Advertisement

Biochemistry (Moscow)

, Volume 83, Issue 10, pp 1245–1254 | Cite as

SkQ1 Controls CASP3 Gene Expression and Caspase-3-Like Activity in the Brain of Rats under Oxidative Stress

  • S. B. Panina
  • O. I. Gutsenko
  • N. P. MilyutinaEmail author
  • I. V. Kornienko
  • A. A. Ananyan
  • D. Yu. Gvaldin
  • A. A. Plotnikov
  • V. V. Vnukov
Article
  • 28 Downloads

Abstract

Here, we studied the effect of the mitochondria-targeted antioxidant SkQ1 (plastoquinone cationic derivative) on the CASP3 gene expression and caspase-3 activity in rat cerebral cortex and brain mitochondria under normal conditions and in oxidative stress induced by hyperbaric oxygenation (HBO). Under physiological conditions, SkQ1 administration (50 nmol/kg, 5 days) did not affect the CASP3 gene expression and caspase-3-like activity in the cortical cells, as well as caspase-3-like activity in brain mitochondria, but caused a moderate decrease in the content of primary products of lipid peroxidation (LPO) and an increase in the reduced glutathione (GSH) level. HBO-induced oxidative stress (0.5 MPa, 90 min) was accompanied by significant upregulation of CASP3 mRNA and caspase-3-like activity in the cerebral cortex, activation of the mitochondrial enzyme with simultaneous decrease in the GSH content, increase in the glutathione reductase activity, and stimulation of LPO. Administration of SkQ1 before the HBO session maintained the basal levels of the CASP3 gene expression and enzyme activity in the cerebral cortex cells and led to the normalization of caspase-3-like activity and redox parameters in brain mitochondria. We hypothesize that SkQ1 protects brain cells from the HBO-induced oxidative stress due to its antioxidant activity and stimulation of antiapoptotic mechanisms.

Keywords

mitochondria-targeted antioxidant brain mitochondria CASP3 gene expression caspase-3 hyperoxia 

Abbreviations

DC

diene conjugate

EPO

erythropoietin

GR

glutathione reductase

GSH

glutathione

HBO

hyperbaric oxygenation

LPO

lipid peroxidation

MDA

malonic dialdehyde

SB

Schiff bases

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Circu, M. L., and Aw, T. Y. (2010) Reactive oxygen species, cellular redox systems, and apoptosis, Free Radic. Biol. Med., 48, 749–762.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Sinha, K., Das, J., Pal, P. B., and Sil, P. C. (2013) Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis, Arch. Toxicol., 87, 1157–1180.CrossRefPubMedGoogle Scholar
  3. 3.
    Redza-Dutordoir, M., and Averill-Bates, D. A. (2016) Activation of apoptosis signaling pathways by reactive oxy-gen species, Biochim. Biophys. Acta, 1863, 2977–2992.CrossRefPubMedGoogle Scholar
  4. 4.
    Clark, J. (2008) Oxygen toxicity, in Physiology and Medicine of Hyperbaric Oxygen Therapy (Neuman, T. S., and Thom, S. R., eds.), Saunders, Philadelphia, PA, pp. 527–563.Google Scholar
  5. 5.
    Metrailler-Ruchonnet, I., Pagano, A., Carnesecchi, S., Ody, C., Donati, Y., and Argiroffo, C. B. (2007) Bcl-2 protects against hyperoxia-induced apoptosis through inhibition of the mitochondria-dependent pathway, Free Radic. Biol. Med., 42, 1062–1074.CrossRefPubMedGoogle Scholar
  6. 6.
    Kim, G. H., Lee, J. J., Lee, S. H., Chung, Y. H., Cho, H. S., Kim, J. A., and Kim, M. K. (2016) Exposure of isoflurane-treated cells to hyperoxia decreases cell viability and activates the mitochondrial apoptotic pathway, Brain Res., 1636, 13–20.CrossRefPubMedGoogle Scholar
  7. 7.
    Gore, A., Muralidhar, M., Espey, M. G., Degenhardt, K., and Mantell, L. L. (2010) Hyperoxia sensing: from molec-ular mechanisms to significance in disease, J. Immunotoxicol., 7, 239–254.CrossRefPubMedGoogle Scholar
  8. 8.
    Yis, U., Kurul, S. H., Kumral, A., Cilaker, S., Tugyan, K., Genc, S., and Yilmaz, O. (2008) Hyperoxic exposure leads to cell death in the developing brain, Brain Dev., 30, 556–562.CrossRefPubMedGoogle Scholar
  9. 9.
    Hu, X., Qiu, J., Grafe, M. R., Rea, H. C., Rassin, D. K., and Perez-Polo, J. R. (2003) Bcl-2 family members make different contributions to cell death in hypoxia and/or hyperoxia in rat cerebral cortex, Int. J. Dev. Neurosci., 21, 371–377.CrossRefPubMedGoogle Scholar
  10. 10.
    Vnukov, V. V., Milyutina, N. P., Ananyan, A. A., Danilenko, A. O., Gutsenko, O. I., and Verbitsky, E. V. (2013) Effect of the cationic derivative 10-(6′-plasto-quinonyl)decyltriphenylphosphonium (SkQ1) on the intensity of apoptosis and structure of membranes of rat lymphocytes in oxidative stress induced by hyperbaric oxygenation, Vestnik Yuzhn. Res. Center, 9, 78–86.Google Scholar
  11. 11.
    Song, B., Xie, B., Wang, C., and Li, M. (2011) Caspase-3 is a target gene of c-Jun: ATF2 heterodimers during apoptosis induced by activity deprivation in cerebellar granule neurons, Neurosci. Lett., 505, 76–81.CrossRefPubMedGoogle Scholar
  12. 12.
    Parrish, A. B., Freel, C. D., and Kornbluth, S. (2013) Cellular mechanisms controlling caspase activation and function, Cold Spring Harb. Perspect. Biol., 5, 1–24.CrossRefGoogle Scholar
  13. 13.
    Zhang, L., Wang, K., Lei, Y., Li, Q., Nice, E. C., and Huang, C. (2015) Redox signaling: potential arbitrator of autophagy and apoptosis in therapeutic response, Free Radic. Biol. Med., 89, 452–465.CrossRefPubMedGoogle Scholar
  14. 14.
    Skulachev, V. P. (2012) Mitochondria-targeted antioxidants as promising drugs for treatment of age-related brain dis-eases, J. Alzheimer’s Dis., 28, 283–289.CrossRefGoogle Scholar
  15. 15.
    Skulachev, M. V., Antonenko, Y. N., Anisimov, V. N., Chernyak, B. V., Cherepanov, D. A., Chistyakov, V. A., Egorov, M. V., Kolosova, N. G., Korshunova, G. A., Lyamzaev, K. G., Plotnikov, E. Y., Roginsky, V. A., Savchenko, A. Y., Severina, I. I., Severin, F. F., Shkurat, T. P., Tashlitsky, V. N., Shidlovsky, K. M., Vyssokikh, M. Y., Zamyatnin, A. A., Jr., Zorov, D. B., and Skulachev, V. P. (2011) Mitochondria-targeted plastoquinone derivatives. Effect on senescence and acute age-related pathologies, Curr. Drug Targets, 12, 800–826.CrossRefPubMedGoogle Scholar
  16. 16.
    Silachev, D. N., Plotnikov, E. Y., Zorova, L. D., Pevzner, I. B., Sumbatyan, N. V., Korshunova, G. A., Gulyaev, M. V., Pirogov, Y. A., Skulachev, V. P., and Zorov, D. B. (2015) Neuroprotective effects of mitochondria-targeted plasto-quinone and thymoquinone in a rat model of brain ischemia/reperfusion injury, Molecules, 20, 14487–14503.CrossRefPubMedGoogle Scholar
  17. 17.
    Antonenko, Y. N., Avetisyan, A. V., Bakeeva, L. E., Chernyak, B. V., Chertkov, V. A., Domnina, L. V., Ivanova, O. Y., Izyumov, D. S., Khailova, L. S., Klishin, S. S., Korshunova, G. A., Lyamzaev, K. G., Muntyan, M. S., Nepryakhina, O. K., Pashkovskaya, A. A., Pletjushkina, O. Y., Pustovidko, A. V., Roginsky, V. A., Rokitskaya, T. I., Ruuge, E. K., Saprunova, V. B., Severina, I. I., Simonyan, R. A., Skulachev, I. V., Skulachev, M. V., Sumbatyan, N. V., Sviryaeva, I. V., Tashlitsky, V. N., Vassiliev, J. M., Vyssokikh, M. Y., Yaguzhinsky, L. S., Zamyatnin, A. A., Jr., and Skulachev, V. P. (2008) Mitochondria-targeted plasto-quinone derivatives as tools to interrupt execution of the aging program. 1. Cationic plastoquinone derivatives: syn-thesis and in vitro studies, Biochemistry (Moscow), 73, 1273–1287.CrossRefGoogle Scholar
  18. 18.
    Skulachev, V. P., Antonenko, Y. N., Cherepanov, D. A., Chernyak, B. V., Izyumov, D. S., Khailova, L. S., Klishin, S. S., Korshunova, G. A., Lyamzaev, K. G., Pletjushkina, O. Y., Roginsky, V. A., Rokitskaya, T. I., Severin, F. F., Severina, I. I., Simonyan, R. A., Skulachev, M. V., Sumbatyan, N. V., Sukhanova, E. I., Tashlitsky, V. N., Trendeleva, T. A., Vyssokikh, M. Y., and Zvyagilskaya, R. A. (2010) Prevention of cardiolipin oxidation and fatty acid cycling as two antioxidant mechanisms of cationic deriva-tives of plastoquinone (SkQs), Biochim. Biophys. Acta, 1797, 878–889.CrossRefPubMedGoogle Scholar
  19. 19.
    Galkin, I. I., Pletjushkina, O. Y., Zinovkin, R. A., Zakharova, V. V., Birjukov, I. S., Chernyak, B. V., and Popova, E. N. (2014) Mitochondria-targeted antioxidants prevent TNFα-induced endothelial cell damage, Biochemistry (Moscow), 79, 124–130.CrossRefGoogle Scholar
  20. 20.
    Troy, C. M., and Jean, Y. Y. (2015) Caspases: therapeutic targets in neurologic disease, Neurotherapeutics, 12, 42–48.CrossRefPubMedGoogle Scholar
  21. 21.
    Glushakova, O. Y., Glushakov, A. A., Wijesinghe, D. S., Valadka, A. B., Hayes, R. L., and Glushakov, A. V. (2017) Prospective clinical biomarkers of caspase-mediated apoptosis associated with neuronal and neurovascular damage following stroke and other severe brain injuries: implica-tions for chronic neurodegeneration, Brain Circ., 3, 87–108.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Lukash, A. I., Vnukov, V. V., Ananyan, A. A., Milyutina, N. P., and Kvasha, P. N. (1996) Metal-Containing Compounds of Blood Plasma in Hyperbaric Oxygenation (Experimental and Clinical Aspects) [in Russian], RGU Publishers, Rostov-on-Don.Google Scholar
  23. 23.
    Chistyakov, V. A., Alexandrova, A. A., Milyutina, N. P., Prokof’ev, V. N., Mashkina, E. V., Gutnikova, L. V., Dem’yanenko, S. V., and Serezhenkov, V. A. (2010) Effect of plastoquinone derivative 10-(6′-plastoquinonyl)decylt-riphenylphosphonium (SkQ1) on contents of steroid hor-mones and NOlevel in rats, Biochemistry (Moscow), 75, 1383–1387.CrossRefGoogle Scholar
  24. 24.
    Eshchenko, N. D., Volsky, G. G., and Prokhorova, M. I. (1982) Methods of Biochemical Investigations (Lipid and Energy Metabolism) (Prokhorova, M. I., ed.) [in Russian], Leningrad University Publishers, Leningrad.Google Scholar
  25. 25.
    Walsh, J. G., Cullen, S. P., Sheridan, C., Luthi, A. U., Gerner, C., and Martin, S. J. (2008) Executioner caspase-3 and caspase-7 are functionally distinct proteases, Proc. Natl. Acad. Sci. USA, 105, 12815–12819.CrossRefPubMedGoogle Scholar
  26. 26.
    Stalnaya, I. D. (1977) Method of determination of diene conjugation of unsaturated higher fatty acids, in Modern Methods in Biochemistry (Orekhovich, V. N., ed.) [in Russian], Meditsina, Moscow, pp. 63–64.Google Scholar
  27. 27.
    Stalnaya, I. D., and Garishvili, T. G. (1977) Method of determination of malonic dialdehyde with thiobarbituric acid, in Modern Methods in Biochemistry (Orekhovich, V. N., ed.) [in Russian], Meditsina, Moscow, pp. 66–68.Google Scholar
  28. 28.
    Bidlack, W. R., and Tappel, A. T. (1973) Fluorescent prod-ucts of phospholipids during lipid peroxidation, Lipids, 8, 203–209.CrossRefPubMedGoogle Scholar
  29. 29.
    Bligh, E., and Dyer, W. (1959) Rapid method of lipids extraction and purification, Can. J. Biochem. Physiol., 37, 911–917.CrossRefPubMedGoogle Scholar
  30. 30.
    Yusupova, L. B. (1989) Increasing the determination accu-racy of glutathione reductase of red blood cells, Lab. Delo, 4, 19–21.Google Scholar
  31. 31.
    Ellman, Q. L. (1959) Tissue sulfhydryl groups, Arch. Biochem. Biophys., 82, 70–77.CrossRefPubMedGoogle Scholar
  32. 32.
    Mannick, J. B., Schonho, C., Papeta, N., Ghafourifa, P., Szibor, M., Fang, K., and Gaston, B. (2001) S-Nitrosylation of mitochondrial caspases, J. Cell Biol., 154, 1111–1116.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Tiwari, M., Sharma, L. K., Saxena, A. K., and Godbole, M. M. (2015) Interaction between mitochondria and cas-pases: apoptotic and non-apoptotic roles, Cell Biol., 3, 22–30.CrossRefGoogle Scholar
  34. 34.
    Zhivotovsky, B., Samali, A., Gahm, A., and Orrenius, S. (1999) Caspases: their intracellular localization and translocation during apoptosis, Cell Death Differ., 6, 644–651.CrossRefPubMedGoogle Scholar
  35. 35.
    Samali, A., Zhivotovsky, B., Jones, D. P., and Orrenius, S. (1998) Detection of pro-caspase-3 in cytosol and mito-chondria of various tissues, FEBS Lett., 431, 167–169.CrossRefPubMedGoogle Scholar
  36. 36.
    Yakovlev, A. A. (2016) Pleiotropic Proteases in the Brain Functioning: Caspase-3 and Cathepsin B: Doctoral dissertation [in Russian], Moscow.Google Scholar
  37. 37.
    Kaminsky, Y. G., Kosenko, E. A., Venediktova, N. I., Felipo, V., and Montoliu, V. (2007) Apoptotic markers in the mitochondria, cytosol, and nuclei of brain cells during ammonia toxicity, Neurochem. J., 1, 78–85.CrossRefGoogle Scholar
  38. 38.
    Kosenko, E., Poghosyan, A., and Kaminsky, Y. (2011) Subcellular compartmentalization of proteolytic enzymes in brain regions and the effects of chronic β-amyloid treat-ment, Brain Res., 1369, 184–193.CrossRefPubMedGoogle Scholar
  39. 39.
    Liu, W., Wang, G., and Yakovlev, F. G. (2002) Identification and functional analysis of the rat caspase-3 gene promoter, J. Biol. Chem., 277, 8273–8278.CrossRefPubMedGoogle Scholar
  40. 40.
    Terraneo, L., and Samaja, M. (2017) Comparative response of brain to chronic hypoxia and hyperoxia, Int. J. Mol. Sci., 18, 2–24.Google Scholar
  41. 41.
    Wright, C. J., and Dennery, P. A. (2009) Manipulation of gene expression by oxygen: a primer from bedside to bench, Pediatr. Res., 66, 3–9.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Ryu, H., Lee, J., Zaman, K., Kubilis, J., Ferrante, R. J., Ross, B. D., Neve, R., and Ratan, R. R. (2003) Sp1 and Sp3 are oxidative stress-inducible, antideath transcription factors in cortical neurons, J. Neurosci., 23, 3597–3606.CrossRefPubMedGoogle Scholar
  43. 43.
    Dasari, A., Bartholomew, J. N., Volonte, D., and Galbiati, F. (2006) Oxidative stress induces premature senescence by stimulating caveolin-1 gene transcription through p38 mitogen-activated protein kinase/Sp1-mediated activation of two GC-rich promoter elements, Cancer Res., 66, 10805–10814.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Vnukov, V. V., Gutsenko, O. I., Milyutina, N. P., Kornienko, I. V., Ananyan, A. A., Plotnikov, A. A., and Panina, S. B. (2017) SkQ1 regulates expression of Nrf2, ARE-controlled genes encoding antioxidant enzymes, and their activity in cerebral cortex under oxidative stress, Biochemistry (Moscow), 82, 942–952.CrossRefGoogle Scholar
  45. 45.
    Niture, S. K., and Jaiswal, A. K. (2012) Nrf2 protein up-regulates antiapoptotic protein Bcl-2 and prevents cellular apoptosis, J. Biol. Chem., 287, 9873–9886.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Niture, S. K., and Jaiswal, A. K. (2013) Nrf2-induced anti-apoptotic Bcl-xL protein enhances cell survival and drug resistance, Free Radic. Biol. Med., 57, 119–131.CrossRefPubMedGoogle Scholar
  47. 47.
    Liang, H., Ran, Q., Jang, Y. C., Holstein, D., Lechleiter, J., McDonald-Marsh, T., Musatov, A., Song, W., Van Remmen, H., and Richardson, A. (2009) Glutathione per-oxidase 4 differentially regulates the release of apoptogenic proteins from mitochondria, Free Radic. Biol. Med., 47, 312–320.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Yoo, S.-E., Chen, L., Na, R., Liu, Y., Rios, C., Van Remmen, H., Richardson, A., and Ran, Q. (2012) Gpx4 ablation in adult mice results in a lethal phenotype accom-panied by neuronal loss in brain, Free Radic. Biol. Med., 52, 1820–1827.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Maguire, J. J., Tyurina, Y. Y., Mohammadyani, D., Kapralov, A. A., Anthonymuthu, T. S., Qua, F., Amoscato, A. A., Sparvero, L. J., Tyurin, V. A., Planas-Iglesias, J., He, R.-R., Klein-Seetharaman, J., Bayir, H., and Kagan, V. E. (2017) Known unknowns of cardiolipin signaling: the best is yet to come, Biochim. Biophys. Acta, 1862, 8–24.CrossRefGoogle Scholar
  50. 50.
    Plotnikov, E. Y., Chupyrkina, A. A., Jankauskas, S. S., Pevzner, I. B., Silachev, D. N., Skulachev, V. P., and Zorov, D. B. (2011) Mechanisms of nephroprotective effect of mitochondria-targeted antioxidants under rhabdomyolysis and ischemia/reperfusion, Biochim. Biophys. Acta, 1812, 77–86.CrossRefPubMedGoogle Scholar
  51. 51.
    Silachev, D. N., Isaev, N. K., Pevzner, I. B., Zorova, L. D., Stelmashook, E. V., Novikova, S. V., Plotnikov, E. Y., Skulachev, V. P., and Zorov, D. B. (2012) The mitochon-dria-targeted antioxidants and remote kidney precondi-tioning ameliorate brain damage through kidney-to-brain crossstalk, PLoS One, 7, 1–11.CrossRefGoogle Scholar
  52. 52.
    Sifringer, M., Brait, D., Weichelt, U., Zimmerman, G., Endesfelder, S., Brehmer, F., von Haefen, C., Friedman, A., Soreq, H., Bendix, I., Gerstner, B., and Felderhoff-Mueser, U. (2010) Erythropoietin attenuates hyperoxia-induced oxidative stress in the developing rat brain, Brain Behav. Immun., 24, 792–799.CrossRefPubMedGoogle Scholar
  53. 53.
    Bailey, D. M., Lundby, C., Berg, R. M., Taudorf, S., Rahmouni, H., Gutowski, M., Mulholland, C. W., Sullivan, J. L., Swenson, E. R., McEneny, J., Young, I. S., Pedersen, B. K., Moller, K., Pietri, S., and Culcasi, M. (2014) On the antioxidant properties of erythropoietin and its association with the oxidative-nitrosative stress response to hypoxia in humans, Acta Physiol. (Oxf.), 212, 175–187.CrossRefGoogle Scholar
  54. 54.
    Meng, H., Guo, J., Wang, H., Yan, P., Niu X., and Zhang J. (2014) Erythropoietin activates Keap1–Nrf2/ARE pathway in rat brain after ischemia, Int. J. Neurosci., 124, 362–368.CrossRefPubMedGoogle Scholar
  55. 55.
    Wu, H., Zhao, J., Chen, M., Wang, H., Yao, Q., Fan, J., and Zhang, M. (2017) The anti-aging effect of erythropoietin via the ERK/Nrf2-Are pathway in aging rats, J. Mol. Neurosci., 61, 449–458.CrossRefPubMedGoogle Scholar
  56. 56.
    Firsov, A. M., Kotova, E. A., Orlov, V. N., Antonenko, Y. N., and Skulachev, V. P. (2016) A mitochondria-targeted antioxidant can inhibit peroxidase activity of cytochrome c by detachment of the protein from liposomes, FEBS Lett., 590, 2836–2843.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. B. Panina
    • 1
  • O. I. Gutsenko
    • 1
  • N. P. Milyutina
    • 1
    Email author
  • I. V. Kornienko
    • 1
  • A. A. Ananyan
    • 1
  • D. Yu. Gvaldin
    • 1
  • A. A. Plotnikov
    • 1
  • V. V. Vnukov
    • 1
  1. 1.Department of Biochemistry and MicrobiologySouthern Federal University, Academy of Biology and BiotechnologyRostov-on-DonRussia

Personalised recommendations