Advertisement

Biochemistry (Moscow)

, Volume 83, Issue 10, pp 1173–1183 | Cite as

Calcium-Dependent Desensitization of NMDA Receptors

  • D. A. SibarovEmail author
  • S. M. Antonov
Review

Abstract

Glutamate receptors play the key role in excitatory synaptic transmission in the central nervous system (CNS). N-methyl-D-aspartate-activated glutamate receptors (NMDARs) are ion channels permeable to sodium, potassium, and calcium ions that localize to the pre- and postsynaptic membranes, as well as extrasynaptic neuronal membrane. Calcium entry into dendritic spines is essential for long-term potentiation (LTP) and long-term depression (LTD) of synaptic transmission. Both LTP and LTD represent morphological and functional changes occurring in the process of memory formation. NMDAR dysfunction is associated with epilepsy, schizophrenia, migraine, dementia, and neurodegenerative diseases. Prolonged activation of extrasynaptic NMDARs causes calcium overload and apoptosis of neurons. Here, we review recent findings on the molecular mechanisms of calcium-dependent NMDAR desensitization that ensures fast modulation of NMDAR conductance in the CNS and limits calcium entry into the cells under pathological conditions. We present the data on molecular determinants related to calcium-dependent NMDAR desensitization and functional interaction of NMDARs with other ion channels and transporters. We also describe association of NMDARs with lipid membrane microdomains.

Keywords

NMDA receptors desensitization calcium sodium/calcium exchanger lipid rafts microdomains 

Abbreviations

AMPAR

α-amino-3-hydroxy-5-methyl-4-isoxazol propionic acid receptor

CaM

calmodulin

NCX

sodium-calcium exchanger

LTD

long-term depression

LTP

long-term potentiation

NMDAR

N-methyl-D-aspartate receptor

PMCA

plasma membrane calcium pump

VGCC

voltage-gated calcium channel

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pina-Crespo, J. C., and Gibb, A. J. (2002) Subtypes of NMDA receptors in new-born rat hippocampal granule cells, J. Physiol., 541, 41–64.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Hansen, K. B., Ogden, K. K., Yuan, H., and Traynelis, S. F. (2014) Distinct functional and pharmacological properties of triheteromeric GluN1/GluN2A/GluN2B NMDA receptors, Neuron, 81, 1084–1096.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Sibarov, D. A., Stepanenko, Y. D., Silantiev, I. V., Abushik, P. A., Karelina, T. V., and Antonov, S. M. (2018) Developmental changes of synaptic and extrasynaptic NMDA receptor expression in rat cerebellar neurons in vitro, J. Mol. Neurosci., 64, 300–311.PubMedCrossRefGoogle Scholar
  4. 4.
    Dingledine, R., Borges, K., Bowie, D., and Traynelis, S. F. (1999) The glutamate receptor ion channels, Pharmacol. Rev., 51, 7–61.PubMedGoogle Scholar
  5. 5.
    Glasgow, N. G., Siegler Retchless, B., and Johnson, J. W. (2015) Molecular bases of NMDA receptor subtype-dependent properties, J. Physiol., 593, 83–95.PubMedCrossRefGoogle Scholar
  6. 6.
    Kleckner, N. W., and Dingledine, R. (1988) Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes, Science, 241, 835–837.PubMedCrossRefGoogle Scholar
  7. 7.
    Wolosker, H., Blackshaw, S., and Snyder, S. H. (1999) Serine racemase: a glial enzyme synthesizing D-serine to regulate glutamate-N-methyl-D-aspartate neurotransmission, Proc. Natl. Acad. Sci. USA, 96, 13409–13414.PubMedCrossRefGoogle Scholar
  8. 8.
    Patneau, D. K., and Mayer, M. L. (1990) Structure-activi-ty relationships for amino acid transmitter candidates act-ing at N-methyl-D-aspartate and quisqualate receptors, J. Neurosci., 10, 2385–2399.PubMedCrossRefGoogle Scholar
  9. 9.
    Zarei, M. M., and Dani, J. A. (1994) Ionic permeability characteristics of the N-methyl-D-aspartate receptor channel, J. Gen. Physiol., 103, 231–248.PubMedCrossRefGoogle Scholar
  10. 10.
    Bliss, T. V. P., and Collingridge, G. L. (1993) A synaptic model of memory: long-term potentiation in the hippocampus, Nature, 361, 31–39.PubMedCrossRefGoogle Scholar
  11. 11.
    Bear, M. F. (1995) Mechanism for a sliding synaptic modification threshold, Neuron, 15, 1–4.PubMedCrossRefGoogle Scholar
  12. 12.
    Lisman, J., Schulman, H., and Cline, H. (2002) The molecular basis of CaMKII function in synaptic and behavioral memory, Nat. Rev. Neurosci., 3, 175–190.PubMedCrossRefGoogle Scholar
  13. 13.
    Malenka, R. C., and Nicoll, R. A. (1999) Long-term potentiation - a decade of progress? Science, 285, 1870–1874.PubMedCrossRefGoogle Scholar
  14. 14.
    Malenka, R. C., and Bear, M. F. (2004) LTP and LTD: an embarrassment of riches, Neuron, 44, 5–21.PubMedCrossRefGoogle Scholar
  15. 15.
    Citri, A., and Malenka, R. C. (2007) Synaptic plasticity: multiple forms, functions, and mechanisms, Neuropsychopharmacology, 33, 18–41.PubMedCrossRefGoogle Scholar
  16. 16.
    Dore, K., Aow, J., and Malinow, R. (2016) The emergence of NMDA receptor metabotropic function: insights from imaging, Front. Synapt. Neurosci., 8, 1–9.CrossRefGoogle Scholar
  17. 17.
    Choi, D. W. (1995) Calcium: still center-stage in hypoxic-ischemic neuronal death, Trends Neurosci., 18, 58–60.PubMedCrossRefGoogle Scholar
  18. 18.
    Paoletti, P., Bellone, C., and Zhou, Q. (2013) NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease, Nat. Rev. Neurosci., 14, 383–400.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Mayer, M. L., and Armstrong, N. (2004) Structure and function of glutamate receptor ion channels, Annu. Rev. Physiol., 66, 161–181.PubMedCrossRefGoogle Scholar
  20. 20.
    Mayer, M. L., Vyklicky, L., and Westbrook G. L. (1989) Modulation of excitatory amino acid receptors by group IIB metal cations in cultured mouse hippocampal neurons, J. Physiol., 415, 329–350.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    McBain, C. J., and Mayer, M. L. (1994) N-methyl-D-aspartic acid receptor structure and function, Physiol. Rev., 74, 723–760.PubMedCrossRefGoogle Scholar
  22. 22.
    Kutsuwada, T., Kashiwabuchi, N., Mori, H., Sakimura, K., Kushiya, E., Araki, K., Meguro, H., Masaki, H., Kumanishi, T., Arakawa, M., and Mishina, M. (1992) Molecular diversity of the NMDA receptor channel, Nature, 358, 36–41.PubMedCrossRefGoogle Scholar
  23. 23.
    Ishii, T., Moriyoshi, K., Sugihara, H., Sakurada, K., Kadotani, H., Yokoi, M., Akazawa, C., Shigemoto, R., Mizuno, N., Masu, M., and Nakanishi, S. (1993) Molecular characterization of the family of the N-methyl-D-aspartate receptor subunits, J. Biol. Chem., 268, 2836–2843.PubMedGoogle Scholar
  24. 24.
    Clark, G. D., Clifford, D. B., and Zorumski, C. F. (1990) The effect of agonist concentration, membrane voltage and calcium on N-methyl-D-aspartate receptor desensitization, Neuroscience, 39, 787–797.PubMedCrossRefGoogle Scholar
  25. 25.
    Legendre, P., Rosenmund, C., and Westbrook, G. L. (1993) Inactivation of NMDA channels on hippocampal neurons by intracellular calcium, J. Neurosci., 13, 674–684.PubMedCrossRefGoogle Scholar
  26. 26.
    Rosenmund, C., and Westbrook, G. L. (1993) Calcium-induced actin depolymerization reduces NMDA channel activity, Neuron, 10, 805–814.PubMedCrossRefGoogle Scholar
  27. 27.
    Vyklicky, L. J. (1993) Calcium-mediated modulation of N-methyl-D-aspartate (NMDA) responses in cultured rat hippocampal neurons, J. Physiol. (London), 470, 575–600.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Traynelis, S. F., Wollmuth, L. P., McBain, C. J., Menniti, F. S., Vance, K. M., Ogden, K. K., Hansen, K. B., Yuan, H., Myers, S. J., and Dingledine, R. (2010) Glutamate receptor ion channels: structure, regulation, and function, Pharm. Rev., 62, 405–496.PubMedCrossRefGoogle Scholar
  29. 29.
    Hedegaard, M., Hansen, K. B., Andersen, K. T., Brauner-Osborne, H., and Traynelis, S. F. (2012) Molecular phar-macology of human NMDA receptors, Neurochem. Int., 61, 601–609.PubMedCrossRefGoogle Scholar
  30. 30.
    Dravid, S. M., Erreger, K., Yuan, H., Nicholson, K., Le, P., Lyuboslavsky, P., Almonte, A., Murray, E., Mosely, C., Barber, J., French, A., Balster, R., Murray, T. F., and Traynelis, S. F. (2007) Subunit-specific mechanisms and proton sensitivity of NMDA receptor channel block, J. Physiol., 581, 107–128.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Wyllie, D. J., Behe, P., and Colquhoun, D. (1998) Single-channel activations and concentration jumps: comparison of recombinant NR1a/NR2A and NR1a/NR2D NMDA receptors, J. Physiol., 510, 1–18.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Vicini, S., Wang, J. F., Li, J. H., Zhu, W. J., Wang, Y. H., Luo, J. A. H., Wolfe, B. B., and Grayson, D. R. (1998) Functional and pharmacological differences between recombinant N-methyl-D-aspartate receptors, J. Neurophysiol., 79, 555–566.PubMedCrossRefGoogle Scholar
  33. 33.
