Biochemistry (Moscow)

, Volume 83, Issue 10, pp 1161–1172 | Cite as

Advances in the Application of Modified Nucleotides in SELEX Technology

  • O. M. AntipovaEmail author
  • E. G. Zavyalova
  • A. V. Golovin
  • G. V. Pavlova
  • A. M. Kopylov
  • R. V. Reshetnikov


Aptamers are widely used as molecular recognition elements for detecting and blocking functional biological molecules. Since the common “alphabet” of DNA and RNA consists of only four letters, the chemical diversity of aptamers is less than the diversity of protein recognition elements built of 20 amino acids. Chemical modification of nucleotides enlarges the potential of DNA/RNA aptamers. This review describes the latest achievements in a variety of approaches to aptamers selection with an extended genetic alphabet.


aptamers modified nucleotides mod-SELEX 



artificially extended genetic information system


(modified) systematic evolution of ligands by exponential enrichment


(modified reverse) polymerase chain reaction


nucleic acids


xenonucleic acids (aptamers)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Farzin, L., Shamsipur, M., and Sheibani, S. (2017) A review: aptamer-based analytical strategies using the nano-materials for environmental and human monitoring of toxic heavy metals, Talanta, 174, 619–627.CrossRefPubMedGoogle Scholar
  2. 2.
    Pichon, V., Brothier, F., and Combes, A. (2015) Aptamer-based-sorbents for sample treatment − a review, Anal. Bioanal. Chem., 407, 681–698.CrossRefPubMedGoogle Scholar
  3. 3.
    Batool, S., Bhandari, S., George, S., Okeoma, P., Van, N., Zumrut, H., and Mallikaratchy, P. (2017) Engineered aptamers to probe molecular interactions on the cell surface, Biomedicines, 5, E54.CrossRefPubMedGoogle Scholar
  4. 4.
    Zhou, W., Jimmy Huang, P.-J., Ding, J., and Liu, J. (2014) Aptamer-based biosensors for biomedical diagnostics, Analyst, 139, 2627–2640.CrossRefPubMedGoogle Scholar
  5. 5.
    Meng, H.-M., Liu, H., Kuai, H., Peng, R., Mo, L., and Zhang, X.-B. (2016) Aptamer-integrated DNA nanostructures for biosensing, bioimaging and cancer therapy, Chem. Soc. Rev., 45, 2583–2602.CrossRefPubMedGoogle Scholar
  6. 6.
    Stein, C. A., and Castanotto, D. (2017) FDA-approved oligonucleotide therapies in 2017, Mol. Ther., 16, 1069–1075.CrossRefGoogle Scholar
  7. 7.
    Zhou, J., and Rossi, J. (2016) Aptamers as targeted therapeutics: current potential and challenges, Nat. Rev. Drug Discov., 16, 181–202.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Robertson, D. L., and Joyce, G. F. (1990) Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA, Nature, 344, 467–468.CrossRefPubMedGoogle Scholar
  9. 9.
    Tuerk, C., and Gold, L. (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase, Science, 249, 505–510.CrossRefPubMedGoogle Scholar
  10. 10.
    Ellington, A. D., and Szostak, J. W. (1990) In vitro selection of RNA molecules that bind specific ligands, Nature, 346, 818–822.CrossRefPubMedGoogle Scholar
  11. 11.
    Sun, H., and Zu, Y. (2015) Highlight of recent advances in aptamer technology and its application, Molecules, 20, 11959–11980.CrossRefPubMedGoogle Scholar
  12. 12.
    Bouchard, P. R., Hutabarat, R. M., and Thompson, K. M. (2010) Discovery and development of therapeutic aptamers, Annu. Rev. Pharmacol. Toxicol., 50, 237–257.CrossRefPubMedGoogle Scholar
  13. 13.
    Forster, C., Zydek, M., Rothkegel, M., Wu, Z., Gallin, C., Gessner, R., Lisdat, F., and Furste, J. P. (2012) Properties of an LNA-modified ricin RNA aptamer, Biochem. Biophys. Res. Commun., 419, 60–65.CrossRefPubMedGoogle Scholar
  14. 14.
    Ruckman, J., Green, L. S., Beeson, J., Waugh, S., Gillette, W. L., Henninger, D. D., Claesson-Welsh, L., and Janjic, N. (1998) 2′-Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165), J. Biol. Chem., 273, 20556–20567.CrossRefPubMedGoogle Scholar
  15. 15.
    Ng, E. W. M., Shima, D. T., Calias, P., Cunningham, E. T., Guyer, D. R., and Adamis, A. P. (2006) Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease, Nat. Rev. Drug Discov., 5, 123–132.CrossRefPubMedGoogle Scholar
  16. 16.
    Lipi, F., Chen, S., Chakravarthy, M., Rakesh, S., and Veedu, R. N. (2016) In vitro evolution of chemically-mod-ified nucleic acid aptamers: Pros and cons, and compre-hensive selection strategies, RNA Biol., 13, 1232–1245.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ni, S., Yao, H., Wang, L., Lu, J., Jiang, F., Lu, A., and Zhang, G. (2017) Chemical modifications of nucleic acid aptamers for therapeutic purposes, Int. J. Mol. Sci., 18, E1683.CrossRefPubMedGoogle Scholar
  18. 18.
    Hirao, I., Kimoto, M., and Lee, K. H. (2018) DNA aptamer generation by ExSELEX using genetic alphabet expansion with a mini-hairpin DNA stabilization method, Biochimie, 145, 15–21.CrossRefPubMedGoogle Scholar
  19. 19.
    Vorobyeva, M., Davydova, A., Vorobjev, P., Pyshnyi, D., and Venyaminova, A. (2018) Key aspects of nucleic acid library design for in vitro selection, Int. J. Mol. Sci., 19, E470.CrossRefPubMedGoogle Scholar
  20. 20.
    Perrin, D. M., Garestier, T., and Helene, C. (1999) Expanding the catalytic repertoire of nucleic acid catalysts: simultaneous incorporation of two modified deoxyribonucleoside triphosphates bearing ammonium and imidazolyl functionalities, Nucleosides Nucleotides, 18, 377–391.CrossRefPubMedGoogle Scholar
  21. 21.
    Lapa, S. A., Chuinov, A. V., and Timofeev, E. N. (2016) The toolbox for modified aptamers, Mol. Biotechnol., 58, 79–92.CrossRefPubMedGoogle Scholar
  22. 22.
    Lin, Y., Qiu, Q., Gill, S. C., and Jayasena, S. D. (1994) Modified RNA sequence pools for in vitro selection, Nucleic Acids Res., 22, 5229–5234.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Pagratis, N. C., Bell, C., Chang, Y.-F., Jennings, S., Fitzwater, T., Jellinek, D., and Dang, C. (1997) Potent 2′-amino-, and 2′-fluoro-2′-deoxyribonucleotide RNA inhibitors of keratinocyte growth factor, Nat. Biotechnol., 15, 68–73.CrossRefPubMedGoogle Scholar
  24. 24.
    Hoshika, S., Minakawa, N., and Matsuda, A. (2004) Synthesis and physical and physiological properties of 4′-thioRNA: application to post-modification of RNA aptamer toward NF-kappaB, Nucleic Acids Res., 32, 3815–3825.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kato, Y., Minakawa, N., Komatsu, Y., Kamiya, H., Ogawa, N., Harashima, H., and Matsuda, A. (2005) New NTP analogs: the synthesis of 4′-thioUTP and 4′-thioCTP and their utility for SELEX, Nucleic Acids Res., 33, 2942–2951.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Pinheiro, V. B., Taylor, A. I., Cozens, C., Abramov, M., Renders, M., Zhang, S., Chaput, J. C., Wengel, J., Peak-Chew, S. Y., McLaughlin, S. H., Herdewijn, P., and Holliger, P. (2012) Synthetic genetic polymers capable of heredity and evolution, Science, 336, 341–344.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Ferreira-Bravo, I. A., Cozens, C., Holliger, P., and DeStefano, J. J. (2015) Selection of 2′-deoxy-2′-fluoroara-binonucleotide (FANA) aptamers that bind HIV-1 reverse transcriptase with picomolar affinity, Nucleic Acids Res., 43, 9587–9599.Google Scholar
  28. 28.
    Kuwahara, M., Obika, S., Nagashima, J. I., Ohta, Y., Suto, Y., Ozaki, H., Sawai, H., and Imanishi, T. (2008) Systematic analysis of enzymatic DNA polymerization using oligo-DNA templates and triphosphate analogs involving 2′,4′-bridged nucleosides, Nucleic Acids Res., 36, 4257–4265.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Kasahara, Y., Irisawa, Y., Ozaki, H., Obika, S., and Kuwahara, M. (2013) 2′,4′-BNA/LNA aptamers: CE-SELEX using a DNA-based library of full-length 2′-O,4′-C-methylene-bridged/linked bicyclic ribonucleotides, Bioorg. Med. Chem. Lett., 23, 1288–1292.CrossRefPubMedGoogle Scholar
  30. 30.
    Elle, I. C., Karlsen, K. K., Terp, M. G., Larsen, N., Nielsen, R., Derbyshire, N., Mandrup, S., Ditzel, H. J., and Wengel, J. (2015) Selection of LNA-containing DNA aptamers against recombinant human CD73, Mol. BioSyst., 11, 1260–1270.CrossRefPubMedGoogle Scholar
  31. 31.
    Pasternak, A., Hernandez, F. J., Rasmussen, L. M., Vester, B., and Wengel, J. (2011) Improved thrombin binding aptamer by incorporation of a single unlocked nucleic acid monomer, Nucleic Acids Res., 39, 1155–1164.CrossRefPubMedGoogle Scholar
  32. 32.
    Kotkowiak, W., Lisowiec-Wachnicka, J., Grynda, J., Kierzek, R., Wengel, J., and Pasternak, A. (2018) Thermodynamic, anticoagulant, and antiproliferative properties of thrombin binding aptamer containing novel UNA derivative, Mol. Ther. Nucleic Acids, 10, 304–316.CrossRefPubMedGoogle Scholar
  33. 33.
    Yu, H., Zhang, S., Dunn, M. R., and Chaput, J. C. (2013) An efficient and faithful in vitro replication system for threose nucleic acid, J. Am. Chem. Soc., 135, 3583–3591.CrossRefPubMedGoogle Scholar
  34. 34.
    Schoning, K.-U., Scholz, P., Guntha, S., Wu, X., Krishnamurthy, R., and Eschenmoser, A. (2000) Chemical etiology of nucleic acid structure: the alpha-threofuranosyl-(3′→2′) oligonucleotide system, Science, 284, 2118–2124.Google Scholar
  35. 35.
    Vater, A., and Klussmann, S. (2015) Turning mirror-image oligonucleotides into drugs: the evolution of Spiegelmer (®) therapeutics, Drug Discov. Today, 20, 147–155.CrossRefPubMedGoogle Scholar
  36. 36.
    Yatime, L., Maasch, C., Hoehlig, K., Klussmann, S., Andersen, G. R., and Vater, A. (2015) Structural basis for the targeting of complement anaphylatoxin C5a using a mixed L-RNA/L-DNA aptamer, Nat. Commun., 6, 6481.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Wang, Z., Xu, W., Liu, L., and Zhu, T. F. (2016) A synthet-ic molecular system capable of mirror-image genetic replication and transcription, Nat. Chem., 8, 698–704.CrossRefPubMedGoogle Scholar
  38. 38.
    Pech, A., Achenbach, J., Jahnz, M., Schulzchen, S., Jarosch, F., Bordusa, F., and Klussmann, S. (2017) A ther-mostable d-polymerase for mirror-image PCR, Nucleic Acids Res., 45, 3997–4005.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Eckstein, F. (2014) Phosphorothioates, essential compo-nents of therapeutic oligonucleotides, Nucleic Acid Ther., 24, 374–387.CrossRefPubMedGoogle Scholar
  40. 40.
    King, D. J., Ventura, D. A., Brasier, A. R., and Gorenstein, D. G. (1998) Novel combinatorial selection of phosphorothioate oligonucleotide aptamers, Biochemistry, 37, 16489–16493.CrossRefPubMedGoogle Scholar
  41. 41.
    Pallan, P. S., Yang, X., Sierant, M., Abeydeera, N. D., Hassell, T., Martinez, C., Janicka, M., Nawrot, B., and Egli, M. (2014) Crystal structure, stability and Ago2 affinity of phosphorodithioate-modified RNAs, RSC Adv., 4, 64901–64904.CrossRefGoogle Scholar
  42. 42.
    Abeydeera, N. D., Egli, M., Cox, N., Mercier, K., Conde, J. N., Pallan, P. S., Mizurini, D. M., Sierant, M., Hibti, F. E., Hassell, T., Wang, T., Liu, F. W., Liu, H. M., Martinez, C., Sood, A. K., Lybrand, T. P., Frydman, C., Monteiro, R. Q., Gomer, R. H., Nawrot, B., and Yang, X. (2016) Evoking picomolar binding in RNA by a single phospho-rodithioate linkage, Nucleic Acids Res., 44, 8052–8064.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Kanlikilicer, P., Ozpolat, B., Aslan, B., Bayraktar, R., Gurbuz, N., Rodriguez-Aguayo, C., Bayraktar, E., Denizli, M., Gonzalez-Villasana, V., Ivan, C., Lokesh, G. L. R., Amero, P., Catuogno, S., Haemmerle, M., Wu, S. Y.-Y., Mitra, R., Gorenstein, D. G., Volk, D. E., de Franciscis, V., Sood, A. K., and Lopez-Berestein, G. (2017) Therapeutic targeting of AXL receptor tyrosine kinase inhibits tumor growth and intraperitoneal metastasis in ovarian cancer models, Mol. Ther. Nucleic Acids, 9, 251–262.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Cerchia, L., Esposito, C. L., Camorani, S., Rienzo, A., Stasio, L., Insabato, L., Affuso, A., and De Franciscis, V. (2012) Targeting Axl with a high-affinity inhibitory aptamer, Mol. Ther., 20, 2291–2303.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Ellington, A. D., and Szostak, J. W. (1992) Selection in vitro of single-stranded DNA molecules that fold into spe-cific ligand-binding structures, Nature, 355, 850–852.CrossRefPubMedGoogle Scholar
  46. 46.
    Huizenga, D. E., and Szostak, J. W. (1995) A DNA aptamer that binds adenosine and ATP, Biochemistry, 34, 656–665.CrossRefPubMedGoogle Scholar
  47. 47.
    Lato, S. M., Ozerova, N. D. S., He, K., Sergueeva, Z., Shaw, B. R., and Burke, D. H. (2002) Boron-containing aptamers to ATP, Nucleic Acids Res., 30, 1401–1407.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Barth, R. F., Soloway, A. H., Goodman, J. H., Gahbauer, R. A., Gupta, N., Blue, T. E., Yang, W. L., and Tjarks, W. (1999) Boron neutron capture therapy of brain tumors: biodistribution, pharmacokinetics, and radiation dosimetry of sodium borocaptate in patients with gliomas, Neurosurgery, 44, 433–450.CrossRefPubMedGoogle Scholar
  49. 49.
    Mutisya, D., Selvam, C., Kennedy, S. D., and Rozners, E. (2011) Synthesis and properties of triazole-linked RNA, Bioorg. Med. Chem. Lett., 21, 3420–3422.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Varizhuk, A. M., Tsvetkov, V. B., Tatarinova, O. N., Kaluzhny, D. N., Florentiev, V. L., Timofeev, E. N., Shchyolkina, A. K., Borisova, O. F., Smirnov, I. P., Grokhovsky, S. L., Aseychev, A. V., and Pozmogova, G. E. (2013) Synthesis, characterization and in vitro activity of thrombin-binding DNA aptamers with triazole internucleotide linkages, Eur. J. Med. Chem., 67, 90–97.CrossRefPubMedGoogle Scholar
  51. 51.
    Latham, J. A., Johnson, R., and Toole, J. J. (1994) The application of a modified nucleotide in aptamer selection: novel thrombin aptamers containing 5-(1-pentynyl)-2′-deoxyuridine, Nucleic Acids Res., 22, 2817–2822.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Platella, C., Riccardi, C., Montesarchio, D., Roviello, G. N., and Musumeci, D. (2017) G-quadruplex-based aptamers against protein targets in therapy and diagnostics, Biochim. Biophys. Acta, 1861, 1429–1447.CrossRefGoogle Scholar
  53. 53.
    Tucker, O. W., Shum, T. K., and Tanner, A. J. (2012) G-quadruplex DNA aptamers and their ligands: structure, function and application, Curr. Pharm. Des., 18, 2014–2026.CrossRefPubMedGoogle Scholar
  54. 54.
    Bock, L. C., Griffin, L. C., Latham, J. A., Vermaas, E. H., and Toole, J. J. (1992) Selection of single-stranded DNA molecules that bind and inhibit human thrombin, Nature, 355, 564–566.CrossRefPubMedGoogle Scholar
  55. 55.
    Helm, M., and Alfonzo, J. D. (2014) Post-transcriptional RNA modifications: playing metabolic games in a cell’s chemical Legoland, Chem. Biol., 21, 174–185.CrossRefPubMedGoogle Scholar
  56. 56.
    Gregson, J. M., Crain, P. F., Edmonds, C. G., Gupta, R., Hashizume, T., Phillipson, D. W., and McCloskey, J. A. (1993) Structure of the archaeal transfer RNA nucleoside G*-15 (2-amino-4,7-dihydro-4-oxo-7-beta-D-ribofura-nosyl-1H-pyrrolo[2,3-d]pyrimidine-5-carboximidamide (archaeosine)), J. Biol. Chem., 268, 10076–10086.PubMedGoogle Scholar
  57. 57.
    Vaish, N. K., Larralde, R., Fraley, A. W., Szostak, J. W., and McLaughlin, L. W. (2003) A novel, modification-dependent ATP-binding aptamer selected from an RNA library incorporating a cationic functionality, Biochemistry, 42, 8842–8851.CrossRefPubMedGoogle Scholar
  58. 58.
    Masud, M. M., Kuwahara, M., Ozaki, H., and Sawai, H. (2004) Sialyllactose-binding modified DNA aptamer bearing additional functionality by SELEX, Bioorg. Med. Chem., 12, 1111–1120.CrossRefPubMedGoogle Scholar
  59. 59.
    Hili, R., Niu, J., and Liu, D. R. (2013) DNA ligase-medi-ated translation of DNA into densely functionalized nucle-ic acid polymers, J. Am. Chem. Soc., 135, 98–101.CrossRefPubMedGoogle Scholar
  60. 60.
    Guo, C., Watkins, C. P., and Hili, R. (2015) Sequence-defined scaffolding of peptides on nucleic acid polymers, J. Am. Chem. Soc., 137, 11191–11196.CrossRefPubMedGoogle Scholar
  61. 61.
    Guo, C., and Hili, R. (2017) Fidelity of the DNA ligase-catalyzed scaffolding of peptide fragments on nucleic acid polymers, Bioconj. Chem., 28, 314–318.CrossRefGoogle Scholar
  62. 62.
    Li, M., Lin, N., Huang, Z., Du, L., Altier, C., Fang, H., and Wang, B. (2008) Selecting aptamers for a glycoprotein through the incorporation of the boronic acid moiety, J. Am. Chem. Soc., 130, 12636–12638.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Minagawa, H., Onodera, K., Fujita, H., Sakamoto, T., Akitomi, J., Kaneko, N., Shiratori, I., Kuwahara, M., Horii, K., and Waga, I. (2017) Selection, characterization and application of unnatural DNA aptamer containing appended bases with sub-nanomolar affinity for a salivary biomarker, Sci. Rep., 7, 42716.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Henry, A. A., and Romesberg, F. E. (2005) The evolution of DNA polymerases with novel activities, Curr. Opin. Biotechnol., 16, 370–377.CrossRefPubMedGoogle Scholar
  65. 65.
    Walsh, J. M., and Beuning, P. J. (2012) Synthetic nucleotides as probes of DNA polymerase specificity, J. Nucleic Acids, 2012, 530963.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Chen, T., and Romesberg, F. E. (2014) Directed poly-merase evolution, FEBS Lett., 588, 219–229.CrossRefPubMedGoogle Scholar
  67. 67.
    Houlihan, G., Arangundy-Franklin, S., and Holliger, P. (2017) Engineering and application of polymerases for synthetic genetics, Curr. Opin. Biotechnol., 48, 168–179.CrossRefPubMedGoogle Scholar
  68. 68.
    Hollenstein, M. (2012) Nucleoside triphosphates − build-ing blocks for the modification of nucleic acids, Molecules, 17, 13569–13591.CrossRefPubMedGoogle Scholar
  69. 69.
    Hocek, M. (2014) Synthesis of base-modified 2′-deoxyri-bonucleoside triphosphates and their use in enzymatic syn-thesis of modified DNA for applications in bioanalysis and chemical biology, J. Org. Chem., 79, 9914–9921.CrossRefPubMedGoogle Scholar
  70. 70.
    Kore, A. R., and Srinivasan, B. (2013) Recent advances in the syntheses of nucleoside triphosphates, Curr. Org. Synthesis, 10, 903–934.CrossRefGoogle Scholar
  71. 71.
    Iglesias, L. E., Lewkowicz, E. S., Medici, R., Bianchi, P., and Iribarren, A. M. (2015) Biocatalytic approaches applied to the synthesis of nucleoside prodrugs, Biotechnol. Adv., 33, 412–434.CrossRefPubMedGoogle Scholar
  72. 72.
    Caton-Williams, J., Lin, L., Smith, M., and Huang, Z. (2011) Convenient synthesis of nucleoside 5′-triphosphates for RNA transcription, Chem. Commun., 47, 8142–8144.CrossRefGoogle Scholar
  73. 73.
    Caton-Williams, J., Hoxhaj, R., Fiaz, B., and Huang, Z. (2013) Use of a novel 5′-regioselective phosphitylating reagent for one-pot synthesis of nucleoside 5′-triphos-phates from unprotected nucleosides, Curr. Protoc. Nucleic Acid Chem., Chap. 1, Unit 1.30.Google Scholar
  74. 74.
    Dellafiore, M. A., Montserrat, J. M., and Iribarren, A. M. (2016) Modified nucleoside triphosphates for in vitro selection techniques, Front. Chem., 4, 18.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Darmostuk, M., Rimpelova, S., Gbelcova, H., and Ruml, T. (2014) Current approaches in SELEX: an update to aptamer selection technology, Biotechnol. Adv., 33, 1141–1161.CrossRefGoogle Scholar
  76. 76.
    Gawande, B. N., Rohloff, J. C., Carter, J. D., von Carlowitz, I., Zhang, C., Schneider, D. J., and Janjic, N. (2017) Selection of DNA aptamers with two modified bases, Proc. Natl. Acad. Sci. USA, 114, 2898–2903.CrossRefPubMedGoogle Scholar
  77. 77.
    Rohloff, J. C., Gelinas, A. D., Jarvis, T. C., Ochsner, U. A., Schneider, D. J., Gold, L., and Janjic, N. (2014) Nucleic acid ligands with protein-like side chains: modified aptamers and their use as diagnostic and therapeutic agents, Mol. Ther. Nucleic Acids, 3, e201.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Ren, X., Gelinas, A. D., Von Carlowitz, I., Janjic, N., and Pyle, A. M. (2017) Structural basis for IL-1α recognition by a modified DNA aptamer that specifically inhibits IL-1α signaling, Nat. Commun., 8, 810.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Russell, T. M., Green, L. S., Rice, T., Kruh-Garcia, N. A., Dobos, K., De Groote, M. A., Hraha, T., Sterling, D. G., Janjic, N., and Ochsner, U. A. (2017) Potential of high-affinity, slow off-rate modified aptamer reagents for Mycobacterium tuberculosis proteins as tools for infection models and diagnostic applications, J. Clin. Microbiol., 55, 3072–3088.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Ganz, P., Heidecker, B., Hveem, K., Jonasson, C., Kato, S., Segal, M. R., Sterling, D. G., and Williams, S. A. (2016) Development and validation of a protein-based risk score for cardiovascular outcomes among patients with stable coronary heart disease, JAMA, 315, 2532–2541.CrossRefPubMedGoogle Scholar
  81. 81.
    De Groote, M. A., Sterling, D. G., Hraha, T., Russell, T., Green, L. S., Wall, K., Kraemer, S., Ostroff, R., Janjic, N., and Ochsner, U. A. (2017) Discovery and validation of a six-marker serum protein signature for the diagnosis of active pulmonary tuberculosis, J. Clin. Microbiol., 55, 3057–3071.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Abifadel, M., Varret, M., Rabes, J. P., Allard, D., Ouguerram, K., Devillers, M., Cruaud, C., Benjannet, S., Wickham, L., Erlich, D., Derre, A., Villeger, L., Farnier, M., Beucler, I., Bruckert, E., Chambaz, J., Chanu, B., Lecerf, J. M., Luc, G., Moulin, P., Weissenbach, J., Prat, A., Krempf, M., Junien, C., Seidah, N. G., and Boileau, C. (2003) Mutations in PCSK9 cause autosomal dominant hypercholesterolemia, Nat. Genet., 34, 154–156.CrossRefPubMedGoogle Scholar
  83. 83.
    Lokesh, G. L., Wang, H., Lam, C. H., Thiviyanathan, V., Ward, N., Gorenstein, D. G., and Volk, D. E. (2017) X-Aptamer selection and validation, Methods Mol. Biol., 1632, 151–174.CrossRefPubMedGoogle Scholar
  84. 84.
    He, W., Elizondo-Riojas, M. A., Li, X., Lokesh, G. L. R., Somasunderam, A., Thiviyanathan, V., Volk, D. E., Durland, R. H., Englehardt, J., Cavasotto, C. N., and Gorenstein, D. G. (2012) X-Aptamers: a bead-based selection method for random incorporation of drug-like moi-eties onto next-generation aptamers for enhanced binding, Biochemistry, 51, 8321–8323.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Mann, A. P., Bhavane, R. C., Somasunderam, A., Liz Montalvo-Ortiz, B., Ghaghada, K. B., Volk, D., Nieves-Alicea, R., Suh, K. S., Ferrari, M., Annapragada, A., Gorenstein, D. G., and Tanaka, T. (2011) Thioaptamer conjugated liposomes for tumor vasculature targeting, Oncotarget, 2, 298–304.CrossRefPubMedGoogle Scholar
  86. 86.
    Volk, D. E., and Lokesh, G. L. R. (2017) Development of phosphorothioate DNA and DNA thioaptamers, Biomedicines, 5, E41.CrossRefPubMedGoogle Scholar
  87. 87.
    Tolle, F., Brandle, G. M., Matzner, D., and Mayer, G. (2015) A versatile approach towards nucleobase-modified aptamers, Angew. Chemie Int. Ed. Engl., 54, 10971–10974.CrossRefGoogle Scholar
  88. 88.
    Switzer, C., Moronev, S. E., and Benner, S. A. (1989) Enzymatic incorporation of a new base pair into DNA and RNA, J. Am. Chem. Soc., 111, 8322–8323.CrossRefGoogle Scholar
  89. 89.
    Kimoto, M., Matsunaga, K. I., and Hirao, I. (2016) DNA aptamer generation by genetic alphabet expansion SELEX (ExSELEX) using an unnatural base pair system, in Nucleic Acid Aptamers (Mayer, G., ed.), Springer, pp. 47–60.CrossRefGoogle Scholar
  90. 90.
    Sismour, A. M., and Benner, S. A. (2005) The use of thymi-dine analogs to improve the replication of an extra DNA base pair: a synthetic biological system, Nucleic Acids Res., 33, 5640–5646.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Morales, J. C., and Kool, E. T. (1998) Efficient replication between non-hydrogen-bonded nucleoside shape analogs, Nat. Struct. Biol., 5, 950–954.CrossRefPubMedGoogle Scholar
  92. 92.
    McMinn, D. L., Ogawa, A. K., Wu, Y., Liu, J., Schultz, P. G., and Romesberg, F. E. (1999) Efforts toward expansion of the genetic alphabet: DNA polymerase recognition of a highly stable, self-pairing hydrophobic base, J. Am. Chem. Soc., 121, 11585–11586.CrossRefGoogle Scholar
  93. 93.
    Kimoto, M., Kawai, R., Mitsui, T., Yokoyama, S., and Hirao, I. (2009) An unnatural base pair system for efficient PCR amplification and functionalization of DNA mole-cules, Nucleic Acids Res., 37, e14.CrossRefPubMedGoogle Scholar
  94. 94.
    Georgiadis, M. M., Singh, I., Kellett, W. F., Hoshika, S., Benner, S. A., and Richards, N. G. J. (2015) Structural basis for a six-nucleotide genetic alphabet, J. Am. Chem. Soc., 137, 6947–6955.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Sefah, K., Yang, Z., Bradley, K. M., Hoshika, S., Jimenez, E., Zhang, L., Zhu, G., Shanker, S., Yu, F., Turek, D., Tan, W., and Benner, S. A. (2014) In vitro selection with unnatural expanded genetic information systems, Proc. Natl. Acad. Sci. USA, 111, 1449–1454.CrossRefPubMedGoogle Scholar
  96. 96.
    Hirao, I., Kimoto, M., Mitsui, T., Fujiwara, T., Kawai, R., Sato, A., Harada, Y., and Yokoyama, S. (2006) An unnatural hydrophobic base pair system: site-specific incorporation of nucleotide analogs into DNA and RNA, Nat. Methods, 3, 729–735.CrossRefPubMedGoogle Scholar
  97. 97.
    Kong, D., Yeung, W., and Hili, R. (2017) In vitro selection of diversely functionalized aptamers, J. Am. Chem. Soc., 139, 13977–13980.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • O. M. Antipova
    • 1
    • 2
    Email author
  • E. G. Zavyalova
    • 1
    • 2
  • A. V. Golovin
    • 2
    • 3
    • 4
  • G. V. Pavlova
    • 2
    • 4
    • 5
    • 6
  • A. M. Kopylov
    • 1
    • 2
  • R. V. Reshetnikov
    • 2
    • 3
    • 4
    • 5
  1. 1.Faculty of ChemistryLomonosov Moscow State UniversityMoscowRussia
  2. 2.Apto-Pharm Ltd.MoscowRussia
  3. 3.Faculty of Bioengineering and BioinformaticsLomonosov Moscow State UniversityMoscowRussia
  4. 4.Institute of Molecular MedicineSechenov First Moscow State Medical UniversityMoscowRussia
  5. 5.Institute of Gene BiologyRussian Academy of SciencesMoscowRussia
  6. 6.Burdenko National Scientific and Practical Center for NeurosurgeryMinistry of Healthcare of the Russian FederationMoscowRussia

Personalised recommendations