827, 446–454.PubMedCrossRefGoogle Scholar
  26. 26.
    Lapuente-Brun, E., Moreno-Loshuertos, R., Acin-Perez, R., Latorre-Pellicer, A., Colas, C., Balsa, E., Perales-Clemente, E., Quiros, P. M., Calvo, E., Rodriguez-Hernandez, M. A., Navas, P., Cruz, R., Carracedo, A., Lopez-Otin, C., Perez-Martos, A., Fernandez-Silva, P., Fernandez-Vizarra, E., and Enriquez, J. A. (2013) Supercomplex assembly determines electron flux in the mitochondrial electron transport chain, Science, 340, 1567–1570.PubMedCrossRefGoogle Scholar
  27. 27.
    Gabai, V. L., and Sherman, M. Y. (2002) Invited review: Interplay between molecular chaperones and signaling pathways in survival of heat shock, J. Appl. Physiol. (1985), 92, 1743–1748.PubMedCrossRefGoogle Scholar
  28. 28.
    Israelachvili, J. N., Marcelja, S., and Horn, R. G. (1980) Physical principles of membrane organization, Q. Rev. Biophys., 13, 121–200.PubMedCrossRefGoogle Scholar
  29. 29.
    Busch, K. B., Deckers-Hebestreit, G., Hanke, G. T., and Mulkidjanian, A. Y. (2013) Dynamics of bioenergetic microcompartments, Biol. Chem., 394, 163–188.PubMedCrossRefGoogle Scholar
  30. 30.
    Cramer, W. A., and Knaff, D. B. (1990) Energy Transduction in Biological Membranes: A Textbook of Bioenergetics, Springer-Verlag, NY.CrossRefGoogle Scholar
  31. 31.
    Skulachev, V. P., Bogachev, A. V., and Kasparinsky, F. O. (2013) Principles of Bioenergetics, Springer, Berlin-Heidelberg.CrossRefGoogle Scholar
  32. 32.
    Pfeiffer, K., Gohil, V., Stuart, R. A., Hunte, C., Brandt, U., Greenberg, M. L., and Schagger, H. (2003) Cardiolipin stabilizes respiratory chain supercomplexes, J. Biol. Chem., 278, 52873–52880.PubMedCrossRefGoogle Scholar
  33. 33.
    Mileykovskaya, E., and Dowhan, W. (2009) Cardiolipin membrane domains in prokaryotes and eukaryotes, Biochim. Biophys. Acta, 1788, 2084–2091.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Arias-Cartin, R., Grimaldi, S., Arnoux, P., Guigliarelli, B., and Magalon, A. (2012) Cardiolipin binding in bacterial respiratory complexes: structural and functional implications, Biochim. Biophys. Acta, 1817, 1937–1949.PubMedCrossRefGoogle Scholar
  35. 35.
    Musatov, A., and Sedlak, E. (2017) Role of cardiolipin in stability of integral membrane proteins, Biochimie, 142, 102–111.PubMedCrossRefGoogle Scholar
  36. 36.
    Mileykovskaya, E., and Dowhan, W. (2014) Cardiolipin-dependent formation of mitochondrial respiratory super-complexes, Chem. Phys. Lipids, 179, 42–48.PubMedCrossRefGoogle Scholar
  37. 37.
    Planas-Iglesias, J., Dwarakanath, H., Mohammadyani, D., Yanamala, N., Kagan, V. E., and Klein-Seetharaman, J. (2015) Cardiolipin interactions with proteins, Biophys. J., 109, 1282–1294.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Althoff, T., Mills, D. J., Popot, J. L., and Kuhlbrandt, W. (2011) Arrangement of electron transport chain compo-nents in bovine mitochondrial supercomplex I1III2IV1, EMBO J., 30, 4652–4664.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Letts, J. A., Fiedorczuk, K., and Sazanov, L. A. (2016) The architecture of respiratory supercomplexes, Nature, 537, 644–648.PubMedCrossRefGoogle Scholar
  40. 40.
    Rieger, B., Shalaeva, D. N., Sohnel, A. C., Kohl, W., Duwe, P., Mulkidjanian, A. Y., and Busch, K. B. (2017) Lifetime imaging of GFP at CoxVIIIa reports respiratory supercomplex assembly in live cells, Sci. Rep., 7; doi: 10.1038/srep46055.Google Scholar
  41. 41.
    Guo, R., Zong, S., Wu, M., Gu, J., and Yang, M. (2017) Architecture of human mitochondrial respiratory mega-complex I2III2IV2, Cell, 170, 1247–1257.PubMedCrossRefGoogle Scholar
  42. 42.
    Letts, J. A., and Sazanov, L. A. (2017) Clarifying the super-complex: the higher-order organization of the mitochondrial electron transport chain, Nat. Struct. Mol. Biol., 24, 800–808.PubMedCrossRefGoogle Scholar
  43. 43.
    Gu, J., Wu, M., Guo, R., Yan, K., Lei, J., Gao, N., and Yang, M. (2016) The architecture of the mammalian respi-rasome, Nature, 537, 639–643.PubMedCrossRefGoogle Scholar
  44. 44.
    Sousa, J. S., Mills, D. J., Vonck, J., and Kuhlbrandt, W. (2016) Functional asymmetry and electron flow in the bovine respirasome, Elife, 5, e21290.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Haines, T. H. (1983) Anionic lipid headgroups as a proton-conducting pathway along the surface of membranes: a hypothesis, Proc. Natl. Acad. Sci. USA, 80, 160–164.PubMedCrossRefGoogle Scholar
  46. 46.
    Haines, T. H. (2009) A new look at cardiolipin, Biochim. Biophys. Acta, 1788, 1997–2002.PubMedCrossRefGoogle Scholar
  47. 47.
    Haines, T. H., and Dencher, N. A. (2002) Cardiolipin: a proton trap for oxidative phosphorylation, FEBS Lett., 528, 35–39.PubMedCrossRefGoogle Scholar
  48. 48.
    Mulkidjanian, A. Y., Heberle, J., and Cherepanov, D. A. (2006) Protons and interfaces: implications for biological energy conversion, Biochim. Biophys. Acta, 1757, 913–930.PubMedCrossRefGoogle Scholar
  49. 49.
    Mileykovskaya, E., and Dowhan, W. (2000) Visualization of phospholipid domains in Escherichia coli by using the cardiolipin-specific fluorescent dye 10-N-nonyl acridine orange, J. Bacteriol., 182, 1172–1175.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Kawai, F., Shoda, M., Harashima, R., Sadaie, Y., Hara, H., and Matsumoto, K. (2004) Cardiolipin domains in Bacillus subtilis marburg membranes, J. Bacteriol., 186, 1475–1483.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Weis, R. M., Hirai, T., Chalah, A., Kessel, M., Peters, P. J., and Subramaniam, S. (2003) Electron microscopic analysis of membrane assemblies formed by the bacterial chemo-taxis receptor Tsr, J. Bacteriol., 185, 3636–3643.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Brookes, P. S., Hulbert, A. J., and Brand, M. D. (1997) The proton permeability of liposomes made from mitochondrial inner membrane phospholipids: no effect of fatty acid composition, Biochim. Biophys. Acta, 1330, 157–164.PubMedCrossRefGoogle Scholar
  53. 53.
    Shinoda, W. (2016) Permeability across lipid membranes, Biochim. Biophys. Acta, 1858, 2254–2265.PubMedCrossRefGoogle Scholar
  54. 54.
    Deamer, D. W. (1987) Proton permeation of lipid bilayers, J. Bioenerg. Biomembr., 19, 457–479.PubMedGoogle Scholar
  55. 55.
    Paula, S., Volkov, A. G., Van Hoek, A. N., Haines, T. H., and Deamer, D. W. (1996) Permeation of protons, potassium ions, and small polar molecules through phospholipid bilayers as a function of membrane thickness, Biophys. J., 70, 339–348.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Haines, T. H. (2001) Do sterols reduce proton and sodium leaks through lipid bilayers? Prog. Lipid Res., 40, 299–324.PubMedCrossRefGoogle Scholar
  57. 57.
    Konings, W. N., Albers, S. V., Koning, S., and Driessen, A. J. (2002) The cell membrane plays a crucial role in survival of bacteria and archaea in extreme environments, Antonie Van Leeuwenhoek, 81, 61–72.PubMedCrossRefGoogle Scholar
  58. 58.
    Mikel’saar, K., Severina, I. I., and Skulachev, V. P. (1974) Phospholipids and oxidative phosphorylation, Usp. Sovrem. Biol., 78, 348–370.PubMedGoogle Scholar
  59. 59.
    Zhang, M., Mileykovskaya, E., and Dowhan, W. (2002) Gluing the respiratory chain together. Cardiolipin is required for supercomplex formation in the inner mitochondrial membrane, J. Biol. Chem., 277, 43553–43556.PubMedCrossRefGoogle Scholar
  60. 60.
    Dibrova, D. V., Cherepanov, D. A., Galperin, M. Y., Skulachev, V. P., and Mulkidjanian, A. Y. (2013) Evolution of cytochrome bc complexes: from membrane-anchored dehydrogenases of ancient bacteria to triggers of apo-ptosis in vertebrates, Biochim. Biophys. Acta, 1827, 1407–1427.PubMedCrossRefGoogle Scholar
  61. 61.
    Andreyev, A., Bondareva, T. O., Dedukhova, V. I., Mokhova, E. N., Skulachev, V. P., and Volkov, N. I. (1988) Carboxyatractylate inhibits the uncoupling effect of free fatty acids, FEBS Lett., 226, 265–269.PubMedCrossRefGoogle Scholar
  62. 62.
    Pebay-Peyroula, E., Dahout-Gonzalez, C., Kahn, R., Trezeguet, V., Lauquin, G. J., and Brandolin, G. (2003) Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside, Nature, 426, 39–44.PubMedCrossRefGoogle Scholar
  63. 63.
    Ruprecht, J. J., Hellawell, A. M., Harding, M., Crichton, P. G., McCoy, A. J., and Kunji, E. R. (2014) Structures of yeast mitochondrial ADP/ATP carriers support a domain-based alternating-access transport mechanism, Proc. Natl. Acad. Sci. USA, 111, E426–434.PubMedCrossRefGoogle Scholar
  64. 64.
    Nury, H., Dahout-Gonzalez, C., Trezeguet, V., Lauquin, G., Brandolin, G., and Pebay-Peyroula, E. (2005) Structural basis for lipid-mediated interactions between mitochondrial ADP/ATP carrier monomers, FEBS Lett., 579, 6031–6036.PubMedCrossRefGoogle Scholar
  65. 65.
    Claypool, S. M., Oktay, Y., Boontheung, P., Loo, J. A., and Koehler, C. M. (2008) Cardiolipin defines the interactome of the major ADP/ATP carrier protein of the mitochondrial inner membrane, J. Cell Biol., 182, 937–950.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Lu, Y. W., Acoba, M. G., Selvaraju, K., Huang, T. C., Nirujogi, R. S., Sathe, G., Pandey, A., and Claypool, S. M. (2017) Human adenine nucleotide translocases physically and functionally interact with respirasomes, Mol. Biol. Cell, 28, 1489–1506.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Fink, M. P., Macias, C. A., Xiao, J., Tyurina, Y. Y., Jiang, J., Belikova, N., Delude, R. L., Greenberger, J. S., Kagan, V. E., and Wipf, P. (2007) Hemigramicidin–TEMPO con-jugates: novel mitochondria-targeted antioxidants, Biochem. Pharmacol., 74, 801–809.PubMedCrossRefGoogle Scholar
  68. 68.
    Birk, A. V., Liu, S., Soong, Y., Mills, W., Singh, P., Warren, J. D., Seshan, S. V., Pardee, J. D., and Szeto, H. H. (2013) The mitochondrial-targeted compound SS-31 re-energizes ischemic mitochondria by interacting with cardiolipin, J. Am. Soc. Nephrol., 24, 1250–1261.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Szeto, H. H., and Birk, A. V. (2014) Serendipity and the discovery of novel compounds that restore mitochondrial plasticity, Clin. Pharmacol. Ther., 96, 672–683.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Kelso, G. F., Porteous, C. M., Coulter, C. V., Hughes, G., Porteous, W. K., Ledgerwood, E. C., Smith, R. A., and Murphy, M. P. (2001) Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties, J. Biol. Chem., 276, 4588–4596.PubMedCrossRefGoogle Scholar
  71. 71.
    Antonenko, Y. N., Avetisyan, A. V., Bakeeva, L. E., Chernyak, B. V., Chertkov, V. A., Domnina, L. V., Ivanova, O. Y., Izyumov, D. S., Khailova, L. S., Klishin, S. S., Korshunova, G. A., Lyamzaev, K. G., Muntyan, M. S., Nepryakhina, O. K., Pashkovskaya, A. A., Pletjushkina, O. Y., Pustovidko, A. V., Roginsky, V. A., Rokitskaya, T. I., Ruuge, E. K., Saprunova, V. B., Severina, I. I., Simonyan, R. A., Skulachev, I. V., Skulachev, M. V., Sumbatyan, N. V., Sviryaeva, I. V., Tashlitsky, V. N., Vassiliev, J. M., Vyssokikh, M. Y., Yaguzhinsky, L. S., Zamyatnin, A. A., Jr., and Skulachev, V. P. (2008) Mitochondria-targeted plasto-quinone derivatives as tools to interrupt execution of the aging program. 1. Cationic plastoquinone derivatives: syn-thesis and in vitro studies, Biochemistry (Moscow), 73, 1273–1287.CrossRefGoogle Scholar
  72. 72.
    Severin, F. F., Severina, I. I., Antonenko, Y. N., Rokitskaya, T. I., Cherepanov, D. A., Mokhova, E. N., Vyssokikh, M. Y., Pustovidko, A. V., Markova, O. V., Yaguzhinsky, L. S., Korshunova, G. A., Sumbatyan, N. V., Skulachev, M. V., and Skulachev, V. P. (2010) Penetrating cation/fatty acid anion pair as a mitochondria-targeted protonophore, Proc. Natl. Acad. Sci. USA, 107, 663–668.PubMedCrossRefGoogle Scholar
  73. 73.
    Anisimov, V. N., Egorov, M. V., Krasilshchikova, M. S., Lyamzaev, K. G., Manskikh, V. N., Moshkin, M. P., Novikov, E. A., Popovich, I. G., Rogovin, K. A., Shabalina, I. G., Shekarova, O. N., Skulachev, M. V., Titova, T. V., Vygodin, V. A., Vyssokikh, M. Y., Yurova, M. N., Zabezhinsky, M. A., and Skulachev, V. P. (2011) Effects of the mitochondria-targeted antioxidant SkQ1 on lifespan of rodents, Aging (Albany NY), 3, 1110–1119.CrossRefGoogle Scholar
  74. 74.
    Lyamzaev, K. G., Pustovidko, A. V., Simonyan, R. A., Rokitskaya, T. I., Domnina, L. V., Ivanova, O. Y., Severina, I. I., Sumbatyan, N. V., Korshunova, G. A., Tashlitsky, V. N., Roginsky, V. A., Antonenko, Y. N., Skulachev, M. V., Chernyak, B. V., and Skulachev, V. P. (2011) Novel mito-chondria-targeted antioxidants: plastoquinone conjugated with cationic plant alkaloids berberine and palmatine, Pharm. Res., 28, 2883–2895.PubMedCrossRefGoogle Scholar
  75. 75.
    Skulachev, V. P. (2012) Mitochondria-targeted antioxidants as promising drugs for treatment of age-related brain dis-eases, J. Alzheimers Dis., 28, 283–289.PubMedCrossRefGoogle Scholar
  76. 76.
    Lokhmatikov, A. V., Voskoboynikova, N. E., Cherepanov, D. A., Sumbatyan, N. V., Korshunova, G. A., Skulachev, M. V., Steinhoff, H. J., Skulachev, V. P., and Mulkidjanian, A. Y. (2014) Prevention of peroxidation of cardiolipin lipo-somes by quinol-based antioxidants, Biochemistry (Moscow), 79, 1081–1100.CrossRefGoogle Scholar
  77. 77.
    Lokhmatikov, A. V., Voskoboynikova, N., Cherepanov, D. A., Skulachev, M. V., Steinhoff, H. J., Skulachev, V. P., and Mulkidjanian, A. Y. (2016) Impact of antioxidants on car-diolipin oxidation in liposomes: why mitochondrial cardi-olipin serves as an apoptotic signal? Oxid. Med. Cell. Longev., 2016, 8679469.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Lenaz, G., and Genova, M. L. (2009) Structural and func-tional organization of the mitochondrial respiratory chain: a dynamic super-assembly, Int. J. Biochem. Cell Biol., 41, 1750–1772.PubMedCrossRefGoogle Scholar
  79. 79.
    Hauss, T., Dante, S., Haines, T. H., and Dencher, N. A. (2005) Localization of coenzyme Q10 in the center of a deuterated lipid membrane by neutron diffraction, Biochim. Biophys. Acta, 1710, 57–62.PubMedCrossRefGoogle Scholar
  80. 80.
    Xu, Y., Phoon, C. K., Berno, B., D’Souza, K., Hoedt, E., Zhang, G., Neubert, T. A., Epand, R. M., Ren, M., and Schlame, M. (2016) Loss of protein association causes car-diolipin degradation in Barth syndrome, Nat. Chem. Biol., 12, 641–647.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Amchenkova, A. A., Bakeeva, L. E., Chentsov, Y. S., Skulachev, V. P., and Zorov, D. B. (1988) Coupling mem-branes as energy-transmitting cables. I. Filamentous mito-chondria in fibroblasts and mitochondrial clusters in car-diomyocytes, J. Cell Biol., 107, 481–495.PubMedCrossRefGoogle Scholar
  82. 82.
    Skulachev, V. P., Bakeeva, L. E., Chernyak, B. V., Domnina, L. V., Minin, A. A., Pletjushkina, O. Y., Saprunova, V. B., Skulachev, I. V., Tsyplenkova, V. G., Vasiliev, J. M., Yaguzhinsky, L. S., and Zorov, D. B. (2004) Thread-grain transition of mitochondrial reticulum as a step of mitoptosis and apoptosis, Mol. Cell. Biochem., 256-257, 341–358.PubMedCrossRefGoogle Scholar
  83. 83.
    Fenton, H. J. H. (1876) On a new reaction of tartaric acid, Chem. News, 33.Google Scholar
  84. 84.
    Dunford, H. B. (2002) Oxidations of iron(II)/(III) by hydrogen peroxide: from aquo to enzyme, Coordin. Chem. Rev., 233, 311–318.CrossRefGoogle Scholar
  85. 85.
    Barbusinski, K. (2009) Fenton reaction–controversy con-cerning the chemistry, Ecol. Chem. Eng. S., 16, 347–358.Google Scholar
  86. 86.
    Lill, R., Srinivasan, V., and Muhlenhoff, U. (2014) The role of mitochondria in cytosolic-nuclear iron-sulfur protein biogenesis and in cellular iron regulation, Curr. Opin. Microbiol., 22, 111–119.PubMedCrossRefGoogle Scholar
  87. 87.
    Porter, N. A., Caldwell, S. E., and Mills, K. A. (1995) Mechanisms of free radical oxidation of unsaturated lipids, Lipids, 30, 277–290.PubMedCrossRefGoogle Scholar
  88. 88.
    Echtay, K. S., Roussel, D., St-Pierre, J., Jekabsons, M. B., Cadenas, S., Stuart, J. A., Harper, J. A., Roebuck, S. J., Morrison, A., Pickering, S., Clapham, J. C., and Brand, M. D. (2002) Superoxide activates mitochondrial uncou-pling proteins, Nature, 415, 96–99.PubMedCrossRefGoogle Scholar
  89. 89.
    Divakaruni, A. S., and Brand, M. D. (2011) The regula-tion and physiology of mitochondrial proton leak, Physiology (Bethesda), 26, 192–205.Google Scholar
  90. 90.
    Jastroch, M., Divakaruni, A. S., Mookerjee, S., Treberg, J. R., and Brand, M. D. (2010) Mitochondrial proton and electron leaks, Essays Biochem., 47, 53–67.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Starkov, A. A. (2006) Protein-mediated energy-dissipating pathways in mitochondria, Chem. Biol. Interact., 163, 133–144.PubMedCrossRefGoogle Scholar
  92. 92.
    Firsov, A. M., Kotova, E. A., Korepanova, E. A., Osipov, A. N., and Antonenko, Y. N. (2015) Peroxidative permeabilization of liposomes induced by cytochrome c/cardiolipin complex, Biochim. Biophys. Acta, 1848, 767–774.PubMedCrossRefGoogle Scholar
  93. 93.
    Brookes, P. S. (2005) Mitochondrial H(+) leak and ROS generation: an odd couple, Free Radic. Biol. Med., 38, 12–23.PubMedCrossRefGoogle Scholar
  94. 94.
    Cheng, J., Nanayakkara, G., Shao, Y., Cueto, R., Wang, L., Yang, W. Y., Tian, Y., Wang, H., and Yang, X. (2017) Mitochondrial proton leak plays a critical role in patho-genesis of cardiovascular diseases, Adv. Exp. Med. Biol., 982, 359–370.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Petrosillo, G., Casanova, G., Matera, M., Ruggiero, F. M., and Paradies, G. (2006) Interaction of peroxidized cardiolipin with rat-heart mitochondrial membranes: induction of permeability transition and cytochrome c release, FEBS Lett., 580, 6311–6316.PubMedCrossRefGoogle Scholar
  96. 96.
    Skulachev, V. P. (1999) Anion carriers in fatty acid-medi-ated physiological uncoupling, J. Bioenerg. Biomembr., 31, 431–445.PubMedCrossRefGoogle Scholar
  97. 97.
    Nicholls, D. G. (2004) Mitochondrial membrane poten-tial and aging, Aging Cell, 3, 35–40.PubMedCrossRefGoogle Scholar
  98. 98.
    Azzu, V., Jastroch, M., Divakaruni, A. S., and Brand, M. D. (2010) The regulation and turnover of mitochondrial uncoupling proteins, Biochim. Biophys. Acta, 1797, 785–791.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Berardi, M. J., Shih, W. M., Harrison, S. C., and Chou, J. J. (2011) Mitochondrial uncoupling protein 2 structure determined by NMR molecular fragment searching, Nature, 476, 109–113.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Skulachev, V. P. (1991) Fatty acid circuit as a physiological mechanism of uncoupling of oxidative phosphorylation, FEBS Lett., 294, 158–162.PubMedCrossRefGoogle Scholar
  101. 101.
    Garlid, K. D. (1996) Cation transport in mitochondria–the potassium cycle, Biochim. Biophys. Acta, 1275, 123–126.PubMedCrossRefGoogle Scholar
  102. 102.
    Berardi, M. J., and Chou, J. J. (2014) Fatty acid flippase activity of UCP2 is essential for its proton transport in mitochondria, Cell Metab., 20, 541–552.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Fedorenko, A., Lishko, P. V., and Kirichok, Y. (2012) Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria, Cell, 151, 400–413.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Schonfeld, P., Schild, L., and Kunz, W. (1989) Long-chain fatty acids act as protonophoric uncouplers of oxida-tive phosphorylation in rat liver mitochondria, Biochim. Biophys. Acta, 977, 266–272.PubMedCrossRefGoogle Scholar
  105. 105.
    Perez, C., Gerber, S., Boilevin, J., Bucher, M., Darbre, T., Aebi, M., Reymond, J. L., and Locher, K. P. (2015) Structure and mechanism of an active lipid-linked oligosaccharide flippase, Nature, 524, 433–438.PubMedCrossRefGoogle Scholar
  106. 106.
    Andreyev, A., Bondareva, T. O., Dedukhova, V. I., Mokhova, E. N., Skulachev, V. P., Tsofina, L. M., Volkov, N. I., and Vygodina, T. V. (1989) The ATP/ADP-antiporter is involved in the uncoupling effect of fatty acids on mitochondria, Eur. J. Biochem., 182, 585–592.PubMedCrossRefGoogle Scholar
  107. 107.
    Lee, Y., Willers, C., Kunji, E. R., and Crichton, P. G. (2015) Uncoupling protein 1 binds one nucleotide per monomer and is stabilized by tightly bound cardiolipin, Proc. Natl. Acad. Sci. USA, 112, 6973–6978.PubMedCrossRefGoogle Scholar
  108. 108.
    Chouchani, E. T., Kazak, L., Jedrychowski, M. P., Lu, G. Z., Erickson, B. K., Szpyt, J., Pierce, K. A., Laznik-Bogoslavski, D., Vetrivelan, R., Clish, C. B., Robinson, A. J., Gygi, S. P., and Spiegelman, B. M. (2016) mitochondrial ROS regulate thermogenic energy expen-diture and sulfenylation of UCP1, Nature, 532, 112–116.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Lo Conte, M., and Carroll, K. S. (2013) The redox bio-chemistry of protein sulfenylation and sulfinylation, J. Biol. Chem., 288, 26480–26488.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Little, C., and O’Brien, P. J. (1968) The effectiveness of a lipid peroxide in oxidizing protein and non-protein thiols, Biochem. J., 106, 419–423.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Korshunov, S. S., Skulachev, V. P., and Starkov, A. A. (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria, FEBS Lett., 416, 15–18.PubMedCrossRefGoogle Scholar
  112. 112.
    Pletjushkina, O. Y., Lyamzaev, K. G., Popova, E. N., Nepryakhina, O. K., Ivanova, O. Y., Domnina, L. V., Chernyak, B. V., and Skulachev, V. P. (2006) Effect of oxidative stress on dynamics of mitochondrial reticulum, Biochim. Biophys. Acta, 1757, 518–524.PubMedCrossRefGoogle Scholar
  113. 113.
    Iqbal, S., and Hood, D. A. (2014) Oxidative stress-induced mitochondrial fragmentation and movement in skeletal muscle myoblasts, Am. J. Physiol. Cell Physiol., 306, C1176–1183.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Willems, P. H., Rossignol, R., Dieteren, C. E., Murphy, M. P., and Koopman, W. J. (2015) Redox homeostasis and mitochondrial dynamics, Cell Metab., 22, 207–218.PubMedCrossRefGoogle Scholar
  115. 115.
    Vorobjev, I. A., and Zorov, D. B. (1983) Diazepam inhibits cell respiration and induces fragmentation of mitochondr-ial reticulum, FEBS Lett., 163, 311–314.PubMedCrossRefGoogle Scholar
  116. 116.
    Zorov, D. B., Filburn, C. R., Klotz, L. O., Zweier, J. L., and Sollott, S. J. (2000) Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompa-nying induction of the mitochondrial permeability transi-tion in cardiac myocytes, J. Exp. Med., 192, 1001–1014.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Zorov, D. B., Juhaszova, M., and Sollott, S. J. (2014) Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release, Physiol. Rev., 94, 909–950.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Frank, S., Gaume, B., Bergmann-Leitner, E. S., Leitner, W. W., Robert, E. G., Catez, F., Smith, C. L., and Youle, R. J. (2001) The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis, Dev. Cell, 1, 515–525.PubMedCrossRefGoogle Scholar
  119. 119.
    Jones, E., Gaytan, N., Garcia, I., Herrera, A., Ramos, M., Agarwala, D., Rana, M., Innis-Whitehouse, W., Schuenzel, E., and Gilkerson, R. (2017) A threshold of transmembrane potential is required for mitochondrial dynamic balance mediated by DRP1 and OMA1, Cell. Mol. Life Sci., 74, 1347–1363.PubMedCrossRefGoogle Scholar
  120. 120.
    Baker, M. J., Lampe, P. A., Stojanovski, D., Korwitz, A., Anand, R., Tatsuta, T., and Langer, T. (2014) Stressinduced OMA1 activation and autocatalytic turnover reg-ulate OPA1-dependent mitochondrial dynamics, EMBO J., 33, 578–593.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    MacVicar, T., and Langer, T. (2016) OPA1 processing in cell death and disease–the long and short of it, J. Cell. Sci., 129, 2297–2306.PubMedCrossRefGoogle Scholar
  122. 122.
    Jiang, X., and Wang, X. (2000) Cytochrome c promotes caspase-9 activation by inducing nucleotide binding to Apaf-1, J. Biol. Chem., 275, 31199–31203.PubMedCrossRefGoogle Scholar
  123. 123.
    Riedl, S. J., and Salvesen, G. S. (2007) The apoptosome: signalling platform of cell death, Nat. Rev. Mol. Cell Biol., 8, 405–413.PubMedCrossRefGoogle Scholar
  124. 124.
    Brustugun, O. T., Fladmark, K. E., Doskeland, S. O., Orrenius, S., and Zhivotovsky, B. (1998) Apoptosis induced by microinjection of cytochrome c is caspase-dependent and is inhibited by Bcl-2, Cell Death Differ., 5, 660–668.PubMedCrossRefGoogle Scholar
  125. 125.
    Bogenhagen, D., and Clayton, D. A. (1974) The number of mitochondrial deoxyribonucleic acid genomes in mouse L and human HeLa cells. Quantitative isolation of mitochondrial deoxyribonucleic acid, J. Biol. Chem., 249, 7991–7995.PubMedGoogle Scholar
  126. 126.
    Stowe, D. F., and Camara, A. K. (2009) Mitochondrial reactive oxygen species production in excitable cells: mod-ulators of mitochondrial and cell function, Antioxid. Redox Signal., 11, 1373–1414.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Goldstein, J. C., Waterhouse, N. J., Juin, P., Evan, G. I., and Green, D. R. (2000) The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant, Nat. Cell Biol., 2, 156–162.PubMedCrossRefGoogle Scholar
  128. 128.
    Renault, T. T., Floros, K. V., Elkholi, R., Corrigan, K. A., Kushnareva, Y., Wieder, S. Y., Lindtner, C., Serasinghe, M. N., Asciolla, J. J., Buettner, C., Newmeyer, D. D., and Chipuk, J. E. (2015) Mitochondrial shape governs BAX-induced membrane permeabilization and apoptosis, Mol. Cell, 57, 69–82.PubMedCrossRefGoogle Scholar
  129. 129.
    Szabadkai, G., Simoni, A. M., Chami, M., Wieckowski, M. R., Youle, R. J., and Rizzuto, R. (2004) Drp-1-dependent division of the mitochondrial network blocks intraorganellar Ca2+ waves and protects against Ca2+-mediated apoptosis, Mol. Cell, 16, 59–68.PubMedCrossRefGoogle Scholar
  130. 130.
    Perfettini, J. L., Roumier, T., and Kroemer, G. (2005) Mitochondrial fusion and fission in the control of apopto-sis, Trends Cell Biol., 15, 179–183.PubMedCrossRefGoogle Scholar
  131. 131.
    Brookes, P. S., Yoon, Y., Robotham, J. L., Anders, M. W., and Sheu, S. S. (2004) Calcium, ATP, and ROS: a mitochondrial love-hate triangle, Am. J. Physiol. Cell Physiol., 287, C817–833.PubMedCrossRefGoogle Scholar
  132. 132.
    Ott, M., Gogvadze, V., Orrenius, S., and Zhivotovsky, B. (2007) Mitochondria, oxidative stress and cell death, Apoptosis, 12, 913–922.PubMedCrossRefGoogle Scholar
  133. 133.
    Green, D. R., Galluzzi, L., and Kroemer, G. (2014) Cell biology. Metabolic control of cell death, Science, 345, 1250256.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Narendra, D. P., Jin, S. M., Tanaka, A., Suen, D. F., Gautier, C. A., Shen, J., Cookson, M. R., and Youle, R. J. (2010) PINK1 is selectively stabilized on impaired mito-chondria to activate Parkin, PLoS Biol., 8, e1000298.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Matsuda, N., Sato, S., Shiba, K., Okatsu, K., Saisho, K., Gautier, C. A., Sou, Y. S., Saiki, S., Kawajiri, S., Sato, F., Kimura, M., Komatsu, M., Hattori, N., and Tanaka, K. (2010) PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy, J. Cell Biol., 189, 211–221.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Chu, C. T., Ji, J., Dagda, R. K., Jiang, J. F., Tyurina, Y. Y., Kapralov, A. A., Tyurin, V. A., Yanamala, N., Shrivastava, I. H., Mohammadyani, D., Wang, K. Z. Q., Zhu, J., Klein-Seetharaman, J., Balasubramanian, K., Amoscato, A. A., Borisenko, G., Huang, Z., Gusdon, A. M., Cheikhi, A., Steer, E. K., Wang, R., Baty, C., Watkins, S., Bahar, I., Bayir, H., and Kagan, V. E. (2013) Cardiolipin external-ization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells, Nat. Cell Biol., 15, 1197–1205.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Novak, I., Kirkin, V., McEwan, D. G., Zhang, J., Wild, P., Rozenknop, A., Rogov, V., Lohr, F., Popovic, D., Occhipinti, A., Reichert, A. S., Terzic, J., Dotsch, V., Ney, P. A., and Dikic, I. (2010) Nix is a selective autophagy receptor for mitochondrial clearance, EMBO Rep., 11, 45–51.PubMedCrossRefGoogle Scholar
  138. 138.
    Kagan, V. E., Jiang, J., Huang, Z., Tyurina, Y. Y., Desbourdes, C., Cottet-Rousselle, C., Dar, H. H., Verma, M., Tyurin, V. A., Kapralov, A. A., Cheikhi, A., Mao, G., Stolz, D., St Croix, C. M., Watkins, S., Shen, Z., Li, Y., Greenberg, M. L., Tokarska-Schlattner, M., Boissan, M., Lacombe, M. L., Epand, R. M., Chu, C. T., Mallampalli, R. K., Bayir, H., and Schlattner, U. (2016) NDPK-D (NM23-H4)-mediated externalization of cardiolipin enables elimination of depolarized mitochondria by mitophagy, Cell Death Differ., 23, 1140–1151.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Quiros, P. M., Langer, T., and Lopez-Otin, C. (2015) New roles for mitochondrial proteases in health, ageing and dis-ease, Nat. Rev. Mol. Cell Biol., 16, 345–359.PubMedCrossRefGoogle Scholar
  140. 140.
    Burman, J. L., Pickles, S., Wang, C., Sekine, S., Vargas, J. N. S., Zhang, Z., Youle, A. M., Nezich, C. L., Wu, X., Hammer, J. A., and Youle, R. J. (2017) Mitochondrial fis-sion facilitates the selective mitophagy of protein aggre-gates, J. Cell Biol., 216, 3231–3247.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Frank, M., Duvezin-Caubet, S., Koob, S., Occhipinti, A., Jagasia, R., Petcherski, A., Ruonala, M. O., Priault, M., Salin, B., and Reichert, A. S. (2012) Mitophagy is trig-gered by mild oxidative stress in a mitochondrial fission dependent manner, Biochim. Biophys. Acta, 1823, 2297–2310.PubMedCrossRefGoogle Scholar
  142. 142.
    Levraut, J., Iwase, H., Shao, Z. H., Vanden Hoek, T. L., and Schumacker, P. T. (2003) Cell death during ischemia: relationship to mitochondrial depolarization and ROS generation, Am. J. Physiol. Heart Circ. Physiol., 284, H549–558.PubMedCrossRefGoogle Scholar
  143. 143.
    Fan, X., Hussien, R., and Brooks, G. A. (2010) H2O2-induced mitochondrial fragmentation in C2C12 myocytes, Free Radic. Biol. Med., 49, 1646–1654.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Arimura, S. I., Kurisu, R., Sugaya, H., Kadoya, N., and Tsutsumi, N. (2017) Cold treatment induces transient mitochondrial fragmentation in Arabidopsis thaliana in a way that requires DRP3A but not ELM1 or an ELM1-like homologue, ELM2, Int. J. Mol. Sci., 18, E2161.PubMedCrossRefGoogle Scholar
  145. 145.
    Rosdah, A. A., Holien, J. K., Delbridge, L. M., Dusting, G. J., and Lim, S. Y. (2016) Mitochondrial fission–a drug target for cytoprotection or cytodestruction? Pharmacol. Res. Perspect., 4, e00235.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Karbowski, M., Arnoult, D., Chen, H., Chan, D. C., Smith, C. L., and Youle, R. J. (2004) Quantitation of mitochondrial dynamics by photolabeling of individual organelles shows that mitochondrial fusion is blocked dur-ing the Bax activation phase of apoptosis, J. Cell Biol., 164, 493–499.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Karbowski, M., and Youle, R. J. (2003) Dynamics of mitochondrial morphology in healthy cells and during apopto-sis, Cell Death Differ., 10, 870–880.PubMedCrossRefGoogle Scholar
  148. 148.
    Kagan, V. E., Bayir, H. A., Belikova, N. A., Kapralov, O., Tyurina, Y. Y., Tyurin, V. A., Jiang, J., Stoyanovsky, D. A., Wipf, P., Kochanek, P. M., Greenberger, J. S., Pitt, B., Shvedova, A. A., and Borisenko, G. (2009) Cytochrome c/cardiolipin relations in mitochondria: a kiss of death, Free Radic. Biol. Med., 46, 1439–1453.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Jezek, P., Zackova, M., Ruzicka, M., Skobisova, E., and Jaburek, M. (2004) Mitochondrial uncoupling proteins–facts and fantasies, Physiol. Res., 53, Suppl. 1, S199–211.PubMedGoogle Scholar
  150. 150.
    Crichton, P. G., Lee, Y., and Kunji, E. R. (2017) The molecular features of uncoupling protein 1 support a conventional mitochondrial carrier-like mechanism, Biochimie, 134, 35–50.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. Y. Mulkidjanian
    • 1
    • 2
    • 3
    Email author
  • D. N. Shalaeva
    • 1
  • K. G. Lyamzaev
    • 1
  • B. V. Chernyak
    • 1
  1. 1.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
  2. 2.School of Bioengineering and BioinformaticsLomonosov Moscow State UniversityMoscowRussia
  3. 3.Department of PhysicsOsnabrueck UniversityOsnabrueckGermany

Personalised recommendations