    Hansen, K. B., and Traynelis, S. F. (2011) Structural and mechanistic determinants of a novel site for noncompetitive inhibition of GluN2D-containing NMDA receptors, J. Neurosci., 31, 3650–3661.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Burnashev, N., Schoepfer, R., Monyer, H., Ruppersberg, J. P., Gunther, W., Seeburg, P. H., and Sakmann, B. (1992) Control by asparagine residues of calcium permeability and magnesium blockade in the NMDA receptor, Science, 257, 1415–1419.PubMedCrossRefGoogle Scholar
  35. 35.
    Pankratov, Y., and Lalo, U. (2014) Calcium permeability of ligand-gated Ca(2+) channels, Eur. J. Pharmacol., 739, 60–73.PubMedCrossRefGoogle Scholar
  36. 36.
    Krupp, J. J., Vissel, B., Thomas, C. G., Heinemann, S. F., and Westbrook, G. L. (1999) Interactions of calmodulin and alpha-actinin with the NR1 subunit modulate Ca2+-dependent inactivation of NMDA receptors, J. Neurosci., 19, 1165–1178.PubMedCrossRefGoogle Scholar
  37. 37.
    Medina, I., Filippova, N., Charton, G., Rougeole, S., Ben-Ari, Y., Khrestchatisky, M., and Bregestovski, P. (1995) Calcium-dependent inactivation of heteromeric NMDA receptor-channels expressed in human embryonic kidney cells, J. Physiol., 482, 567–573.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Hardingham, G. E., and Bading, H. (2010) Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders, Nat. Rev. Neurosci., 11, 682–696.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Schwartz, E. J., Rothman, J. S., Dugue, G. P., Diana, M., Rousseau, C., Silver, R. A., and Dieudonne, S. (2012) NMDA receptors with incomplete Mg2+ block enable low-frequency transmission through the cerebellar cortex, J. Neurosci., 32, 6878–6893.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Hildebrand, M. E., Pitcher, G. M., Harding, E. K., Li, H., Beggs, S., and Salter, M. W. (2014) GluN2B and GluN2D NMDARs dominate synaptic responses in the adult spinal cord, Sci. Rep., 4, 4094.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Lesca, G., Rudolf, G., Bruneau, N., Lozovaya, N., Labalme, A., Boutry-Kryza, N., Salmi, M., Tsintsadze, T., Addis, L., Motte, J., Wright, S., Tsintsadze, V., Michel, A., Doummar, D., Lascelles, K., Strug, L., Waters, P., de Bellescize, J., Vrielynck, P., de Saint Martin, A., Ville, D., Ryvlin, P., Arzimanoglou, A., Hirsch, E., Vincent, A., Pal, D., Burnashev, N., Sanlaville, D., and Szepetowski, P. (2013) GRIN2A mutations in acquired epileptic aphasia and related childhood focal epilepsies and encephalopathies with speech and language dysfunction, Nat. Genet., 45, 1061–1066.PubMedCrossRefGoogle Scholar
  42. 42.
    Burnashev, N., and Szepetowski, P. (2015) NMDA recep-tor subunit mutations in neurodevelopmental disorders, Curr. Opin. Pharmacol., 20, 73–82.PubMedCrossRefGoogle Scholar
  43. 43.
    Sibarov, D. A., Bruneau, N., Antonov, S. M., Szepetowski, P., Burnashev, N., and Giniatullin, R. (2017) Functional properties of human NMDA receptors associated with epilepsy-related mutations of GluN2A subunit, Front. Cell. Neurosci., 11, 155.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Mayer, M. L., and Westbrook, G. L. (1985) The action of N-methyl-D-aspartic acid on mouse spinal neurons in culture, J. Physiol., 361, 65–90.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Zorumski, C. F., Yang, J., and Fischbach, G. D. (1989) Calcium dependent, slow desensitization distinguishes different types of glutamate receptors, Cell. Mol. Neurobiol., 9, 95–104.PubMedCrossRefGoogle Scholar
  46. 46.
    Babu, Y. S., Sack, J. S., Greenhough, T. J., Bugg, C. E., Means, A. R., and Cook, W. J. (1985) Three-dimensional structure of calmodulin, Nature, 315, 37–40.PubMedCrossRefGoogle Scholar
  47. 47.
    Crivici, A., and Ikura, M. (1995) Molecular and structural basis of target recognition by calmodulin, Annu. Rev. Biophys. Biomol. Struct., 24, 85–116.PubMedCrossRefGoogle Scholar
  48. 48.
    Yap, K. L., Ames, J. B., Swindells, M. B., and Ikura, M. (1999) Diversity of conformational states and changes within the EF-hand protein superfamily, Proteins, 37, 499–507.PubMedCrossRefGoogle Scholar
  49. 49.
    Ehlers, M. D., Zhang, S., Bernhadt, J. P., and Huganir, R. L. (1996) Inactivation of NMDA receptors by direct interaction of calmodulin with the NR1 subunit, Cell, 84, 745–755.PubMedCrossRefGoogle Scholar
  50. 50.
    Chen, T. Y., and Yau, K. W. (1994) Direct modulation by Ca2+-calmodulin of cyclic nucleotide-activated channel of rat olfactory receptor neurons, Nature, 368, 545–548.PubMedCrossRefGoogle Scholar
  51. 51.
    Liu, M., Chen, T. Y., Ahamed, B., Li, J., and Yau, K. W. (1994) Calcium calmodulin modulation of the olfactory cyclic nucleotide-gated cation channel, Science, 266, 1348–1354.PubMedCrossRefGoogle Scholar
  52. 52.
    Lee, A., Wong, S. T., Gallagher, D., Li, B., Storm, D. R., Scheuer, T., and Catterall, W. A. (1999) Ca2+/calmodulin binds to and modulates P/Q-type calcium channels, Nature, 399, 155–159.PubMedCrossRefGoogle Scholar
  53. 53.
    Peterson, B. Z., Lee, J. S., Mulle, J. G., Wang, Y., de Leon, M., and Yue, D. T. (2000) Critical determinants of Ca2+-dependent inactivation within an EF-hand motif of L-type Ca2+ channels, Biophys. J., 78, 1906–1920.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Zuhlke, R. D., Pitt, G. S., Deisseroth, K., Tsien, R. W., and Reuter, H. (1999) Calmodulin supports both inactiva-tion and facilitation of L-type calcium channels, Nature, 399, 159–162.PubMedCrossRefGoogle Scholar
  55. 55.
    Thomas, C. G., Krupp, J. J., Bagley, E. E., Bauzon, R., Heinemann, S. F., Vissel, B., and Westbrook, G. L. (2006) Probing N-methyl-D-aspartate receptor desensitization with the substituted-cysteine accessibility method, Mol. Pharmacol., 69, 1296–1303.PubMedCrossRefGoogle Scholar
  56. 56.
    Ogden, K. K., Chen, W., Swanger, S. A., McDaniel, M. J., Fan, L. Z., Hu, C., Tankovic, A., Kusumoto, H., Kosobucki, G. J., Schulien, A. J., Su, Z., Pecha, J., Bhattacharya, S., Petrovski, S., Cohen, A. E., Aizenman, E., Traynelis, S. F., and Yuan, H. (2017) Molecular mech-anism of disease-associated mutations in the pre-M1 helix of NMDA receptors and potential rescue pharmacology, PloS Genetics, 13, e1006536.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Zhang, S., Ehlers, M. D., Bernhardt, J. P., Su, C. T., and Huganir, R. L. (1998) Calmodulin mediates calcium-dependent inactivation of N-methyl-D-aspartate recep-tors, Neuron, 21, 443–453.PubMedCrossRefGoogle Scholar
  58. 58.
    Vissel, B., Krupp, J. J., Heinemann, S. F., and Westbrook, G. L. (2002) Intracellular domains of NR2 alter calcium-dependent inactivation of N-methyl-D-aspartate recep-tors, Mol. Pharmacol., 61, 595–605.PubMedCrossRefGoogle Scholar
  59. 59.
    Tingley, W. G., Roche, K. W., Thompson, A. K., and Huganir, R. L. (1993) Regulation of NMDA receptor phos-phorylation by alternative splicing of the C-terminal domain, Nature, 364, 70–73.PubMedCrossRefGoogle Scholar
  60. 60.
    Raymond, L. A., Tingley, W. G., Blackstone, C. D., Roche, K. W., and Huganir, R. L. (1994) Glutamate receptor mod-ulation by protein phosphorylation, J. Physiol. Paris, 88, 181–192.PubMedCrossRefGoogle Scholar
  61. 61.
    Ehlers, M. D., Tingley, W. G., and Huganir, R. L. (1995) Regulated subcellular distribution of the NR1 subunit of the NMDA receptor, Science, 269, 1734–1737.PubMedCrossRefGoogle Scholar
  62. 62.
    Ehlers, M. D., Fung, E. T., O’brien, R. J., and Huganir, R. L. (1998) Splice variant-specific interaction of the NMDA receptor subunit NR1 with neuronal intermediate fila-ments, J. Neurosci., 18, 720–730.PubMedCrossRefGoogle Scholar
  63. 63.
    Wyszynski, M., Kharazia, V., Shanghvi, R., Rao, A., Beggs, A. H., Craig, A. M., Weinberg, R., and Sheng, M. (1998) Differential regional expression and ultrastructural local-ization of alpha-actinin-2, a putative NMDA receptor-anchoring protein, in rat brain, J. Neurosci., 18, 1383–1392.PubMedCrossRefGoogle Scholar
  64. 64.
    Allison, D. W., Gelfand, V. I., Spector, I., and Craig, A. M. (1998) Role of actin in anchoring postsynaptic receptors in cultured hippocampal neurons: differential attachment of NMDA versus AMPA receptors, J. Neurosci., 18, 2423–2436.PubMedCrossRefGoogle Scholar
  65. 65.
    Krupp, J. J., Vissel, B., Heinemann, S. F., and Westbrook, G. L. (1996) Calcium-dependent inactivation of recombi-nant N-methyl-D-aspartate receptors is NR2 subunit spe-cific, Mol. Pharmacol., 50, 1680–1688.PubMedGoogle Scholar
  66. 66.
    Wyllie, D. J., Behe, P., and Colquhoun, D. (1998) Single-channel activations and concentration jumps: comparison of recombinant NR1a/NR2A and NR1a/NR2D NMDA receptors, J. Physiol. (London), 510, 1–18.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Villarroel, A., Regalado, M. P., and Lerma, J. (1998) Glycine-independent NMDA receptor desensitization: localization of structural determinants, Neuron, 20, 329–339.PubMedCrossRefGoogle Scholar
  68. 68.
    Stern-Bach, Y., Russo, S., Neuman, M., and Rosenmund, C. (1998) A point mutation in the glutamate binding site blocks desensitization of AMPA receptors, Neuron, 21, 907–918.PubMedCrossRefGoogle Scholar
  69. 69.
    Rozov, A., and Burnashev, N. (2016) Fast interaction between AMPA and NMDA receptors by intracellular calcium, Cell Calcium, 60, 407–414.PubMedCrossRefGoogle Scholar
  70. 70.
    Rycroft, B. K., and Gibb, A. J. (2004) Regulation of single NMDA receptor channel activity by alpha-actinin and calmodulin in rat hippocampal granule cells, J. Physiol., 557, 795–808.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Medina, I., Filippova, N., Barbin, G., Ben-Ari, Y., and Bregestovski, P. (1994) Kainate-induced inactivation of NMDA currents via an elevation of intracellular Ca2+ in hippocampal neurons, J. Neurophysiol., 72, 456–465.PubMedCrossRefGoogle Scholar
  72. 72.
    Gibson, H. E., Edwards, J. G., Page, R. S., Van Hook, M. J., and Kauer, J. A. (2008) TRPV1 channels mediate long-term depression at synapses on hippocampal interneurons, Neuron, 57, 746–759.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Vyklicky, L., Novakova-Tousova, K., Benedikt, J., Samad, A., Touska, F., and Vlachova, V. (2008) Calcium-dependent desensitization of vanilloid receptor TRPV1: a mechanism possibly involved in analgesia induced by topical application of capsaicin, Physiol. Res., 57 (Suppl. 3), S59–S68.PubMedGoogle Scholar
  74. 74.
    Emptage, N., Bliss, T. V., and Fine, A. (1999) Single synaptic events evoke NMDA receptor-mediated release of calcium from internal stores in hippocampal dendritic spines, Neuron, 22, 115–124.PubMedCrossRefGoogle Scholar
  75. 75.
    Kapur, A., Yeckel, M., and Johnston, D. (2001) Hippocampal mossy fiber activity evokes Ca2+ release in CA3 pyramidal neurons via a metabotropic glutamate receptor pathway, Neuroscience, 107, 59–69.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Goldberg, J. H., Yuste, R., and Tamas, G. (2003) Ca2+ imaging of mouse neocortical interneuron dendrites: contribution of Ca2+-permeable AMPA and NMDA receptors to subthreshold Ca2+ dynamics, J. Physiol., 551, 67–78.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Kim, M.-H., Lee, S.-H., Park, K. H., Ho, W.-K., and Lee, S.-H. (2003) Distribution of K+-dependent Na+/Ca2+ exchangers in the rat supraoptic magnocellular neuron is polarized to axon terminals, J. Neurosci., 23, 11673–11680.PubMedCrossRefGoogle Scholar
  78. 78.
    Komori, Y., Tanaka, M., Kuba, M., Ishii, M., Abe, M., Kitamura, N., Verkhratsky, A., Shibuya, I., and Dayanithi, G. (2010) Ca2+ homeostasis, Ca2+ signalling and somato-dendritic vasopressin release in adult rat supraoptic nucleus neurons, Cell Calcium, 48, 324–332.PubMedCrossRefGoogle Scholar
  79. 79.
    Carafoli, E., Santella, L., Branca, D., and Brini, M. (2001) Generation, control, and processing of cellular calcium signals, Crit. Rev. Biochem. Mol. Biol., 36, 107–260.PubMedCrossRefGoogle Scholar
  80. 80.
    Hilgemann, D. W. (1990) Regulation and deregulation of cardiac Na+-Ca2+ exchange in giant excised sarcolemmal membrane patches, Nature, 344, 242–245.PubMedCrossRefGoogle Scholar
  81. 81.
    Hilgemann, D. W., Nicoll, D. A., and Philipson, K. D. (1991) Charge movement during Na+ translocation by native and cloned cardiac Na+/Ca2+ exchanger, Nature, 352, 715–718.PubMedCrossRefGoogle Scholar
  82. 82.
    Sibarov, D. A., Abushik, P. A., Poguzhelskaya, E. E., Bolshakov, K. V., and Antonov, S. M. (2015) Inhibition of plasma membrane Na/Ca-exchanger by KB-R7943 or lithium reveals its role in Ca-dependent NMDAR inactiva-tion, J. Pharmacol. Exp. Ther., 355, 484–495.PubMedCrossRefGoogle Scholar
  83. 83.
    Sibarov, D. A., Bolshakov, A. E., Abushik, P. A., Krivoi, I. I., and Antonov, S. M. (2012) Na+,K+-ATPase functional-ly interacts with the plasma membrane Na+,Ca2+-exchang-er to prevent Ca2+ overload and neuronal apoptosis in exci-totoxic stress, J. Pharmacol. Exp. Ther., 343, 596–607.PubMedCrossRefGoogle Scholar
  84. 84.
    Abushik, P. A., Sibarov, D. A., Eaton, M. J., Skatchkov, S. N., and Antonov, S. M. (2013) Kainate-induced calcium overload of cortical neurons in vitro: dependence on expres-sion of AMPAR GluA2-subunit and down-regulation by subnanomolar ouabain, Cell Calcium, 54, 95–104.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Frank, C., Giammarioli, A. M., Pepponi, R., Fiorentini, C., and Rufini, S. (2004) Cholesterol perturbing agents inhibit NMDA-dependent calcium influx in rat hippocam-pal primary culture, FEBS Lett., 566, 25–29.PubMedCrossRefGoogle Scholar
  86. 86.
    Korinek, M., Vyklicky, V., Borovska, J., Lichnerova, K., Kaniakova, M., Krausova, B., Krusek, J., Balik, A., Smejkalova, T., Horak, M., and Vyklicky, L. (2015) Cholesterol modulates open probability and desensitization of NMDA receptors, J. Physiol., 593, 2279–2293.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Abulrob, A., Tauskela, J. S., Mealing, G., Brunette, E., Faid, K., and Stanimirovic, D. (2005) Protection by cholesterol-extracting cyclodextrins: a role for N-methyl-D-aspartate receptor redistribution, J. Neurochem., 92, 1477–1486.PubMedCrossRefGoogle Scholar
  88. 88.
    Besshoh, S., Chen, S., Brown, I. R., and Gurd, J. W. (2007) Developmental changes in the association of NMDA receptors with lipid rafts, J. Neurosci. Res., 85, 1876–1883.PubMedCrossRefGoogle Scholar
  89. 89.
    Delinte-Ramirez, I., Salcedo-Tello, P., and Bermudez-Rattoni, F. (2008) Spatial memory formation induces recruitment of NMDA receptor and PSD-95 to synaptic lipid rafts, J. Neurochem., 106, 1658–1668.CrossRefGoogle Scholar
  90. 90.
    Marques-da-Silva, D., and Gutierrez-Merino, C. (2012) L-type voltage-operated calcium channels, N-methyl-d-aspartate receptors and neuronal nitric-oxide synthase form a calcium/redox nano-transducer within lipid rafts, Biochem. Biophys. Res. Commun., 420, 257–262.PubMedCrossRefGoogle Scholar
  91. 91.
    Marques-da-Silva, D., and Gutierrez-Merino, C. (2014) Caveolin-rich lipid rafts of the plasma membrane of mature cerebellar granule neurons are microcompartments for calcium/reactive oxygen and nitrogen species cross-talk signaling, Cell Calcium, 56, 108–123.PubMedCrossRefGoogle Scholar
  92. 92.
    Pike, L. J. (2006) Rafts defined: a report on the keystone symposium on lipid rafts and cell function, J. Lipid Res., 47, 1597–1598.PubMedCrossRefGoogle Scholar
  93. 93.
    Simons, M., Keller, P., De Strooper, B., Beyreuther, K., Dotti, C. G., and Simons, K. (1998) Cholesterol depletion inhibits the generation of beta-amyloid in hippocampal neurons, Proc. Natl. Acad. Sci. USA, 95, 6460–6464.PubMedCrossRefGoogle Scholar
  94. 94.
    Wolf, A. A., Jobling, M. G., Wimer-Mackin, S., Ferguson-Maltzman, M., Madara, J. L., Holmes, R. K., Lencer, W. I., Ruston, S., Madara, J. L., and Hirst, T. (1998) Ganglioside structure dictates signal transduction by cholera toxin and association with caveolae-like membrane domains in polarized epithelia, J. Cell Biol., 141, 917–927.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Raghupathy, R., Anilkumar, A. A., Polley, A., Singh, P. P., Yadav, M., Johnson, C., Suryawanshi, S., Saikam, V., Sawant, S. D., Panda, A., Guo, Z., Vishwakarma, R. A., Rao, M., and Mayor, S. (2015) Transbilayer lipid interac-tions mediate nanoclustering of lipid-anchored proteins, Cell, 161, 581–594.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Iacobucci, G. J., and Popescu, G. K. (2017) Resident calmodulin primes NMDA receptors for Ca-dependent inactivation, Biophys. J., 113, 2236–2248.PubMedCrossRefGoogle Scholar
  97. 97.
    Parekh, A. B. (2008) Ca2+ microdomains near plasma membrane Ca2+ channels: impact on cell function, J. Physiol., 586, 3043–3054.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Petersen, A., and Gerges, N. Z. (2015) Neurogranin regu-lates CaM dynamics at dendritic spines, Sci. Rep., 5, 11135.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Hoffman, L., Chandrasekar, A., Wang, X., Putkey, J. A., and Waxham, M. N. (2014) Neurogranin alters the struc-ture and calcium binding properties of calmodulin, J. Biol. Chem., 289, 14644–14655.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Goldberg, J. H., Tamas, G., Aronov, D., and Yuste, R. (2003) Calcium microdomains in aspiny dendrites, Neuron, 40, 807–821.PubMedCrossRefGoogle Scholar
  101. 101.
    Chard, P. S., Jordan, J., Marcuccilli, C. J., Miller, R. J., Leiden, J. M., Roos, R. P., and Ghadge, G. D. (1995) Regulation of excitatory transmission at hippocampal synapses by calbindin D28k, Proc. Nat. Acad. Sci. USA, 92, 5144–5148.PubMedCrossRefGoogle Scholar
  102. 102.
    Ponce, J., de la Ossa, N. P., Hurtado, O., Millan, M., Arenillas, J. F., Davalos, A., and Gasull, T. (2008) Simvastatin reduces the association of NMDA receptors to lipid rafts: a cholesterol-mediated effect in neuroprotec-tion, Stroke, 39, 1269–1275.PubMedCrossRefGoogle Scholar
  103. 103.
    Valiullina, F., Zakharova, Y., Mukhtarov, M., Draguhn, A., Burnashev, N., and Rozov, A. (2016) The relative contribution of NMDARs to excitatory postsynaptic currents is controlled by Ca2+-induced inactivation, Front. Cell. Neurosci., 10, 12.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Frank, C., Rufini, S., Tancredi, V., Forcina, R., Grossi, D., and D’Arcangelo, G. (2008) Cholesterol depletion inhibits synaptic transmission and synaptic plasticity in rat hippocampus, Exp. Neurol., 212, 407–414.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Sechenov Institute of Evolutionary Physiology and BiochemistryRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations