Biochemistry (Moscow)

, Volume 83, Issue 10, pp 1196–1206 | Cite as

αB-Crystallin Phosphorylation: Advances and Problems

  • L. K. Muranova
  • M. V. Sudnitsyna
  • N. B. GusevEmail author


The review is dedicated to phosphorylation of αB-crystallin (HspB5), one of ubiquitously expressed small heat shock proteins. We describe the structure and properties of αB-crystallin and protein kinases involved in its phosphorylation in different cells and tissues, advantages and drawbacks of pseudophosphorylation mutants in elucidation of the mechanism of αB-crystallin functioning, effects of phosphorylation on the quaternary structure and intracellular location of αB-crystallin, interactions of αB-crystallin with different elements of the cytoskeleton, and effect of phosphorylation on the chap-erone-like activity of αB-crystallin. We also discuss the validity of experimental data obtained by overexpression of pseudophosphorylation mutants for understanding the effect of phosphorylation on physiologically important properties of αB-crystallin, as well as the question why multiple attempts to phosphorylate αB-crystallin in vitro have been unsuccessful so far.


small heat shock proteins crystallins phosphorylation protein kinases 




sHsp (or HspB)

small heat shock protein


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Maaroufi, H., and Tanguay, R. M. (2013) Analysis and phylogeny of small heat shock proteins from marine viruses and their cyanobacteria host, PLoS ONE, 8, e81207.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Basha, E., O’ Neill, H., and Vierling, E. (2012) Small heat shock proteins and alpha-crystallins: dynamic proteins with flexible functions, Trends Biochem. Sci., 37, 106–117.CrossRefPubMedGoogle Scholar
  3. 3.
    Haslbeck, M., and Vierling, E. (2015) A first line of stress defense: small heat shock proteins and their function in protein homeostasis, J. Mol. Biol., 427, 1537–1548.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kriehuber, T., Rattei, T., Weinmaier, T., Bepperling, A., Haslbeck, M., and Buchner, J. (2010) Independent evolution of the core domain and its flanking sequences in small heat shock proteins, FASEB J., 24, 3633–3642.CrossRefPubMedGoogle Scholar
  5. 5.
    Fontaine, J. M., Rest, J. S., Welsh, M. J., and Benndorf, R. (2003) The sperm outer dense fiber protein is the 10th member of the superfamily of mammalian small stress proteins, Cell Stress Chaperones, 8, 62–69.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Kappe, G., Franck, E., Verschuure, P., Boelens, W. C., Leunissen, J. A., and de Jong, W. W. (2003) The human genome encodes 10 alpha-crystallin-related small heat shock proteins: HspB1-10, Cell Stress Chaperones, 8, 53–61.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Mymrikov, E. V., Seit-Nebi, A. S., and Gusev, N. B. (2011) Large potentials of small heat shock proteins, Physiol. Rev., 91, 1123–1159.CrossRefPubMedGoogle Scholar
  8. 8.
    Bakthisaran, R., Tangirala, R., and Rao, C. M. (2015) Small heat shock proteins: role in cellular functions and pathology, Biochim. Biophys. Acta, 1854, 291–319.CrossRefPubMedGoogle Scholar
  9. 9.
    Hochberg, G. K. A., Shepherd, D. A., Marklund, E. G., Santhanagoplan, I., Degiacomi, M. T., Laganowsky, A., Allison, T. M., Basha, E., Marty, M. T., Galpin, M. R., Struwe, W. B., Baldwin, A. J., Vierling, E., and Benesch, J. L. P. (2018) Structural principles that enable oligomeric small heat-shock protein paralogs to evolve distinct func-tions, Science, 359, 930–935.CrossRefPubMedGoogle Scholar
  10. 10.
    Peschek, J., Braun, N., Rohrberg, J., Back, K. C., Kriehuber, T., Kastenmuller, A., Weinkauf, S., and Buchner, J. (2013) Regulated structural transitions unleash the chaperone activity of alphaB-crystallin, Proc. Natl. Acad. Sci. USA, 110, E3780–E3789.CrossRefPubMedGoogle Scholar
  11. 11.
    Weeks, S. D., Baranova, E. V., Heirbaut, M., Beelen, S., Shkumatov, A. V., Gusev, N. B., and Strelkov, S. V. (2014) Molecular structure and dynamics of the dimeric human small heat shock protein HSPB6, J. Struct. Biol., 185, 342–354.CrossRefPubMedGoogle Scholar
  12. 12.
    Mymrikov, E. V., Seit-Nebi, A. S., and Gusev, N. B. (2012) Heterooligomeric complexes of human small heat shock proteins, Cell Stress Chaperones, 17, 157–169.CrossRefPubMedGoogle Scholar
  13. 13.
    Arrigo, A. P. (2013) Human small heat shock proteins: protein interactomes of homo- and hetero-oligomeric complexes: an update, FEBS Lett., 587, 1959–1969.CrossRefPubMedGoogle Scholar
  14. 14.
    Bukach, O. V., Glukhova, A. E., Seit-Nebi, A. S., and Gusev, N. B. (2009) Heterooligomeric complexes formed by human small heat shock proteins HspB1 (Hsp27) and HspB6 (Hsp20), Biochim. Biophys. Acta, 1794, 486–495.CrossRefPubMedGoogle Scholar
  15. 15.
    Heirbaut, M., Lermyte, F., Martin, E. M., Beelen, S., Verschueren, T., Sobott, F., Strelkov, S. V., and Weeks, S. D. (2016) The preferential heterodimerization of human small heat shock proteins HSPB1 and HSPB6 is dictated by the N-terminal domain, Arch. Biochem. Biophys., 610, 41–50.CrossRefPubMedGoogle Scholar
  16. 16.
    Vos, M. J., Kanon, B., and Kampinga, H. H. (2009) HSPB7 is a SC35 speckle resident small heat shock protein, Biochim. Biophys. Acta, 1793, 1343–1353.CrossRefPubMedGoogle Scholar
  17. 17.
    Horwitz, J. (2003) Alpha-crystallin, Exp. Eye Res., 76, 145–153.CrossRefPubMedGoogle Scholar
  18. 18.
    Srinivas, P. N., Reddy, P. Y., and Reddy, G. B. (2008) Significance of alpha-crystallin heteropolymer with a 3: 1 alphaA/alphaB ratio: chaperone-like activity, structure and hydrophobicity, Biochem. J., 414, 453–460.CrossRefPubMedGoogle Scholar
  19. 19.
    Sharma, K. K., and Santhoshkumar, P. (2009) Lens aging: effects of crystallins, Biochim. Biophys. Acta, 1790, 1095–1108.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Jovcevski, B., Aquilina, J. A., Benesch, J. L. P., and Ecroyd, H. (2018) The influence of the N-terminal region proximal to the core domain on the assembly and chaper-one activity of alphaB-crystallin, Cell Stress Chaperones, doi: 10.1007/s12192-018-0889-y.Google Scholar
  21. 21.
    Aquilina, J. A., Benesch, J. L., Bateman, O. A., Slingsby, C., and Robinson, C. V. (2003) Polydispersity of a mammalian chaperone: mass spectrometry reveals the population of oligomers in alphaB-crystallin, Proc. Natl. Acad. Sci. USA, 100, 10611–10616.CrossRefPubMedGoogle Scholar
  22. 22.
    Braun, N., Zacharias, M., Peschek, J., Kastenmuller, A., Zou, J., Hanzlik, M., Haslbeck, M., Rappsilber, J., Buchner, J., and Weinkauf, S. (2011) Multiple molecular architectures of the eye lens chaperone alphaB-crystallin elucidated by a triple hybrid approach, Proc. Natl. Acad. Sci. USA, 108, 20491–20496.CrossRefPubMedGoogle Scholar
  23. 23.
    Jehle, S., van Rossum, B., Stout, J. R., Noguchi, S. M., Falber, K., Rehbein, K., Oschkinat, H., Klevit, R. E., and Rajagopal, P. (2009) alphaB-crystallin: a hybrid solid-state/solution-state NMR investigation reveals structural aspects of the heterogeneous oligomer, J. Mol. Biol., 385, 1481–1497.CrossRefPubMedGoogle Scholar
  24. 24.
    Delbecq, S. P., and Klevit, R. E. (2013) One size does not fit all: the oligomeric states of alphaB crystallin, FEBS Lett., 587, 1073–1080.CrossRefPubMedGoogle Scholar
  25. 25.
    Jehle, S., Vollmar, B. S., Bardiaux, B., Dove, K. K., Rajagopal, P., Gonen, T., Oschkinat, H., and Klevit, R. E. (2011) N-terminal domain of alphaB-crystallin provides a conformational switch for multimerization and structural heterogeneity, Proc. Natl. Acad. Sci. USA, 108, 6409–6414.CrossRefPubMedGoogle Scholar
  26. 26.
    Jehle, S., Rajagopal, P., Bardiaux, B., Markovic, S., Kuhne, R., Stout, J. R., Higman, V. A., Klevit, R. E., van Rossum, B. J., and Oschkinat, H. (2010) Solid-state NMR and SAXS studies provide a structural basis for the activa-tion of alphaB-crystallin oligomers, Nat. Struct. Mol. Biol., 17, 1037–1042.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Benesch, J. L., Ayoub, M., Robinson, C. V., and Aquilina, J. A. (2008) Small heat shock protein activity is regulated by variable oligomeric substructure, J. Biol. Chem., 283, 28513–28517.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Cheng, C., Xia, C. H., Huang, Q., Ding, L., Horwitz, J., and Gong, X. (2010) Altered chaperone-like activity of alpha-crystallins promotes cataractogenesis, J. Biol. Chem., 285, 41187–41193.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Lee, J. S., Liao, J. H., Wu, S. H., and Chiou, S. H. (1997) alpha-Crystallin acting as a molecular chaperonin against photodamage by UV irradiation, J. Protein Chem., 16, 283–289.CrossRefPubMedGoogle Scholar
  30. 30.
    Ecroyd, H., Meehan, S., Horwitz, J., Aquilina, J. A., Benesch, J. L., Robinson, C. V., Macphee, C. E., and Carver, J. A. (2007) Mimicking phosphorylation of alphaB-crystallin affects its chaperone activity, Biochem. J., 401, 129–141.CrossRefPubMedGoogle Scholar
  31. 31.
    Ahmad, M. F., Raman, B., Ramakrishna, T., and Rao, Ch. M. (2008) Effect of phosphorylation on alpha B-crystallin: differences in stability, subunit exchange and chaperone activity of homo and mixed oligomers of alpha B-crystallin and its phosphorylation-mimicking mutant, J. Mol. Biol., 375, 1040–1051.CrossRefPubMedGoogle Scholar
  32. 32.
    Ito, H., Kamei, K., Iwamoto, I., Inaguma, Y., Nohara, D., and Kato, K. (2001) Phosphorylation-induced change of the oligomerization state of alphaB-crystallin, J. Biol. Chem., 276, 5346–5352.CrossRefPubMedGoogle Scholar
  33. 33.
    Koteiche, H. A., and McHaourab, H. S. (2003) Mechanism of chaperone function in small heat-shock proteins. Phosphorylation-induced activation of two-mode binding in alphaB-crystallin, J. Biol. Chem., 278, 10361–10367.CrossRefPubMedGoogle Scholar
  34. 34.
    Wang, K., and Spector, A. (1996) alpha-Crystallin stabilizes actin filaments and prevents cytochalasin-induced depoly-merization in a phosphorylation-dependent manner, Eur. J. Biochem., 242, 56–66.CrossRefPubMedGoogle Scholar
  35. 35.
    Elliott, J. L., Der Perng, M., Prescott, A. R., Jansen, K. A., Koenderink, G. H., and Quinlan, R. A. (2013) The specificity of the interaction between alphaB-crystallin and desmin filaments and its impact on filament aggregation and cell viability, Philos. Trans. R. Soc. Lond. B. Biol. Sci., 368, 20120375.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Houck, S. A., and Clark, J. I. (2010) Dynamic subunit exchange and the regulation of microtubule assembly by the stress response protein human alphaB-crystallin, PLoS ONE, 5, e11795.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Haslbeck, M., Peschek, J., Buchner, J., and Weinkauf, S. (2016) Structure and function of alpha-crystallins: travers-ing from in vitro to in vivo, Biochim. Biophys. Acta, 1860, 149–166.CrossRefPubMedGoogle Scholar
  38. 38.
    Bakthisaran, R., Akula, K. K., Tangirala, R., and Rao, Ch. M. (2016) Phosphorylation of alphaB-crystallin: role in stress, aging and patho-physiological conditions, Biochim. Biophys. Acta, 1860, 167–182.CrossRefPubMedGoogle Scholar
  39. 39.
    Datskevich, P. N., Nefedova, V. V., Sudnitsyna, M. V., and Gusev, N. B. (2012) Mutations of small heat shock proteins and human congenital diseases, Biochemistry (Moscow), 77, 1500–1514.CrossRefGoogle Scholar
  40. 40.
    Thornell, E., and Aquilina, A. (2015) Regulation of alphaA-and alphaB-crystallins via phosphorylation in cellular homeostasis, Cell. Mol. Life Sci., 72, 4127–4137.CrossRefPubMedGoogle Scholar
  41. 41.
    Benndorf, R., Martin, J. L., Kosakovsky Pond, S. L., and Wertheim, J. O. (2014) Neuropathy-and myopathy-associ-ated mutations in human small heat shock proteins: char-acteristics and evolutionary history of the mutation sites, Mutat. Res. Rev. Mutat. Res., 761, 15–30.CrossRefGoogle Scholar
  42. 42.
    Boncoraglio, A., Minoia, M., and Carra, S. (2012) The family of mammalian small heat shock proteins (HSPBs): implications in protein deposit diseases and motor neu-ropathies, Int. J. Biochem. Cell Biol., 44, 1657–1669.CrossRefPubMedGoogle Scholar
  43. 43.
    Fujii, N., Takata, T., Fujii, N., and Aki, K. (2016) Isomerization of aspartyl residues in crystallins and its influence upon cataract, Biochim. Biophys. Acta, 1860, 183–191.CrossRefPubMedGoogle Scholar
  44. 44.
    MacCoss, M. J., McDonald, W. H., Saraf, A., Sadygov, R., Clark, J. M., Tasto, J. J., Gould, K. L., Wolters, D., Washburn, M., Weiss, A., Clark, J. I., and Yates, J. R., 3rd. (2002) Shotgun identification of protein modifications from protein complexes and lens tissue, Proc. Natl. Acad. Sci. USA, 99, 7900–7905.CrossRefPubMedGoogle Scholar
  45. 45.
    Miesbauer, L. R., Zhou, X., Yang, Z., Yang, Z., Sun, Y., Smith, D. L., and Smith, J. B. (1994) Post-translational modifications of water-soluble human lens crystallins from young adults, J. Biol. Chem., 269, 12494–12502.PubMedGoogle Scholar
  46. 46.
    Wilmarth, P. A., Tanner, S., Dasari, S., Nagalla, S. R., Riviere, M. A., Bafna, V., Pevzner, P. A., and David, L. L. (2006) Age-related changes in human crystallins deter-mined from comparative analysis of post-translational modifications in young and aged lens: does deamidation contribute to crystallin insolubility? J. Proteome Res., 5, 2554–2566.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Kato, K., Ito, H., Kamei, K., Inaguma, Y., Iwamoto, I., and Saga, S. (1998) Phosphorylation of alphaB-crystallin in mitotic cells and identification of enzymatic activities responsible for phosphorylation, J. Biol. Chem., 273, 28346–28354.CrossRefPubMedGoogle Scholar
  48. 48.
    Kantorow, M., Horwitz, J., van Boekel, M. A., de Jong, W. W., and Piatigorsky, J. (1995) Conversion from oligomers to tetramers enhances autophosphorylation by lens alpha A-crystallin. Specificity between alphaA-and alphaB-crystallin subunits, J. Biol. Chem., 270, 17215–17220.CrossRefPubMedGoogle Scholar
  49. 49.
    Spector, A., Chiesa, R., Sredy, J., and Garner, W. (1985) cAMP-dependent phosphorylation of bovine lens alpha-crystallin, Proc. Natl. Acad. Sci. USA, 82, 4712–4716.CrossRefPubMedGoogle Scholar
  50. 50.
    Samanta, B., Nagdas, S. K., Das, K., and Sen, P. C. (2007) Protein kinase catalytic subunit (PKAcat) from bovine lens: purification, characterization and phosphorylation of lens crystallins, Mol. Cell. Biochem., 304, 155–165.CrossRefPubMedGoogle Scholar
  51. 51.
    Lee, S. W., Rho, J. H., Lee, S. Y., Yoo, S. H., Kim, H. Y., Chung, W. T., and Yoo, Y. H. (2016) AlphaB-crystallin pro-tects rat articular chondrocytes against casein kinase II inhibition-induced apoptosis, PLoS ONE, 11, e0166450.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Maddala, R., and Rao, V. P. (2005) alpha-Crystallin local-izes to the leading edges of migrating lens epithelial cells, Exp. Cell Res., 306, 203–215.CrossRefPubMedGoogle Scholar
  53. 53.
    Launay, N., Goudeau, B., Kato, K., Vicart, P., and Lilienbaum, A. (2006) Cell signaling pathways to alphaB-crystallin following stresses of the cytoskeleton, Exp. Cell Res., 312, 3570–3584.CrossRefPubMedGoogle Scholar
  54. 54.
    Kato, K., Ito, H., Kamei, K., Iwamoto, I., and Inaguma, Y. (2002) Innervation-dependent phosphorylation and accu-mulation of alphaB-crystallin and Hsp27 as insoluble complexes in disused muscle, FASEB J., 16, 1432–1434.CrossRefPubMedGoogle Scholar
  55. 55.
    Hoover, H. E., Thuerauf, D. J., Martindale, J. J., and Glembotski, C. C. (2000) alphaB-crystallin gene induction and phosphorylation by MKK6-activated p38. A potential role for alphaB-crystallin as a target of the p38 branch of the cardiac stress response, J. Biol. Chem., 275, 23825–23833.CrossRefPubMedGoogle Scholar
  56. 56.
    Eaton, P., Fuller, W., Bell, J. R., and Shattock, M. J. (2001) AlphaB-crystallin translocation and phosphorylation: signal transduction pathways and preconditioning in the iso-lated rat heart, J. Mol. Cell. Cardiol., 33, 1659–1671.CrossRefPubMedGoogle Scholar
  57. 57.
    Moroni, M., and Garland, D. (2001) In vitro dephosphory-lation of alpha-crystallin is dependent on the state of oligomerization, Biochim. Biophys. Acta, 1546, 282–290.CrossRefPubMedGoogle Scholar
  58. 58.
    Ifeanyi, F., and Takemoto, L. (1991) Interaction of lens crystallins with lipid vesicles, Exp. Eye Res., 52, 535–538.CrossRefPubMedGoogle Scholar
  59. 59.
    Tang, D., Borchman, D., Yappert, M. C., and Cenedella, R. J. (1998) Influence of cholesterol on the interaction of alpha-crystallin with phospholipids, Exp. Eye Res., 66, 559–567.CrossRefPubMedGoogle Scholar
  60. 60.
    Su, S. P., McArthur, J. D., Friedrich, M. G., Truscott, R. J., and Aquilina, J. A. (2011) Understanding the alpha-crystallin cell membrane conjunction, Mol. Vis., 17, 2798–2807.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Wang, K., Ma, W., and Spector, A. (1995) Phosphorylation of alpha-crystallin in rat lenses is stimulated by H2O2 but phosphorylation has no effect on chaperone activity, Exp. Eye Res., 61, 115–124.CrossRefPubMedGoogle Scholar
  62. 62.
    Carver, J. A., Nicholls, K. A., Aquilina, J. A., and Truscott, R. J. (1996) Age-related changes in bovine alpha-crystallin and high-molecular-weight protein, Exp. Eye Res., 63, 639–647.CrossRefPubMedGoogle Scholar
  63. 63.
    Golenhofen, N., Htun, P., Ness, W., Koob, R., Schaper, W., and Drenckhahn, D. (1999) Binding of the stress protein alphaB-crystallin to cardiac myofibrils correlates with the degree of myocardial damage during ischemia/reperfu-sion in vivo, J. Mol. Cell. Cardiol., 31, 569–580.CrossRefPubMedGoogle Scholar
  64. 64.
    Morrison, L. E., Hoover, H. E., Thuerauf, D. J., and Glembotski, C. C. (2003) Mimicking phosphorylation of alphaB-crystallin on serine-59 is necessary and sufficient to provide maximal protection of cardiac myocytes from apoptosis, Circ. Res., 92, 203–211.CrossRefPubMedGoogle Scholar
  65. 65.
    Li, R., and Reiser, G. (2011) Phosphorylation of Ser45 and Ser59 of alphaB-crystallin and p38/extracellular regulated kinase activity determine alphaB-crystallin-mediated pro-tection of rat brain astrocytes from C2-ceramide-and stau-rosporine-induced cell death, J. Neurochem., 118, 354–364.CrossRefPubMedGoogle Scholar
  66. 66.
    Aquilina, J. A., Benesch, J. L., Ding, L. L., Yaron, O., Horwitz, J., and Robinson, C. V. (2004) Phosphorylation of alphaB-crystallin alters chaperone function through loss of dimeric substructure, J. Biol. Chem., 279, 28675–28680.CrossRefPubMedGoogle Scholar
  67. 67.
    Ito, H., Okamoto, K., Nakayama, H., Isobe, T., and Kato, K. (1997) Phosphorylation of alphaB-crystallin in response to various types of stress, J. Biol. Chem., 272, 29934–29941.CrossRefPubMedGoogle Scholar
  68. 68.
    Rogalla, T., Ehrnsperger, M., Preville, X., Kotlyarov, A., Lutsch, G., Ducasse, C., Paul, C., Wieske, M., Arrigo, A. P., Buchner, J., and Gaestel, M. (1999) Regulation of Hsp27 oligomerization, chaperone function, and protective activity against oxidative stress/tumor necrosis factor alpha by phosphorylation, J. Biol. Chem., 274, 18947–18956.CrossRefPubMedGoogle Scholar
  69. 69.
    Weeks, S. D., Muranova, L. K., Heirbaut, M., Beelen, S., Strelkov, S. V., and Gusev, N. B. (2018) Characterization of human small heat shock protein HSPB1 alpha-crystallin domain localized mutants associated with hereditary motor neuron diseases, Sci. Rep., 8, 688.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Schmidt, T., Bartelt-Kirbach, B., and Golenhofen, N. (2012) Phosphorylation-dependent subcellular localization of the small heat shock proteins HspB1/Hsp25 and HspB5/alphaB-crystallin in cultured hippocampal neu-rons, Histochem. Cell Biol., 138, 407–418.CrossRefPubMedGoogle Scholar
  71. 71.
    Bartelt-Kirbach, B., Moron, M., Glomb, M., Beck, C. M., Weller, M. P., and Golenhofen, N. (2016) HspB5/alphaB-crystallin increases dendritic complexity and protects the dendritic arbor during heat shock in cultured rat hip-pocampal neurons, Cell. Mol. Life Sci., 73, 3761–3775.CrossRefPubMedGoogle Scholar
  72. 72.
    Whittaker, R., Glassy, M. S., Gude, N., Sussman, M. A., Gottlieb, R. A., and Glembotski, C. C. (2009) Kinetics of the translocation and phosphorylation of alphaB-crystallin in mouse heart mitochondria during ex vivo ischemia, Am. J. Physiol. Heart Circ. Physiol., 296, H1633–1642.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Golenhofen, N., Ness, W., Koob, R., Htun, P., Schaper, W., and Drenckhahn, D. (1998) Ischemia-induced phosphorylation and translocation of stress protein alphaB-crystallin to Z lines of myocardium, Am. J. Physiol., 274, H1457–1464.PubMedGoogle Scholar
  74. 74.
    Fung, G., Wong, J., Berhe, F., Mohamud, Y., Xue, Y. C., and Luo, H. (2017) Phosphorylation and degradation of alphaB-crystallin during enterovirus infection facilitates viral replication and induces viral pathogenesis, Oncotarget, 8, 74767–74780.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Singh, B. N., Rao, K. S., Ramakrishna, T., Rangaraj, N., and Rao, Ch. M. (2007) Association of alphaB-crystallin, a small heat shock protein, with actin: role in modulating actin filament dynamics in vivo, J. Mol. Biol., 366, 756–767.CrossRefPubMedGoogle Scholar
  76. 76.
    Clements, R. T., Sodha, N. R., Feng, J., Mieno, S., Boodhwani, M., Ramlawi, B., Bianchi, C., and Sellke, F. W. (2007) Phosphorylation and translocation of heat shock protein 27 and alphaB-crystallin in human myocardium after cardioplegia and cardiopulmonary bypass, J. Thorac. Cardiovasc. Surg., 134, 1461–1470.CrossRefPubMedGoogle Scholar
  77. 77.
    Nicholl, I. D., and Quinlan, R. A. (1994) Chaperone activ-ity of alpha-crystallins modulates intermediate filament assembly, EMBO J., 13, 945–953.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Inaguma, Y., Ito, H., Iwamoto, I., Saga, S., and Kato, K. (2001) AlphaB-crystallin phosphorylated at Ser-59 is local-ized in centrosomes and midbodies during mitosis, Eur. J. Cell Biol., 80, 741–748.CrossRefPubMedGoogle Scholar
  79. 79.
    Aggeli, I. K., Beis, I., and Gaitanaki, C. (2008) Oxidative stress and calpain inhibition induce alphaB-crystallin phosphorylation via p38-MAPK and calcium signalling path-ways in H9c2 cells, Cell. Signal., 20, 1292–1302.CrossRefPubMedGoogle Scholar
  80. 80.
    Ciano, M., Allocca, S., Ciardulli, M. C., Della Volpe, L., Bonatti, S., and D’Agostino, M. (2016) Differential phosphorylation-based regulation of alphaB-crystallin chaper-one activity for multipass transmembrane proteins, Biochem. Biophys. Res. Commun., 479, 325–330.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Adhikari, A. S., Singh, B. N., Rao, K. S., and Rao, Ch. M. (2011) alphaB-crystallin, a small heat shock protein, mod-ulates NF-kappaB activity in a phosphorylation-dependent manner and protects muscle myoblasts from TNF-alpha induced cytotoxicity, Biochim. Biophys. Acta, 1813, 1532–1542.CrossRefPubMedGoogle Scholar
  82. 82.
    Launay, N., Tarze, A., Vicart, P., and Lilienbaum, A. (2010) Serine 59 phosphorylation of alphaB-crystallin down-regulates its anti-apoptotic function by binding and sequestering Bcl-2 in breast cancer cells, J. Biol. Chem., 285, 37324–37332.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Kamradt, M. C., Chen, F., Sam, S., and Cryns, V. L. (2002) The small heat shock protein alphaB-crystallin neg-atively regulates apoptosis during myogenic differentiation by inhibiting caspase-3 activation, J. Biol. Chem., 277, 38731–38736.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • L. K. Muranova
    • 1
  • M. V. Sudnitsyna
    • 1
  • N. B. Gusev
    • 1
    Email author
  1. 1.Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations