Biochemistry (Moscow)

, Volume 83, Issue 10, pp 1255–1262 | Cite as

The Expression of Matryoshka Gene Encoding a Homologue of Kunitz Peptidase Inhibitor Is Regulated Both at the Level of Transcription and Translation

  • E. V. Sheshukova
  • T. V. Komarova
  • N. M. Ershova
  • A. M. Bronstein
  • Y. L. DorokhovEmail author
Short Communications


The gene for Kunitz peptidase inhibitor-like protein (KPILP) contains nested alternative open reading frame (aORF) that controls expression of the maternal mRNA. The content of NbKPILP mRNA in intact leaves of Nicotiana benthamiana plant is low but increases significantly upon extended dark exposure or when foreign nucleic acid is overexpressed in the cells. The NbKPILP gene promoter along with the expressed nested aORF are likely to play an important role in maintaining the levels of NbKPILP mRNA. To elucidate the role of NbKPILP promoter, we isolated a fragment of N. benthamiana chromosomal DNA upstream of the NbKPILP transcription start, sequenced it, and created constructs in which reporter E. coli uidA gene coding for β-D-glucuronidase (GUS) was placed under control of the NbKPILP promoter. By assessing the efficacy of uidA mRNA synthesis directed by the NbKPILP promoter and 35S promoter of the cauliflower mosaic virus in a transient expression system, we showed that the levels of GUS accumulation were comparable for both promoters. Prolonged incubation of the agroinjected plants in the darkness stimulated accumulation of the uidA mRNA directed by the NbKPILP promoter. Our experiments indicate that along with regulation at the transcriptional level, expression of NbKPILP mRNA can be affected by expression of the nested aORF controlled by the polypurine block (PPB) located upstream of its start codon, since introduction of mutations in the PPB resulted in significant accumulation of the NbKPILP mRNA. Nucleotide replacement in the aORF start codon led to the drastic increase in the amounts of NbKPILP mRNA and its protein product.


Agrobacterium tumefaciens transient expression Kunitz peptidase inhibitor matryoshka gene promoter translation abiotic factor polypurine block 



nested alternative reading frame




Kunitz peptidase inhibitor


(Nicotiana benthamiana) Kunitz peptidase inhibitor-like protein


polypurine block


NbKPILP promoter


quantitative reverse transcription polymerase chain reaction


cauliflower mosaic virus (CaMV) 35S RNA promoter


(short) ORF


peptide encoded by sORF


3′-untranslated region


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Neto, J. R. C. F., da Silva, M. D., Pandolfi, V., Crovella, S., Benko-Iseppon, A. M., and Kido, E. A. (2016) Epigenetic signals on plant adaptation: a biotic stress perspective, Curr. Protein Pept. Sci., 8, 352–367.Google Scholar
  2. 2.
    Ribrioux, S., Brungger, A., Baumgarten, B., Seuwen, K., and John, M. R. (2008) Bioinformatics prediction of overlapping frameshifted translation products in mammalian transcripts, BMC Genomics, 9, 122.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Andrews, S. J., and Rothnagel, J. A. (2014) Emerging evidence for functional peptides encoded by short open reading frames, Nat. Rev. Genet., 15, 193–204.CrossRefPubMedGoogle Scholar
  4. 4.
    Hayden, C. A., and Jorgensen, R. A. (2007) Identification of novel conserved peptide uORF homology groups in Arabidopsis and rice reveals ancient eukaryotic origin of select groups and preferential association with transcription factor-encoding genes, BMC Biol., 5, 32.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Tran, M. K., Schultz, C. J., and Baumann, U. (2008) Conserved upstream open reading frames in higher plants, BMC Genomics, 9, 361.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Vaughn, J. N., Ellingson, S. R., Mignone, F., and Arnim, A. (2012) Known and novel post-transcriptional regulatory sequences are conserved across plant families, RNA, 18, 368–384.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Jorgensen, R. A., and Dorantes-Acosta, A. E. (2012) Conserved peptide upstream open reading frames are associated with regulatory genes in angiosperms, Front. Plant Sci., 3, 191.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Bailey-Serres, J., and Ma, W. (2017) Plant biology: an immunity boost combats crop disease, Nature, 545, 420–421.CrossRefPubMedGoogle Scholar
  9. 9.
    Juntawong, P., Girke, T., Bazin, J., and Bailey-Serres, J. (2014) Translational dynamics revealed by genome-wide profiling of ribosome footprints in Arabidopsis, Proc. Natl. Acad. Sci. USA, 111, 203–212.CrossRefGoogle Scholar
  10. 10.
    Schepetilnikov, M., and Ryabova, L. A. (2017) Auxin signaling in regulation of plant translation reinitiation, Front. Plant Sci., 8, 1014.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Sesma, A., Castresana, C., and Castellano, M. M. (2017) Regulation of translation by TOR, eIF4E and eIF2α in plants: current knowledge, challenges and future perspec-tives, Front. Plant Sci., 8, 644.CrossRefPubMedGoogle Scholar
  12. 12.
    Tanaka, M., Sotta, N., Yamazumi, Y., Yamashita, Y., Miwa, K., Murota, K., Chiba, Y., Hirai, M. Y., Akiyama, T., Onouchi, H., Naito, S., and Fujiwara, T. (2016) The minimum open reading frame, AUG-stop, induces boron-dependent ribosome stalling and mRNA degradation, Plant Cell, 28, 2830–2849.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Xu, G., Greene, G. H., Yoo, H., Liu, L., Marques, J., Motley, J., and Dong, X. (2017) Global translational reprogramming is a fundamental layer of immune regulation in plants, Nature, 545, 487–490.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Xu, G., Yuan, M., Ai, C., Liu, L., Zhuang, E., Karapetyan, S., Wang, S., and Dong, X. (2017) uORF-mediated trans-lation allows engineered plant disease resistance without fitness costs, Nature, 545, 491–494.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Dong, X., Wang, D., Liu, P., Li, C., Zhao, Q., Zhu, D., and Yu, J. (2013) Zm908p11, encoded by a short open reading frame (sORF) gene, functions in pollen tube growth as a profilin ligand in maize, J. Exp. Bot., 64, 2359–2372.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hanada, K., Higuchi-Takeuchi, M., Okamoto, M., Yoshizumi, T., Shimizu, M., Nakaminami, K., Nishi, R., Ohashi, C., Iida, K., Tanaka, M., Horii, Y., Kawashima, M., Matsui, K., Toyoda, T., Shinozaki, K., Seki, M., and Matsui, M. (2013) Small open reading frames associated with morphogenesis are hidden in plant genomes, Proc. Natl. Acad. Sci. USA, 110, 2395–2400.CrossRefPubMedGoogle Scholar
  17. 17.
    Sheshukova, E. V., Komarova, T. V., Ershova, N. M., Shindyapina, A. V., and Dorokhov, Y. L. (2017) An alternative nested reading frame may participate in the stress-dependent expression of a plant gene, Front. Plant Sci., 8, 2137.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Corley, M., Solem, A., Phillips, G., Lackey, L., Ziehr, B., Vincent, H. A., Mustoe, A. M., Ramos, S. B. V., Weeks, K. M., Moorman, N. J., and Laederach, A. (2017) An RNA structure-mediated, posttranscriptional model of human α-1-antitrypsin expression, Proc. Natl. Acad. Sci. USA, 114, 10244–10253.CrossRefGoogle Scholar
  19. 19.
    Dorokhov, Y. L., Skulachev, M. V., Ivanov, P. A., Zvereva, S. D., Tjulkina, L. G., Merits, A., Gleba, Y. Y., Hohn, T., and Atabekov, J. G. (2002) Polypurine (A)-rich sequences pro-mote cross-kingdom conservation of internal ribosome entry, Proc. Natl. Acad. Sci. USA, 99, 5301–5306.CrossRefPubMedGoogle Scholar
  20. 20.
    Maniatis, T., Fritsch, E., and Sambroock, D. (1984) in Methods of Genetic Engineering. Molecular Cloning [Russian translation], Mir, Moscow.Google Scholar
  21. 21.
    Lukyanov, S. A., Gurskaia, N. G., Luk’ianov, K. A., Tarabykin, V. S., and Sverdlov, E. D. (1994) Highly-effective subtractive hybridization of cDNA, Bioorg. Khim., 20, 701–704.Google Scholar
  22. 22.
    Lukyanov, K. A., Gurskaya, N. G., Bogdanova, E. A., and Lukyanov, S. A. (1998) Selective suppression of polymerase chain reaction, Bioorg. Khim., 25, 163–170.Google Scholar
  23. 23.
    Siebert, P. D., Chenchik, A., Kellogg, D. E., Lukyanov, K. A., and Lukyanov, S. A. (1995) An improved PCR method for walking in uncloned genomic DNA, Nucleic Acids Res., 23, 1087–1088.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Jefferson, R. (1987) Assaying chimeric genes in plants: the GUS gene fusion system, Plant Mol. Biol. Rep., 5, 387–405.CrossRefGoogle Scholar
  25. 25.
    Pfaffl, M. W. (2001) A new mathematical model for relative quantification in real-time RT-PCR, Nucleic Acids Res., 29, e45.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Benfey, P. N., Ren, L., and Chua, N. H. (1990) Combinatorial and synergistic properties of CaMV 35S enhancer subdomains, EMBO J., 9, 1685–1696.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Odell, J. T., Knowlton, S., Lin, W., and Mauvais, C. J. (1988) Properties of an isolated transcription stimulating sequence derived from the cauliflower mosaic virus 35S promoter, Plant Mol. Biol., 10, 263–272.CrossRefPubMedGoogle Scholar
  28. 28.
    Topfer, R., Prols, M., Schell, J., and Steinbiß, H. H. (1988) Transient gene expression in tobacco protoplasts: II. Comparison of the reporter gene systems for CAT, NPT II, and GUS, Plant Cell Rep., 7, 225–228.CrossRefPubMedGoogle Scholar
  29. 29.
    Ivanov, I. P., Loughran, G., and Atkins, J. F. (2008) uORFs with unusual translational start codons autoregulate expression of eukaryotic ornithine decarboxylase homologs, Proc. Natl. Acad. Sci. USA, 105, 10079–10084.CrossRefPubMedGoogle Scholar
  30. 30.
    Asano, K. (2014) Why is start codon selection so precise in eukaryotes? Translation, 2, e28387.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Chugunova, A., Navalayeu, T., Dontsova, O., and Sergiev, P. (2018) Mining for small translated ORFs, J. Proteome Res., 17, 1–11.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. V. Sheshukova
    • 1
  • T. V. Komarova
    • 1
    • 2
  • N. M. Ershova
    • 1
    • 2
  • A. M. Bronstein
    • 3
  • Y. L. Dorokhov
    • 1
    • 2
    Email author
  1. 1.Vavilov Institute of General GeneticsRussian Academy of SciencesMoscowRussia
  2. 2.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
  3. 3.Sechenov First Moscow State Medical UniversityMoscowRussia

Personalised recommendations