Advertisement

Biochemistry (Moscow)

, Volume 83, Issue 9, pp 1124–1138 | Cite as

Enhancement of Declarative Memory: From Genetic Regulation to Non-invasive Stimulation

  • D. V. BryzgalovEmail author
  • I. L. Kuznetsova
  • E. I. RogaevEmail author
Review

Abstract

The problem of memory enhancement is extremely important in intellectual activity areas and therapy of different types of dementia, including Alzheimer’s disease (AD). The attempts to solve this problem have come from different research fields. In the first part of our review, we describe the results of targeting certain genes involved in memory-associated molecular pathways. The second part of the review is focused on the deep stimulation of brain structures that can slow down memory loss in AD. The third part describes the results of the use of non-invasive brain stimulation techniques for memory modulation, consolidation, and retrieval in healthy people and animal models. Integration of data from different research fields is essential for the development of efficient strategies for memory enhancement.

Keywords

memory Alzheimer’s disease brain stimulation hippocampus CREB pathway 

Abbreviations

AMPA

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

BDNF

brain-derived neurotrophic factor

C/EBP

CCAAT enhancer-binding protein

CREB

cAMP response element-binding protein

DBS

deep brain stimulation

dlPFC

dorsolateral prefrontal cortex

DREADD

designer receptor exclusively activated by designer drugs

(f)MRI

(functional) magnetic resonance imaging

IGF

insulin-like growth factor

IIS pathway

insulin/IGF-I-like signaling pathway

NMDA

N-methyl-D-aspartate

PKMζ

protein kinase Mζ

tACS

transcranial alternating current stimulation

tDCS

transcranial direct current stimulation

TMS

transcranial magnetic stimulation

TRE

tetracycline responsive element

TrkB

tropomyosin-related kinase B

tTa

tetracycline transactivator

WT

wild-type

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kukushkin, N. V., and Carew, T. J. (2017) Memory takes time, Neuron, 95, 259–279.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Morand-Beaulieu, S., Leclerc, J., Valois, P., Lavoie, M., O’Connor, K., and Gauthier, B. (2017) A review of the neuropsychological dimensions of tourette syndrome, Brain Sci., 7, E106.PubMedCrossRefGoogle Scholar
  3. 3.
    Ballard, C., Gauthier, S., Corbett, A., Brayne, C., Aarsland, D., and Jones, E. (2011) Alzheimer’s disease, Lancet, 377, 1019–1031.PubMedCrossRefGoogle Scholar
  4. 4.
    Penfield, W., and Milner, B. (1958) Memory deficit produced by bilateral lesions in the hippocampal zone, AMA Arch. Neurol. Psychiatry, 79, 475–497.PubMedCrossRefGoogle Scholar
  5. 5.
    Tang, Y.-P., Shimizu, E., Dube, G. R., Rampon, C., Kerchner, G. A., Zhuo, M., Liu, G., and Tsien, J. Z. (1999) Genetic enhancement of learning and memory in mice, Nature, 401, 63–69.PubMedCrossRefGoogle Scholar
  6. 6.
    Cao, X., Cui, Z., Feng, R., Tang, Y.-P., Qin, Z., Mei, B., and Tsien, J. Z. (2007) Maintenance of superior learning and memory function in NR2B transgenic mice during ageing, Eur. J. Neurosci., 25, 1815–1822.PubMedCrossRefGoogle Scholar
  7. 7.
    Wang, D., Jacobs, S. A., and Tsien, J. Z. (2014) Targeting the NMDA receptor subunit NR2B for treating or preventing age-related memory decline, Expert Opin. Ther. Targets, 18, 1121–1130.PubMedCrossRefGoogle Scholar
  8. 8.
    Kalisch, R., Holt, B., Petrovic, P., De Martino, B., Kloppel, S., Buchel, C., and Dolan, R. J. (2009) The NMDA agonist D-cycloserine facilitates fear memory consolidation in humans, Cereb. Cortex, 19, 187–196.PubMedCrossRefGoogle Scholar
  9. 9.
    Wong, R. W.-C., Setou, M., Teng, J., Takei, Y., and Hirokawa, N. (2002) Overexpression of motor protein KIF17 enhances spatial and working memory in transgenic mice, Proc. Natl. Acad. Sci. USA, 99, 14500–14505.PubMedCrossRefGoogle Scholar
  10. 10.
    Partin, K. M. (2015) AMPA receptor potentiators: from drug design to cognitive enhancement, Curr. Opin. Pharmacol., 20, 46–53.PubMedCrossRefGoogle Scholar
  11. 11.
    Borodinova, A. A., Zuzina, A. B., and Balaban, P. M. (2017) Role of atypical protein kinases in maintenance of long-term memory and synaptic plasticity, Biochemistry (Moscow), 82, 243–256.CrossRefGoogle Scholar
  12. 12.
    Shema, R., Haramati, S., Ron, S., Hazvi, S., Chen, A., Sacktor, T. C., and Dudai, Y. (2011) Enhancement of consolidated long-term memory by overexpression of protein kinase M in the neocortex, Science, 331, 1207–1210.PubMedCrossRefGoogle Scholar
  13. 13.
    Hara, Y., Punsoni, M., Yuk, F., Park, C. S., Janssen, W. G. M., Rapp, P. R., and Morrison, J. H. (2012) Synaptic distributions of GluA2 and PKM in the monkey dentate gyrus and their relationships with aging and memory, J. Neurosci., 32, 7336–7344.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Josselyn, S. A., Shi, C., Carlezon, W. A., Neve, R. L., Nestler, E. J., and Davis, M. (2001) Long-term memory is facilitated by cAMP response element-binding protein over-expression in the amygdala, J. Neurosci., 21, 2404–2412.PubMedCrossRefGoogle Scholar
  15. 15.
    Jasnow, A. M., Shi, C., Israel, J. E., Davis, M., and Huhman, K. L. (2005) Memory of social defeat is facilitated by cAMP response element-binding protein overexpression in the amygdala, Behav. Neurosci., 119, 1125–1130.PubMedCrossRefGoogle Scholar
  16. 16.
    Wu, L.-J., Zhang, X.-H., Fukushima, H., Zhang, F., Wang, H., Toyoda, H., Li, B.-M., Kida, S., and Zhuo, M. (2008) Genetic enhancement of trace fear memory and cingulate potentiation in mice overexpressing Ca2+/calmodulin-dependent protein kinase IV, Eur. J. Neurosci., 27, 1923–1932.PubMedCrossRefGoogle Scholar
  17. 17.
    Fukushima, H., Maeda, R., Suzuki, R., Suzuki, A., Nomoto, M., Toyoda, H., Wu, L.-J., Xu, H., Zhao, M.-G., and Ueda, K. (2008) Upregulation of calcium/calmodulin-dependent protein kinase IV improves memory formation and rescues memory loss with aging, J. Neurosci., 28, 9910–9919.PubMedCrossRefGoogle Scholar
  18. 18.
    Chen, A., Muzzio, I. A., Malleret, G., Bartsch, D., Verbitsky, M., Pavlidis, P., Yonan, A. L., Vronskaya, S., Grody, M. B., Cepeda, I., Gilliam, T. C., and Kandel, E. R. (2003) Inducible enhancement of memory storage and synaptic plasticity in transgenic mice expressing an inhibitor of ATF4 (CREB-2) and C/EBP proteins, Neuron, 39, 655–669.PubMedCrossRefGoogle Scholar
  19. 19.
    Sakurai, H., Hanyu, H., Sato, T., Kume, K., Hirao, K., Kanetaka, H., and Iwamoto, T. (2013) Effects of cilostazol on cognition and regional cerebral blood flow in patients with Alzheimer’s disease and cerebrovascular disease: a pilot study, Geriatr. Gerontol. Int., 13, 90–97.PubMedCrossRefGoogle Scholar
  20. 20.
    Kametani, F. (2015) Austin Alzheimer’s and Parkinson’s disease phosphodiesterase as a drug target of Alzheimer’s disease, Austin Alzheimers J. Park. Dis., 2, 2–5.Google Scholar
  21. 21.
    Chen, D. Y., Stern, S. A., Garcia-Osta, A., Saunier-Rebori, B., Pollonini, G., Bambah-Mukku, D., Blitzer, R. D., and Alberini, C. M. (2011) A critical role for IGF-II in memory consolidation and enhancement, Nature, 469, 491–497.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Lee, Y., Lee, Y. W., Gao, Q., Lee, Y., Lee, H. E., and Ryu, J. H. (2015) Exogenous insulin-like growth factor 2 administration enhances memory consolidation and persistence in a time-dependent manner, Brain Res., 1622, 466–473.PubMedCrossRefGoogle Scholar
  23. 23.
    Agis-Balboa, R. C., Arcos-Diaz, D., Wittnam, J., Govindarajan, N., Blom, K., Burkhardt, S., Haladyniak, U., Agbemenyah, H. Y., Zovoilis, A., Salinas-Riester, G., Opitz, L., Sananbenesi, F., and Fischer, A. (2011) A hippocampal insulin-growth factor 2 pathway regulates the extinction of fear memories, EMBO J., 30, 4071–4083.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Agis-Balboa, R. C., and Fischer, A. (2014) Generating new neurons to circumvent your fears: the role of IGF signaling, Cell. Mol. Life Sci., 71, 21–42.PubMedCrossRefGoogle Scholar
  25. 25.
    Stern, S. A., Kohtz, A. S., Pollonini, G., and Alberini, C. M. (2014) Enhancement of memories by systemic administration of insulin-like growth factor II, Neuropsychopharmacology, 39, 2179–2190.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Stern, S. A., Chen, D. Y., and Alberini, C. M. (2014) The effect of insulin and insulin-like growth factors on hippocampus-and amygdala-dependent long-term memory formation, Learn. Mem., 21, 556–563.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Fernandez, A. M., and Torres-Aleman, I. (2012) The many faces of insulin-like peptide signalling in the brain, Nat. Rev. Neurosci., 13, 225–239.PubMedCrossRefGoogle Scholar
  28. 28.
    Kenyon, C., Chang, J., Gensch, E., Rudner, A., and Tabtiang, R. (1993) A C. elegans mutant that lives twice as long as wild type, Nature, 366, 461–464.PubMedCrossRefGoogle Scholar
  29. 29.
    Giannakou, M., and Partridge, L. (2007) Role of insulin-like signalling in Drosophila lifespan, Trends Biochem. Sci., 32, 180–188.PubMedCrossRefGoogle Scholar
  30. 30.
    Van Heemst, D. (2010) Insulin, IGF-1 and longevity, Aging Dis., 1, 147–157.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Kauffman, A. L., Ashraf, J. M., Corces-Zimmerman, M. R., Landis, J. N., and Murphy, C. T. (2010) Insulin signaling and dietary restriction differentially influence the decline of learning and memory with age, PLoS Biol., 8, e1000372.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Murakami, H. (2005) Aging-dependent and-independent modulation of associative learning behavior by insulin/insulin-like growth factor-1 signal in Caenorhabditis elegans, J. Neurosci., 25, 10894–10904.PubMedCrossRefGoogle Scholar
  33. 33.
    Carro, E., and Torres-Aleman, I. (2004) The role of insulin and insulin-like growth factor I in the molecular and cellular mechanisms underlying the pathology of Alzheimer’s disease, Eur. J. Pharmacol., 490, 127–133.PubMedCrossRefGoogle Scholar
  34. 34.
    O’Neill, C., Kiely, A. P., Coakley, M. F., Manning, S., and Long-Smith, C. M. (2012) Insulin and IGF-1 signalling: longevity, protein homoeostasis and Alzheimer’s disease, Biochem. Soc. Trans., 40, 721–727.PubMedCrossRefGoogle Scholar
  35. 35.
    Watanabe, T., Miyazaki, A., Katagiri, T., Yamamoto, H., Idei, T., and Iguchi, T. (2005) Relationship between serum insulin-like growth factor-1 levels and Alzheimer’s disease and vascular dementia, J. Am. Geriatr. Soc., 53, 1748–1753.PubMedCrossRefGoogle Scholar
  36. 36.
    Aleman, A., and Torres-Aleman, I. (2009) Circulating insulin-like growth factor I and cognitive function: neuro-modulation throughout the lifespan, Prog. Neurobiol., 89, 256–265.PubMedCrossRefGoogle Scholar
  37. 37.
    Hertze, J., Nagga, K., Minthon, L., and Hansson, O. (2014) Changes in cerebrospinal fluid and blood plasma levels of IGF-II and its binding proteins in Alzheimer’s disease: an observational study, BMC Neurol., 14,64.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Lane, E. M., Hohman, T. J., and Jefferson, A. L. (2017) Insulin-like growth factor binding protein-2 interactions with Alzheimer’s disease biomarkers, Brain Imaging Behav., 11, 1779–1786.PubMedCrossRefGoogle Scholar
  39. 39.
    Hu, A., Yuan, H., Wu, L., Chen, R., Chen, Q., Zhang, T., Wang, Z., Liu, P., and Zhu, X. (2016) The effect of constitutive over-expression of insulin-like growth factor 1 on the cognitive function in aged mice, Brain Res., 1631, 204–213.PubMedCrossRefGoogle Scholar
  40. 40.
    Pascual-Lucas, M., Viana da Silva, S., Di Scala, M., Garcia-Barroso, C., Gonzalez-Aseguinolaza, G., Mulle, C., Alberini, C. M., Cuadrado-Tejedor, M., and Garcia-Osta, A. (2014) Insulin-like growth factor 2 reverses memory and synaptic deficits in APP transgenic mice, EMBO Mol. Med., 6, 1246–1262.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Steinmetz, A. B., Johnson, S. A., Iannitelli, D. E., Pollonini, G., and Alberini, C. M. (2016) Insulin-like growth factor 2 rescues aging-related memory loss in rats, Neurobiol. Aging, 44, 9–21.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Bekinschtein, P., Kent, B. A., Oomen, C. A., Clemenson, G. D., Gage, F. H., Saksida, L. M., and Bussey, T. J. (2013) BDNF in the dentate gyrus is required for consolidation of “pattern-separated” memories, Cell Rep., 5, 759–768.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Lai, K. O., Wong, A. S., Cheung, M. C., Xu, P., Liang, Z., Lok, K. C., Xie, H., Palko, M. E., Yung, W. H., Tessarollo, L., Cheung, Z. H., and Ip, N. Y. (2012) TrkB phosphorylation by Cdk5 is required for activity-dependent structural plasticity and spatial memory, Nat. Neurosci., 15, 1506–1515.PubMedCrossRefGoogle Scholar
  44. 44.
    Andero, R., Heldt, S. A., Ye, K., Liu, X., Armario, A., and Ressler, K. J. (2011) Effect of 7,8-dihydroxyflavone, a small-molecule TrkB agonist, on emotional learning, Am. J. Psychiatry, 168, 163–172.PubMedCrossRefGoogle Scholar
  45. 45.
    Shishmanova-Doseva, M., Peychev, L., Koeva, Y., Terzieva, D., Georgieva, K., and Peychev, Z. (2018) Chronic treatment with the new anticonvulsant drug lacosamide impairs learning and memory processes in rats: a possible role of BDNF/TrkB ligand receptor system, Pharmacol. Biochem. Behav., 169, 1–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Tan, M. C., Widagdo, J., Chau, Y. Q., Zhu, T., Wong, J. J.-L., Cheung, A., and Anggono, V. (2017) The activity-induced long non-coding RNA Meg3 modulates AMPA receptor surface expression in primary cortical neurons, Front. Cell. Neurosci., 11,124.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Fiumara, F., Rajasethupathy, P., Antonov, I., Kosmidis, S., Sossin, W. S., and Kandel, E. R. (2015) MicroRNA-22 gates long-term heterosynaptic plasticity in Aplysia through presynaptic regulation of CPEB and downstream targets, Cell Rep., 11, 1866–1875.PubMedCrossRefGoogle Scholar
  48. 48.
    Bedecarrats, A., Chen, S., Pearce, K., Cai, D., and Glanzman, D. L. (2018) RNA from trained Aplysia can induce an epigenetic engram for long-term sensitization in untrained Aplysia, eNeuro, 5, e0038–18.2018.CrossRefGoogle Scholar
  49. 49.
    Blomstedt, P., Sjoberg, R. L., Hansson, M., Bodlund, O., and Hariz, M. I. (2013) Deep brain stimulation in the treatment of obsessive-compulsive disorder, World Neurosurg., 80, e245–e253.PubMedCrossRefGoogle Scholar
  50. 50.
    Schlaepfer, T. E., and Bewernick, B. H. (2013) Deep brain stimulation for major depression, Handb. Clin. Neurol., 116, 235–243.PubMedCrossRefGoogle Scholar
  51. 51.
    Luigjes, J., van den Brink, W., Feenstra, M., van den Munckhof, P., Schuurman, P. R., Schippers, R., Mazaheri, A., De Vries, T. J., and Denys, D. (2012) Deep brain stimulation in addiction: a review of potential brain targets, Mol. Psychiatry, 17, 572–583.PubMedCrossRefGoogle Scholar
  52. 52.
    Baldermann, J. C., Schuller, T., Huys, D., Becker, I., Timmermann, L., Jessen, F., Visser-Vandewalle, V., and Kuhn, J. (2016) Deep brain stimulation for tourette-syndrome: a systematic review and meta-analysis, Brain Stimul., 9, 296–304.PubMedCrossRefGoogle Scholar
  53. 53.
    Pozzi, N. G., and Pacchetti, C. (2017) Back to the future: 30th anniversary of deep brain stimulation for Parkinson’s disease, Funct. Neurol., 32, 5–6.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Hardenacke, K., Shubina, E., Buhrle, C. P., Zapf, A., Lenartz, D., Klosterkotter, J., Visser-Vandewalle, V., and Kuhn, J. (2013) Deep brain stimulation as a tool for improving cognitive functioning in Alzheimer’s dementia: a systematic review, Front. Psychiatry, 4,159.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Hamani, C., McAndrews, M. P., Cohn, M., Oh, M., Zumsteg, D., Shapiro, C. M., Wennberg, R. A., and Lozano, A. M. (2008) Memory enhancement induced by hypothalamic/fornix deep brain stimulation, Ann. Neurol., 63, 119–123.PubMedCrossRefGoogle Scholar
  56. 56.
    Laxton, A. W., Tang-Wai, D. F., McAndrews, M. P., Zumsteg, D., Wennberg, R., Keren, R., Wherrett, J., Naglie, G., Hamani, C., Smith, G. S., and Lozano, A. M. (2010) A phase I trial of deep brain stimulation of memory circuits in Alzheimer’s disease, Ann. Neurol., 68, 521–534.PubMedCrossRefGoogle Scholar
  57. 57.
    Smith, G. S., Laxton, A. W., Tang-Wai, D. F., McAndrews, M. P., Diaconescu, A. O., Workman, C. I., and Lozano, A. M. (2012) Increased cerebral metabolism after 1 year of deep brain stimulation in Alzheimer disease, Arch. Neurol., 69, 1141–1148.PubMedCrossRefGoogle Scholar
  58. 58.
    Sankar, T., Chakravarty, M. M., Bescos, A., Lara, M., Obuchi, T., Laxton, A. W., McAndrews, M. P., Tang-Wai, D. F., Workman, C. I., Smith, G. S., and Lozano, A. M. (2015) Deep brain stimulation influences brain structure in Alzheimer’s disease, Brain Stimul., 8, 645–654.PubMedCrossRefGoogle Scholar
  59. 59.
    Fontaine, D., Deudon, A., Lemaire, J. J., Razzouk, M., Viau, P., Darcourt, J., and Robert, P. (2013) Symptomatic treatment of memory decline in Alzheimer’s disease by deep brain stimulation: a feasibility study, J. Alzheimer’s Dis., 34, 315–323.CrossRefGoogle Scholar
  60. 60.
    Ponce, F. A., Asaad, W. F., Foote, K. D., Anderson, W. S., Rees Cosgrove, G., Baltuch, G. H., Beasley, K., Reymers, D. E., Oh, E. S., Targum, S. D., Smith, G. S., Lyketsos, C. G., and Lozano, A. M. (2016) Bilateral deep brain stimulation of the fornix for Alzheimer’s disease: surgical safety in the ADvance trial, J. Neurosurg., 125, 75–84.PubMedCrossRefGoogle Scholar
  61. 61.
    Lozano, A. M., Fosdick, L., Chakravarty, M. M., Leoutsakos, J.-M., Munro, C., Oh, E., Drake, K. E., Lyman, C. H., Rosenberg, P. B., Anderson, W. S., Tang-Wai, D. F., Pendergrass, J. C., Salloway, S., Asaad, W. F., Ponce, F. A., Burke, A., Sabbagh, M., Wolk, D. A., Baltuch, G., Okun, M. S., Foote, K. D., McAndrews, M. P., Giacobbe, P., Targum, S. D., Lyketsos, C. G., and Smith, G. S. (2016) A phase II study of fornix deep brain stimulation in mild Alzheimer’s disease, J. Alzheimer’s Dis., 54, 777–787.CrossRefGoogle Scholar
  62. 62.
    Hescham, S., Lim, L. W., Jahanshahi, A., Steinbusch, H. W. M., Prickaerts, J., Blokland, A., and Temel, Y. (2013) Deep brain stimulation of the forniceal area enhances memory functions in experimental dementia: the role of stimulation parameters, Brain Stimul., 6, 72–77.PubMedCrossRefGoogle Scholar
  63. 63.
    Hao, S., Tang, B., Wu, Z., Ure, K., Sun, Y., Tao, H., Gao, Y., Patel, A. J., Curry, D. J., Samaco, R. C., Zoghbi, H. Y., and Tang, J. (2015) Forniceal deep brain stimulation rescues hippocampal memory in Rett syndrome mice, Nature, 526, 430–434.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Zhang, J.-G., Zhang, C., Hu, W.-H., Wu, D.-L., and Zhang, K. (2015) Behavioral effects of deep brain stimulation of the anterior nucleus of thalamus, entorhinal cortex and fornix in a rat model of Alzheimer’s disease, Chin. Med. J. (Engl.), 128, 1190–1195.CrossRefGoogle Scholar
  65. 65.
    Hescham, S., Jahanshahi, A., Schweimer, J. V., Mitchell, S. N., Carter, G., Blokland, A., Sharp, T., and Temel, Y. (2016) Fornix deep brain stimulation enhances acetylcholine levels in the hippocampus, Brain Struct. Funct., 221, 4281–4286.PubMedCrossRefGoogle Scholar
  66. 66.
    Hescham, S., Temel, Y., Schipper, S., Lagiere, M., Schonfeld, L.-M., Blokland, A., and Jahanshahi, A. (2017) Fornix deep brain stimulation induced long-term spatial memory independent of hippocampal neurogenesis, Brain Struct. Funct., 222, 1069–1075.PubMedCrossRefGoogle Scholar
  67. 67.
    Suthana, N., Haneef, Z., Stern, J., Mukamel, R., Behnke, E., Knowlton, B., and Fried, I. (2012) Memory enhancement and deep-brain stimulation of the entorhinal area, N. Engl. J. Med., 366, 502–510.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Fell, J., Staresina, B. P., Do Lam, A. T. A., Widman, G., Helmstaedter, C., Elger, C. E., and Axmacher, N. (2013) Memory modulation by weak synchronous deep brain stimulation: a pilot study, Brain Stimul., 6, 270–273.PubMedCrossRefGoogle Scholar
  69. 69.
    Jacobs, J., Miller, J., Lee, S. A., Coffey, T., Watrous, A. J., Sperling, M. R., Sharan, A., Worrell, G., Berry, B., Lega, B., Jobst, B. C., Davis, K., Gross, R. E., Sheth, S. A., Ezzyat, Y., Das, S. R., Stein, J., Gorniak, R., Kahana, M. J., and Rizzuto, D. S. (2016) Direct electrical stimulation of the human entorhinal region and hippocampus impairs memory, Neuron, 92, 983–990.PubMedCrossRefGoogle Scholar
  70. 70.
    Hansen, N., Chaieb, L., Derner, M., Hampel, K. G., Elger, C. E., Surges, R., Staresina, B., Axmacher, N., and Fell, J. (2018) Memory encoding-related anterior hippocampal potentials are modulated by deep brain stimulation of the entorhinal area, Hippocampus, 28, 12–17.PubMedCrossRefGoogle Scholar
  71. 71.
    Titiz, A. S., Hill, M. R. H., Mankin, E. A., Aghajan, Z. M., Eliashiv, D., Tchemodanov, N., Maoz, U., Stern, J., Tran, M. E., Schuette, P., Schuette, P., Behnke, E., Suthana, N. A., and Fried, I. (2017) Theta-burst microstimulation in the human entorhinal area improves memory specificity, Elife, 6, e29515.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Stone, S. S. D., Teixeira, C. M., DeVito, L. M., Zaslavsky, K., Josselyn, S. A., Lozano, A. M., and Frankland, P. W. (2011) Stimulation of entorhinal cortex promotes adult neurogenesis and facilitates spatial memory, J. Neurosci., 31, 13469–13484.PubMedCrossRefGoogle Scholar
  73. 73.
    Xia, F., Yiu, A., Stone, S. S. D., Oh, S., Lozano, A. M., Josselyn, S. A., and Frankland, P. W. (2017) Entorhinal cortical deep brain stimulation rescues memory deficits in both young and old mice genetically engineered to model Alzheimer’s disease, Neuropsychopharmacology, 42, 2493–2503.PubMedCrossRefGoogle Scholar
  74. 74.
    Mufson, E. J., Counts, S. E., Perez, S. E., and Ginsberg, S. D. (2008) Cholinergic system during the progression of Alzheimer’s disease: therapeutic implications, Expert Rev. Neurother., 8, 1703–1718.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Turnbull, I. M., McGeer, P. L., Beattie, L., Calne, D., and Pate, B. (1985) Stimulation of the basal nucleus of Meynert in senile dementia of Alzheimer’s type. A preliminary report, Appl. Neurophysiol., 48, 216–221.PubMedGoogle Scholar
  76. 76.
    Freund, H.-J., Kuhn, J., Lenartz, D., Mai, J. K., Schnell, T., Klosterkoetter, J., and Sturm, V. (2009) Cognitive functions in a patient with Parkinson-dementia syndrome undergoing deep brain stimulation, Arch. Neurol., 66, 781–785.PubMedCrossRefGoogle Scholar
  77. 77.
    Kuhn, J., Hardenacke, K., Shubina, E., Lenartz, D., Visser-Vandewalle, V., Zilles, K., Sturm, V., and Freund, H.-J. (2015) Deep brain stimulation of the nucleus basalis of Meynert in early stage of Alzheimer’s dementia, Brain Stimul., 8, 838–839.PubMedCrossRefGoogle Scholar
  78. 78.
    Baldermann, J. C., Hardenacke, K., Hu, X., Köster, P., Horn, A., Freund, H. J., Zilles, K., Sturm, V., Visser-Vandewalle, V., Jessen, F., Maintz, D., and Kuhn, J. (2017) Neuroanatomical characteristics associated with response to deep brain stimulation of the nucleus basalis of meynert for Alzheimer’s disease, Neuromodulation, 21, 184–190.PubMedCrossRefGoogle Scholar
  79. 79.
    Lee, J. E., Jeong, D. U., Lee, J., Chang, W. S., and Chang, J. W. (2016) The effect of nucleus basalis magnocellularis deep brain stimulation on memory function in a rat model of dementia, BMC Neurol., 16,6.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Casamenti, F., Deffenu, G., Abbamondi, A. L., and Pepeu, G. (1986) Changes in cortical acetylcholine output induced by modulation of the nucleus basalis, Brain Res. Bull., 16, 689–695.PubMedCrossRefGoogle Scholar
  81. 81.
    Buzsaki, G., Bickford, R. G., Ponomareff, G., Thal, L. J., Mandel, R., and Gage, F. H. (1988) Nucleus basalis and thalamic control of neocortical activity in the freely moving rat, J. Neurosci., 8, 4007–4026.PubMedCrossRefGoogle Scholar
  82. 82.
    Bjordahl, T. S., Dimyan, M. A., and Weinberger, N. M. (1998) Induction of long-term receptive field plasticity in the auditory cortex of the waking guinea pig by stimulation of the nucleus basalis, Behav. Neurosci., 112, 467–479.PubMedCrossRefGoogle Scholar
  83. 83.
    Kilgard, M. P., Pandya, P. K., Vazquez, J., Gehi, A., Schreiner, C. E., and Merzenich, M. M. (2001) Sensory input directs spatial and temporal plasticity in primary auditory cortex, J. Neurophysiol., 86, 326–338.PubMedCrossRefGoogle Scholar
  84. 84.
    Montero-Pastor, A., Vale-Martinez, A., Guillazo-Blanch, G., and Marti-Nicolovius, M. (2004) Effects of electrical stimulation of the nucleus basalis on two-way active avoidance acquisition, retention, and retrieval, Behav. Brain Res., 154, 41–54.PubMedCrossRefGoogle Scholar
  85. 85.
    Boix-Trelis, N., Vale-Martinez, A., Guillazo-Blanch, G., Costa-Miserachs, D., and Marti-Nicolovius, M. (2006) Effects of nucleus basalis magnocellularis stimulation on a socially transmitted food preference and c-Fos expression, Learn. Mem., 13, 783–793.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Luber, B., and Lisanby, S. H. (2014) Enhancement of human cognitive performance using transcranial magnetic stimulation (TMS), Neuroimage, 85, 961–970.PubMedCrossRefGoogle Scholar
  87. 87.
    Kirschen, M. P., Davis-Ratner, M. S., Jerde, T. E., Schraedley-Desmond, P., and Desmond, J. E. (2006) Enhancement of phonological memory following transcranial magnetic stimulation (TMS), Behav. Neurol., 17, 187–194.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Cattaneo, Z., Vecchi, T., Pascual-Leone, A., and Silvanto, J. (2009) Contrasting early visual cortical activation states causally involved in visual imagery and short-term memory, Eur. J. Neurosci., 30, 1393–1400.PubMedCrossRefGoogle Scholar
  89. 89.
    Yamanaka, K., Yamagata, B., Tomioka, H., Kawasaki, S., and Mimura, M. (2010) Transcranial magnetic stimulation of the parietal cortex facilitates spatial working memory: near-infrared spectroscopy study, Cereb. Cortex., 20, 1037–1045.PubMedCrossRefGoogle Scholar
  90. 90.
    Bagherzadeh, Y., Khorrami, A., Zarrindast, M. R., Shariat, S. V., and Pantazis, D. (2016) Repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex enhances working memory, Exp. Brain Res., 234, 1807–1818.PubMedCrossRefGoogle Scholar
  91. 91.
    Albouy, P., Weiss, A., Baillet, S., and Zatorre, R. J. (2017) Selective entrainment of theta oscillations in the dorsal stream causally enhances auditory working memory performance, Neuron, 94, 193–206.e5.PubMedCrossRefGoogle Scholar
  92. 92.
    Chung, S. W., Rogasch, N. C., Hoy, K. E., Sullivan, C. M., Cash, R. F. H., and Fitzgerald, P. B. (2018) Impact of different intensities of intermittent theta burst stimulation on the cortical properties during TMS-EEG and working memory performance, Hum. Brain Mapp., 39, 783–802.PubMedCrossRefGoogle Scholar
  93. 93.
    Pascual-Leone, A., Houser, C. M., Reese, K., Shotland, L., Grafman, J., Sato, S., Valls-Sole, J., Brasil-Neto, J. P., Wassermann, E. M., Cohen, L. G., and Hallet, M. (1993) Safety of rapid-rate transcranial magnetic stimulation in normal volunteers, Electroencephalogr. Clin. Neurophysiol., 89, 120–130.PubMedCrossRefGoogle Scholar
  94. 94.
    Wassermann, E. M., Grafman, J., Berry, C., Hollnagel, C., Wild, K., Clark, K., and Hallett, M. (1996) Use and safety of a new repetitive transcranial magnetic stimulator, Electroencephalogr. Clin. Neurophysiol., 101, 412–417.PubMedCrossRefGoogle Scholar
  95. 95.
    Kohler, S., Paus, T., Buckner, R. L., and Milner, B. (2004) Effects of left inferior prefrontal stimulation on episodic memory formation: a two-stage fMRI-rTMS study, J. Cogn. Neurosci., 16, 178–188.PubMedCrossRefGoogle Scholar
  96. 96.
    Hawco, C., Armony, J. L., Daskalakis, Z. J., Berlim, M. T., Chakravarty, M. M., Pike, G. B., and Lepage, M. (2017) Differing time of onset of concurrent TMS-fMRI during associative memory encoding: a measure of dynamic connectivity, Front. Hum. Neurosci., 11,404.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Wang, J. X., Rogers, L. M., Gross, E. Z., Ryals, A. J., Dokucu, M. E., Brandstatt, K. L., Hermiller, M. S., and Voss, J. L. (2014) Targeted enhancement of cortical-hippocampal brain networks and associative memory, Science, 345, 1054–1057.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Nilakantan, A. S., Bridge, D. J., Gagnon, E. P., Van Haerents, S. A., and Voss, J. L. (2017) Stimulation of the posterior cortical-hippocampal network enhances precision of memory recollection, Curr. Biol., 27, 465–470.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Paulus, W. (2011) Transcranial electrical stimulation (tES-tDCS; tRNS, tACS) methods, Neuropsychol. Rehabil., 21, 602–617.PubMedCrossRefGoogle Scholar
  100. 100.
    Marshall, L. (2004) Transcranial direct current stimulation during sleep improves declarative memory, J. Neurosci., 24, 9985–9992.PubMedCrossRefGoogle Scholar
  101. 101.
    Ladenbauer, J., Ladenbauer, J., Kulzow, N., de Boor, R., Avramova, E., Grittner, U., and Floel, A. (2017) Promoting sleep oscillations and their functional coupling by transcranial stimulation enhances memory consolidation in mild cognitive impairment, J. Neurosci., 37, 7111–7124.PubMedCrossRefGoogle Scholar
  102. 102.
    Javadi, A. H., and Walsh, V. (2012) Transcranial direct current stimulation (tDCS) of the left dorsolateral pre-frontal cortex modulates declarative memory, Brain Stimul., 5, 231–241.PubMedCrossRefGoogle Scholar
  103. 103.
    Leshikar, E. D., Leach, R. C., McCurdy, M. P., Trumbo, M. C., Sklenar, A. M., Frankenstein, A. N., and Matzen, L. E. (2017) Transcranial direct current stimulation of dorsolateral prefrontal cortex during encoding improves recall but not recognition memory, Neuropsychologia, 106, 390–397.PubMedCrossRefGoogle Scholar
  104. 104.
    Zwissler, B., Sperber, C., Aigeldinger, S., Schindler, S., Kissler, J., and Plewnia, C. (2014) Shaping memory accuracy by left prefrontal transcranial direct current stimulation, J. Neurosci., 34, 4022–4026.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Javadi, A. H., and Cheng, P. (2013) Transcranial direct current stimulation (tDCS) enhances reconsolidation of long-term memory, Brain Stimul., 6, 668–674.PubMedCrossRefGoogle Scholar
  106. 106.
    Smirni, D., Turriziani, P., Mangano, G. R., Cipolotti, L., and Oliveri, M. (2015) Modulating memory performance in healthy subjects with transcranial direct current stimulation over the right dorsolateral prefrontal cortex, PLoS One, 10, e0144838.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Floel, A., Rosser, N., Michka, O., Knecht, S., and Breitenstein, C. (2008) Noninvasive brain stimulation improves language learning, J. Cogn. Neurosci., 20, 1415–1422.PubMedCrossRefGoogle Scholar
  108. 108.
    Hammer, A., Mohammadi, B., Schmicker, M., Saliger, S., and Munte, T. F. (2011) Errorless and errorful learning modulated by transcranial direct current stimulation, BMC Neurosci., 12,72.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Nikolin, S., Loo, C. K., Bai, S., Dokos, S., and Martin, D. M. (2015) Focalised stimulation using high definition transcranial direct current stimulation (HD-tDCS) to investigate declarative verbal learning and memory functioning, Neuroimage, 117, 11–19.PubMedCrossRefGoogle Scholar
  110. 110.
    De Lara, G. A., Knechtges, P. N., Paulus, W., and Antal, A. (2017) Anodal tDCS over the left DLPFC did not affect the encoding and retrieval of verbal declarative information, Front. Neurosci., 11,452.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Manuel, A. L., and Schnider, A. (2016) Effect of prefrontal and parietal tDCS on learning and recognition of verbal and non-verbal material, Clin. Neurophysiol., 127, 2592–2598.PubMedCrossRefGoogle Scholar
  112. 112.
    Jones, K. T., Gozenman, F., and Berryhill, M. E. (2014) Enhanced long-term memory encoding after parietal neurostimulation, Exp. Brain Res., 232, 4043–4054.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Boggio, P. S., Khoury, L. P., Martins, D. C., Martins, O. E., de Macedo, E. C., and Fregni, F. (2009) Temporal cortex direct current stimulation enhances performance on a visual recognition memory task in Alzheimer disease, J. Neurol. Neurosurg. Psychiatry, 80, 444–447.PubMedCrossRefGoogle Scholar
  114. 114.
    Floel, A., Suttorp, W., Kohl, O., Kurten, J., Lohmann, H., Breitenstein, C., and Knecht, S. (2012) Non-invasive brain stimulation improves object-location learning in the elderly, Neurobiol. Aging, 33, 1682–1689.PubMedCrossRefGoogle Scholar
  115. 115.
    Manenti, R., Brambilla, M., Petesi, M., Ferrari, C., and Cotelli, M. (2013) Enhancing verbal episodic memory in older and young subjects after non-invasive brain stimulation, Front. Aging Neurosci., 5,49.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Sandrini, M., Manenti, R., Brambilla, M., Cobelli, C., Cohen, L. G., and Cotelli, M. (2016) Older adults get episodic memory boosting from noninvasive stimulation of prefrontal cortex during learning, Neurobiol. Aging, 39, 210–216.PubMedCrossRefGoogle Scholar
  117. 117.
    Krause, M. R., Zanos, T. P., Csorba, B. A., Pilly, P. K., Choe, J., Phillips, M. E., Datta, A., and Pack, C. C. (2017) Transcranial direct current stimulation facilitates associative learning and alters functional connectivity in the primate brain, Curr. Biol., 27, 3086–3096.e3.PubMedCrossRefGoogle Scholar
  118. 118.
    Hampstead, B. M., Sathian, K., Bikson, M., and Stringer, A. Y. (2017) Combined mnemonic strategy training and high-definition transcranial direct current stimulation for memory deficits in mild cognitive impairment, Alzheimer’s Dementia: Transl. Res. Clin. Interv., 3, 459–470.Google Scholar
  119. 119.
    Murugaraja, V., Shivakumar, V., Sivakumar, P. T., Sinha, P., and Venkatasubramanian, G. (2017) Clinical utility and tolerability of transcranial direct current stimulation in mild cognitive impairment, Asian J. Psychiatr., 30, 135–140.PubMedCrossRefGoogle Scholar
  120. 120.
    Herrmann, C. S., Rach, S., Neuling, T., and Struber, D. (2013) Transcranial alternating current stimulation: a review of the underlying mechanisms and modulation of cognitive processes, Front. Hum. Neurosci., 7,279.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Marshall, L., Helgadottir, H., Molle, M., and Born, J. (2006) Boosting slow oscillations during sleep potentiates memory, Nature, 444, 610–613.PubMedCrossRefGoogle Scholar
  122. 122.
    Garside, P., Arizpe, J., Lau, C.-I., Goh, C., and Walsh, V. (2015) Cross-hemispheric alternating current stimulation during a nap disrupts slow wave activity and associated memory consolidation, Brain Stimul., 8, 520–527.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Kirov, R., Weiss, C., Siebner, H. R., Born, J., and Marshall, L. (2009) Slow oscillation electrical brain stimulation during waking promotes EEG theta activity and memory encoding, Proc. Natl. Acad. Sci. USA, 106, 15460–15465.PubMedCrossRefGoogle Scholar
  124. 124.
    Antonenko, D., Faxel, M., Grittner, U., Lavidor, M., and Floel, A. (2016) Effects of transcranial alternating current stimulation on cognitive functions in healthy young and older adults, Neural Plast., 2016, 1–13.CrossRefGoogle Scholar
  125. 125.
    Ambrus, G. G., Pisoni, A., Primaβin, A., Turi, Z., Paulus, W., and Antal, A. (2015) Bi-frontal transcranial alternating current stimulation in the ripple range reduced overnight forgetting, Front. Cell. Neurosci., 9,374.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Javadi, A.-H., Glen, J. C., Halkiopoulos, S., Schulz, M., and Spiers, H. J. (2017) Oscillatory reinstatement enhances declarative memory, J. Neurosci., 37, 9939–9944.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Franke, A., Northoff, R., and Hildt, E. (2015) The case of pharmacological neuroenhancement: medical, judicial and ethical aspects from a german perspective, Pharmacopsychiatry, 48, 256–264.PubMedCrossRefGoogle Scholar
  128. 128.
    Micoulaud-Franchi, J.-A., MacGregor, A., and Fond, G. (2014) A preliminary study on cognitive enhancer consumption behaviors and motives of French Medicine and Pharmacology students, Eur. Rev. Med. Pharmacol. Sci., 18, 1875–1878.PubMedGoogle Scholar
  129. 129.
    Fond, G., Micoulaud-Franchi, J.-A., Brunel, L., Macgregor, A., Miot, S., Lopez, R., Richieri, R., Abbar, M., Lancon, C., and Repantis, D. (2015) Innovative mechanisms of action for pharmaceutical cognitive enhancement: a systematic review, Psychiatry Res., 229, 12–20.PubMedCrossRefGoogle Scholar
  130. 130.
    Coghill, D. R., Seth, S., Pedroso, S., Usala, T., Currie, J., and Gagliano, A. (2014) Effects of methylphenidate on cognitive functions in children and adolescents with attention-deficit/hyperactivity disorder: evidence from a systematic review and a meta-analysis, Biol. Psychiatry, 76, 603–615.PubMedCrossRefGoogle Scholar
  131. 131.
    Kamei, N., Tanaka, M., Choi, H., Okada, N., Ikeda, T., Itokazu, R., and Takeda-Morishita, M. (2017) Effect of an enhanced nose-to-brain delivery of insulin on mild and progressive memory loss in the senescence-accelerated mouse, Mol. Pharm., 14, 916–927.PubMedCrossRefGoogle Scholar
  132. 132.
    Dominguez, A., Suarez-Merino, B., and Goni-de-Cerio, F. (2014) Nanoparticles and blood-brain barrier: the key to central nervous system diseases, J. Nanosci. Nanotechnol., 14, 766–779.PubMedCrossRefGoogle Scholar
  133. 133.
    Leszek, J., Md Ashraf, G., Tse, W. H., Zhang, J., Gasiorowski, K., Avila-Rodriguez, M. F., Tarasov, V. V., Barreto, G. E., Klochkov, S. G., Bachurin, S. O., and Aliev, G. (2017) Nanotechnology for Alzheimer disease, Curr. Alzheimer Res., 14, 1182–1189.PubMedCrossRefGoogle Scholar
  134. 134.
    Pandey, A., Malek, V., Prabhakar, V., Kulkarni, Y. A., and Gaikwad, A. B. (2015) Nanoparticles: a neurotoxicological perspective, CNS Neurol. Disord. Drug Targets, 14, 1317–1327.PubMedCrossRefGoogle Scholar
  135. 135.
    O’Keefe, J., and Nadel, L. (1978) The Hippocampus as a Cognitive Map, Clarendon Press, Oxford.Google Scholar
  136. 136.
    Foster, D. J., and Wilson, M. A. (2006) Reverse replay of behavioural sequences in hippocampal place cells during the awake state, Nature, 440, 680–683.PubMedCrossRefGoogle Scholar
  137. 137.
    Jackson, J. C., Johnson, A., and Redish, A. D. (2006) Hippocampal sharp waves and reactivation during awake states depend on repeated sequential experience, J. Neurosci., 26, 12415–12426.PubMedCrossRefGoogle Scholar
  138. 138.
    Diba, K., and Buzsaki, G. (2007) Forward and reverse hippocampal place-cell sequences during ripples, Nat. Neurosci., 10, 1241–1242.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Davidson, T. J., Kloosterman, F., and Wilson, M. A. (2009) Hippocampal replay of extended experience, Neuron, 63, 497–507.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Moita, M. A. P. (2004) Putting fear in its place: remapping of hippocampal place cells during fear conditioning, J. Neurosci., 24, 7015–7023.PubMedCrossRefGoogle Scholar
  141. 141.
    Wu, C.-T., Haggerty, D., Kemere, C., and Ji, D. (2017) Hippocampal awake replay in fear memory retrieval, Nat. Neurosci., 20, 571–580.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Girardeau, G., Inema, I., and Buzsaki, G. (2017) Reactivations of emotional memory in the hippocampus-amygdala system during sleep, Nat. Neurosci., 20, 1634–1642.PubMedCrossRefGoogle Scholar
  143. 143.
    Marr, D. (1971) Simple memory: a theory for archicortex, Philos. Trans. R. Soc. Lond. B Biol. Sci., 262, 23–81.PubMedCrossRefGoogle Scholar
  144. 144.
    Buzsaki, G. (1989) Two-stage model of memory trace formation: a role for “noisy” brain states, Neuroscience, 31, 551–570.PubMedCrossRefGoogle Scholar
  145. 145.
    De Lavilleon, G., Lacroix, M. M., Rondi-Reig, L., and Benchenane, K. (2015) Explicit memory creation during sleep demonstrates a causal role of place cells in navigation, Nat. Neurosci., 18, 493–495.PubMedCrossRefGoogle Scholar
  146. 146.
    Maingret, N., Girardeau, G., Todorova, R., Goutierre, M., and Zugaro, M. (2016) Hippocampo-cortical coupling mediates memory consolidation during sleep, Nat. Neurosci., 19, 959–964.PubMedCrossRefGoogle Scholar
  147. 147.
    Latchoumane, C.-F. V., Ngo, H.-V. V., Born, J., and Shin, H.-S. (2017) Thalamic spindles promote memory formation during sleep through triple phase-locking of cortical, thalamic, and hippocampal rhythms, Neuron, 95, 424–435.e6.PubMedCrossRefGoogle Scholar
  148. 148.
    Rasch, B., Buchel, C., Gais, S., and Born, J. (2007) Odor cues during slow-wave sleep prompt declarative memory consolidation, Science, 315, 1426–1429.PubMedCrossRefGoogle Scholar
  149. 149.
    Rudoy, J. D., Voss, J. L., Westerberg, C. E., and Paller, K. A. (2009) Strengthening individual memories by reactivating them during sleep, Science, 326, 1079.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Ngo, H.-V. V., Martinetz, T., Born, J., and Molle, M. (2013) Auditory closed-loop stimulation of the sleep slow oscillation enhances memory, Neuron, 78, 545–553.PubMedCrossRefGoogle Scholar
  151. 151.
    Bendor, D., and Wilson, M. A. (2012) Biasing the content of hippocampal replay during sleep, Nat. Neurosci., 15, 1439–1444.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Arzi, A., Shedlesky, L., Ben-Shaul, M., Nasser, K., Oksenberg, A., Hairston, I. S., and Sobel, N. (2012) Humans can learn new information during sleep, Nat. Neurosci., 15, 1460–1465.PubMedCrossRefGoogle Scholar
  153. 153.
    Garner, A. R., Rowland, D. C., Hwang, S. Y., Baumgaertel, K., Roth, B. L., Kentros, C., and Mayford, M. (2012) Generation of a synthetic memory trace, Science, 335, 1513–1516.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Ramirez, S., Liu, X., Lin, P.-A., Suh, J., Pignatelli, M., Redondo, R. L., Ryan, T. J., and Tonegawa, S. (2013) Creating a false memory in the hippocampus, Science, 341, 387–391.PubMedCrossRefGoogle Scholar
  155. 155.
    Redondo, R. L., Kim, J., Arons, A. L., Ramirez, S., Liu, X., and Tonegawa, S. (2014) Bidirectional switch of the valence associated with a hippocampal contextual memory engram, Nature, 513, 426–430.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Ramirez, S., Liu, X., MacDonald, C. J., Moffa, A., Zhou, J., Redondo, R. L., and Tonegawa, S. (2015) Activating positive memory engrams suppresses depression-like behaviour, Nature, 522, 335–339.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Memory, Oscillations, Brain States (MOBS) Team, Brain Plasticity UnitCNRS UMR 8249, ESPCI ParisParisFrance
  2. 2.Vavilov Institute of General GeneticsRussian Academy of SciencesMoscowRussia
  3. 3.Department of PsychiatryUniversity of Massachusetts Medical SchoolWorcesterUSA
  4. 4.Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia
  5. 5.Faculty of Bioengineering and BioinformaticsLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations