Advertisement

Biochemistry (Moscow)

, Volume 83, Issue 9, pp 1075–1082 | Cite as

Genetic Association between Alzheimer’s Disease Risk Variant of the PICALM Gene and Auditory Event-Related Potentials in Aging

  • N. V. PonomarevaEmail author
  • T. V. Andreeva
  • M. A. Protasova
  • Yu. V. Filippova
  • E. P. Kolesnikova
  • V. F. Fokin
  • S. N. Illarioshkin
  • E. I. RogaevEmail author
Article

Abstract

Aging and genetic predisposition are major risk factors in age-related neurodegenerative disorders. The most common neurodegenerative disorder is Alzheimer’s disease (AD). Genome-wide association studies (GWAS) have identified statistically significant association of the PICALM rs3851179 polymorphism with AD. The PICALM G allele increases the risk of AD, while the A allele has a protective effect. We examined the association of the PICALM rs3851179 polymorphism with parameters of the P3 component of auditory event-related potentials (ERPs) in 87 non-demented volunteers (age, 19–77 years) subdivided into two cohorts younger and older than 50 years of age. We found statistically significant association between the AD risk variant PICALM GG and increase in the P3 latency in subjects over 50 years old. The age-dependent increase in the P3 latency was more pronounced in the PICALM GG carriers than in the carriers of the PICALM AA and PICALM AG genotypes. The observed PICALM-associated changes in the neurophysiological processes indicate a decline in the information processing speed with aging due, probably, to neuronal dysfunction and subclinical neurodegeneration of the neuronal networks in the hippocampus and the frontal and parietal cortical areas. Such changes were less pronounced in the carriers of the PICALM gene A allele, which might explain the protective effect of this allele in the cognitive decline and AD development.

Keywords

PICALM genotype neurodegeneration aging genetic predisposition Alzheimer’s disease event-related potentials P300 

Abbreviations

AD

Alzheimer’s disease

EEG

electroencephalogram

ERPs

event-related potentials

LP

latency period

PD

Parkinson’s disease

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sherrington, R., Rogaev, E. I., Liang, Y., Rogaeva, E. A., Levesque, G., Ikeda, M., Chi, H., Lin, C., Li, G., Holman, K., Tsuda, T., Mar, L., Foncin, J. F., Bruni, A. C., Montesi, M. P., Sorbi, S., Rainero, I., Pinessi, L., Nee, L., Chumakov, I., Pollen, D., Brookes, A., Sanseau, P., Polinsky, R. J., Wasco, W., Da Silva, H. A., Haines, J. L., Perkicak-Vance, M. A., Tanzi, R. E., Roses, A. D., Fraser, P. E., Rommens, J. M., and St. George-Hyslop, P. H. (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease, Nature, 375, 754–760.CrossRefPubMedGoogle Scholar
  2. 2.
    Rogaev, E., Sherrington, R., Rogaeva, E., Levesque, G., Ikeda, M., Liang, Y., Chi, H., Lin, C., Holman, K., and Tsuda, T. (1995) Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene, Nature, 376, 775–778.CrossRefPubMedGoogle Scholar
  3. 3.
    Levy-Lahad, E., Wasco, W., Poorkaj, P., Romano, D. M., Oshima, J., Pettingell, W. H., Yu, C. E., Jondro, P. D., Schmidt, S. D., Wang, K., Crowley, A. C., Fu, Y. F., Guenette, S. Y., Galas, D., Nemens, E., Wijsman, E. M., Bird, Th. D., Schellenberg, G. D., and Tanzi, R. E. (1995) Candidate gene for the chromosome 1 familial Alzheimer’s disease locus, Science, 269, 973–977.CrossRefPubMedGoogle Scholar
  4. 4.
    Rogaev, E. I., Sherrington, R., Wu, C., Levesque, G., Liang, Y., Rogaeva, E. A., Ikeda, M., Holman, K., Lin, C., Lukiw, W. J., de Jong, P. J., Fraser, P. E., Rommens, J. M., and St. George-Hyslop, P. (1997) Analysis of the 5'-sequence, genomic structure, and alternative splicing of the presenilin-1 gene (PSEN1) associated with early onset Alzheimer disease, Genomics, 40, 415–424.CrossRefPubMedGoogle Scholar
  5. 5.
    Goate, A., Chartier-Harlin, M. C., Mullan, M., Brown, J., Crawford, F., Fidani, L., Giuffra, L., Haynes, A., Irving, N., James, L., Mant, R., Newton, P., Rooke, K., Roques, P., Talbot, C., Pericak-Vance, M., Roses, A., Williamson, R., Rossor, M., Owen, M., and Hardy, J. (1991) Segregation of a missense mutation in the amyloid β-protein precursor gene with familial Alzheimer’s disease, Nature, 349, 704–706.CrossRefPubMedGoogle Scholar
  6. 6.
    Saunders, A. M., Strittmatter, W. J., Schmechel, D., George-Hyslop, P. H., Pericak-Vance, M. A., Joo, S. H., Rosi, B. L., Gusella, J. F., Crapper-MacLachlan, D. R., and Alberts, M. J. (1993) Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease, Neurology, 43, 1467–1472.CrossRefPubMedGoogle Scholar
  7. 7.
    Rogaev, E. I. (1999) Genetic factors and a polygenic model of Alzheimer’s disease, Genetika, 35, 1558–1571.PubMedGoogle Scholar
  8. 8.
    Harold, D., Abraham, R., Hollingworth, P., Sims, R., Gerrish, A., Hamshere, M. L., Pahwa, J. S., Moskvina, V., Dowzell, K., Williams, A., Jones, N., Thomas, C., Stretton, A., Morgan, A. R., Lovestone, S., Powell, J., Proitsi, P., Lupton, M. K., Brayne, C., Rubinsztein, D. C., Gill, M., Lawlor, B., Lynch, A., Morgan, K., Brown, K. S., Passmore, P. A., Craig, D., McGuinness, B., Todd, S., Holmes, C., Mann, D., Smith, A. D., Love, S., Kehoe, P. G., Hardy, J., Mead, S., Fox, N., Rossor, M., Collinge, J., Maier, W., Jessen, F., Schurmann, B., Heun, R., van den Bussche, H., Heuser, I., Kornhuber, J., Wiltfang, J., Dichgans, M., Frolich, L., Hampel, H., Hull, M., Rujescu, D., Goate, A. M., Kauwe, J. S., Cruchaga, C., Nowotny, P., Morris, J. C., Mayo, K., Sleegers, K., Bettens, K., Engelborghs, S., De Deyn, P. P., Van Broeckhoven, C., Livingston, G., Bass, N. J., Gurling, H., McQuillin, A., Gwilliam, R., Deloukas, P., Al-Chalabi, A., Shaw, C. E., Tsolaki, M., Singleton, A. B., Guerreiro, R., Mühleisen, T. W., Nothen, M. M., Moebus, S., Jockel, K. H., Klopp, N., Wichmann, H. E., Carrasquillo, M. M., Pankratz, V. S., Younkin, S. G., Holmans, P. A., O’Donovan, M., Owen, M. J., and Williams, J. (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease, Nat. Genet., 41, 1088–1093.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Lambert, J.-C., Heath, S., Even, G., Campion, D., Sleegers, K., Hiltunen, M., Combarros, O., Zelenika, D., Bullido, M. J., Tavernier, B., Letenneur, L., Bettens, K., Berr, C., Pasquier, F., Fievet, N., Barberger-Gateau, P., Engelborghs, S., De Deyn, P., Mateo, I., Franck, A., Helisalmi, S., Porcellini, E., Hanon, O., de Pancorbo, M. M., Lendon, C., Dufouil, C., Jaillard, C., Leveillard, T., Alvarez, V., Bosco, P., Mancuso, M., Panza, F., Nacmias, B., Bossu, P., Piccardi, P., Annoni, G., Seripa, D., Galimberti, D., Hannequin, D., Licastro, F., Soininen, H., Ritchie, K., Blanche, H., Dartigues, J.-F., Tzourio, C., Gut, I., Van Broeckhoven, C., Alperovitch, A., Lathrop, M., and Amouyel, P. (2009) Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease, Nat. Genet., 41, 1094–1099.CrossRefPubMedGoogle Scholar
  10. 10.
    Carrasquillo, M. M., Belbin, O., Hunter, T. A., Ma, L., Bisceglio, G. D., Zou, F., Crook, J. E., Pankratz, V. S., Dickson, D. W., Graff-Radford, N. R., Petersen, R. C., Morgan, K., and Younkin, S. G. (2010) Replication of CLU, CR1, and PICALM associations with Alzheimer’s disease, Arch. Neurol., 67, 961–964.PubMedGoogle Scholar
  11. 11.
    Wang, Z., Lei, H., Zheng, M., Li, Y., Cui, Y., and Hao, F. (2016) Meta-analysis of the association between Alzheimer’s disease and variants in GAB2, PICALM, and SORL1, Mol. Neurobiol., 53, 6501–6510.CrossRefPubMedGoogle Scholar
  12. 12.
    Golenkina, S. A., Gol’tsov, A. I., Kuznetsova, I. L., Grigorenko, A. P., Andreeva, T. V., Reshetov, D. A., Kunizheva, S. S., Shagam, L. I., Morozova, I. I., Goldenkova-Pavlova, I. V., Shimshilashvili, K., Viacheslavova, A. O., Faskhutdinova, G., Gareeva, A. E., Zainullina, A. G., Khusnutdinova, E. K., Puzyrev, V. P., Stepanov, V. A., Kolotvin, A. V., Samokhodskaia, L. M., Selezneva, N. D., Gavrilova, S. I., and Rogaev, E. I. (2010) Analysis of clusterin gene (CLU/APOJ) polymorphism in Alzheimer’s disease patients and in normal cohorts from Russian populations, Mol. Biol. (Moscow), 44, 620–620.CrossRefGoogle Scholar
  13. 13.
    Naj, A. C., Jun, G., Reitz, C., Kunkle, B. W., Perry, W., Park, Y. S., Beecham, G. W., Rajbhandary, R. A., Hamilton-Nelson, K. L., Wang, L. S., Kauwe, J. S., Huentelman, M. J., Myers, A. J., Bird, T. D., Boeve, B. F., Baldwin, C. T., Jarvik, G. P., Crane, P. K., Rogaeva, E., Barmada, M. M., Demirci, F. Y., Cruchaga, C., Kramer, P., Alzheimer’s Disease Genetics Consortium, Ertekin-Taner, N., Hardy, J., Graff-Radford, N. R., Green, R. C., Larson, E. B., St. George-Hyslop, P., Buxbaum, J. D., Evans, D., Schneider, J. A., Lunetta, K. L., Kamboh, M. I., Saykin, A. J., Reiman, E. M., De Jager, P. L., Bennett, D. A., Morris, J. C., Montine, T. J., Goate, A. M., Blacker, D., Tsuang, D. W., Hakonarson, H., Kukull, W. A., Foroud, T. M., Martin, E. R., Haines, J. L., Mayeux, R., Farrer, L. A., Schellenberg, G. D., and Pericak-Vance, M. A. (2014) Age-at-onset in late onset Alzheimer disease is modified by multiple genetic loci, JAMA Neurol., 71, 1394–1404.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Xu, W., Tan, L., and Yu, J.-T. (2015) The role of PICALM in Alzheimer’s disease, Mol. Neurobiol., 52, 399–413.CrossRefPubMedGoogle Scholar
  15. 15.
    Xiao, Q., Gil, S. C., Yan, P., Wang, Y., Han, S., Gonzales, E., Perez, R., Cirrito, J. R., and Lee, J. M. (2012) Role of phosphatidylinositol clathrin assembly lymphoid-myeloid leukemia (PICALM) in intracellular amyloid precursor protein (APP) processing and amyloid plaque pathogenesis, J. Biol. Chem., 287, 21279–21289.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ando, K., Brion, J. P., Stygelbout, V., Suain, V., Authelet, M., Dedecker, R., Chanut, A., Lacor, P., Lavaur, J., Sazdovitch, V., Rogaeva, E., Potier, M. C., and Duyckaerts, C. (2013) Clathrin adaptor CALM/PICALM is associated with neurofibrillary tangles and is cleaved in Alzheimer’s brains, Acta Neuropathol., 125, 861–878.CrossRefPubMedGoogle Scholar
  17. 17.
    Moreau, K., Fleming, A., Imarisio, S., Lopez Ramirez, A., Mercer, J. L., Jimenez-Sanchez, M., Bento, C. F., Puri, C., Zavodszky, E., Siddiqi, F., Lavau, C. P., Betton, M., O’Kane, C. J., Wechsler, D. S., and Rubinsztein, D. C. (2014) PICALM modulates autophagy activity and tau accumulation, Nat. Commun., 5, 4998.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Harel, A., Mattson, M. P., and Yao, P. J. (2011) CALM, a clathrin assembly protein, influences cell surface GluR2 abundance, Neuromolec. Med., 13, 88–90.CrossRefGoogle Scholar
  19. 19.
    Parikh, I., Fardo, D. W., and Estus, S. (2014) Genetics of PICALM expression and Alzheimer’s disease, PLoS One, 9, e91242.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Biffi, A., Anderson, C. D., Desikan, R. S., Sabuncu, M., Cortellini, L., Schmansky, N., Salat, D., and Rosand, J. (2010) Genetic variation and neuroimaging measures in Alzheimer’s disease, Arch. Neurol., 67, 677–685.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Furney, S. J., Simmons, A., Breen, G., Pedroso, I., Lunnon, K., Proitsi, P., Hodges, A., Powell, J., Wahlund, L.-O., Kloszewska, I., Mecocci, P., Soininen, H., Tsolaki, M., Vellas, B., Spenger, C., Lathrop, M., Shen, L., Kim, S., Saykin, A. J., Weiner, M. W., and Lovestone, S. (2011) Genome-wide association with MRI atrophy measures as a quantitative trait locus for Alzheimer’s disease, Mol. Psychiatry, 16, 1130–1138.CrossRefPubMedGoogle Scholar
  22. 22.
    Ponomareva, N. V., Andreeva, T. V., Protasova, M. S., Shagam, L. I., Malina, D. D., Goltsov, A. Y., Fokin, V. F., Illarioshkin, S. N., and Rogaev, E. I. (2017) Quantitative EEG during normal aging: association with the Alzheimer’s disease genetic risk variant in PICALM gene, Neurobiol. Aging, 51, e1–e8.CrossRefGoogle Scholar
  23. 23.
    Gnezditskiy, V. V. (1997) Cerebral Event-Related Potentials in Clinical Practice [in Russian], TGRU.Google Scholar
  24. 24.
    Zenkov, L. R., and Ronkin, M. A. (2013) Functional Diagnostics of Nervous System Diseases. Manual for Physicians [in Russian], MEDpress-inform.Google Scholar
  25. 25.
    Romanov, A. S., Sharova, E. V., Kuznetsova, O. A., Oknin, L. V., Volynskiy, P. E., and Shchekut’ev, G. A. (2011) An opportunity for using wavelet synchronization in assessment of long-latency components of auditory evoked potentials in healthy humans, Zh. Vysshei Nerv. Deyat. im. I. P. Pavlova, 61, 112–118.Google Scholar
  26. 26.
    Polich, J. (2007) Updating P300: an integrative theory of P3a and P3b, Clin. Neurophysiol., 118, 2128–2148.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Joos, K., Gilles, A., Van de Heyning, P., De Ridder, D., and Vanneste, S. (2014) From sensation to percept: the neural signature of auditory event-related potentials, Neurosci. Biobehav. Rev., 42, 148–156.CrossRefPubMedGoogle Scholar
  28. 28.
    Kropotov, J., Ponomarev, V., Tereshchenko, E. P., Muller, A., and Jancke, L. (2016) Effect of aging on ERP components of cognitive control, Front. Aging Neurosci., 8,69.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Lister, J. J., Harrison Bush, A. L., Andel, R., Matthews, C., Morgan, D., and Edwards, J. D. (2016) Cortical auditory evoked responses of older adults with and without probable mild cognitive impairment, Clin. Neurophysiol., 127, 1279–1287.CrossRefPubMedGoogle Scholar
  30. 30.
    Goodin, D. S., Squires, K. C., and Starr, A. (1978) Long latency event-related components of the auditory evoked potential in dementia, Brain, 101, 635–648.CrossRefPubMedGoogle Scholar
  31. 31.
    Braverman, E. R., Blum, K., Hussman, K. L., Han, D., Dushaj, K., Li, M., Marin, G., Badgaiyan, R. D., Smayda, R., and Gold, M. S. (2015) Evoked potentials and memory/cognition tests validate brain atrophy as measured by 3T MRI (NeuroQuant) in cognitively impaired patients, PLoS One, 10, e0133609.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Irimajiri, R., Golob, E. J., and Starr, A. (2010) ApoE genotype and abnormal auditory cortical potentials in healthy older females, Neurobiol. Aging, 31, 1799–1804.CrossRefPubMedGoogle Scholar
  33. 33.
    Green, J., and Levey, A. I. (1999) Event-related potential changes in groups at increased risk for Alzheimer’s disease, Arch. Neurol., 56, 1398–1403.CrossRefPubMedGoogle Scholar
  34. 34.
    Ponomareva, N. V., Fokin, V. F., Selesneva, N. D., and Voskresenskaia, N. I. (1998) Possible neurophysiological markers of genetic predisposition to Alzheimer’s disease, Dement. Geriatr. Cogn. Disord., 9, 267–273.CrossRefPubMedGoogle Scholar
  35. 35.
    Hardy, J., and Selkoe, D. J. (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics, Science, 297, 353–356.CrossRefPubMedGoogle Scholar
  36. 36.
    Santos-Reboucas, C. B., Goncalves, A. P., Dos Santos, J. M., Abdala, B. B., Motta, L. B., Laks, J., de Borges, M. B., de Rosso, A. L. Z., Pereira, J. S., Nicaretta, D. H., and Pimentel, M. M. G. (2017) rs3851179 Polymorphism at 5' to the PICALM gene is associated with Alzheimer’s and Parkinson’s diseases in Brazilian population, Neuromolec. Med., 19, 293–299.CrossRefGoogle Scholar
  37. 37.
    Kalinderi, K., Bostantjopoulou, S., Katsarou, Z., Clarimon, J., and Fidani, L. (2012) Lack of association of the PICALM rs3851179 polymorphism with Parkinson’s disease in the Greek population, Int. J. Neurosci., 122, 502–605.CrossRefPubMedGoogle Scholar
  38. 38.
    Cheng, F., Li, X., Li, Y., Wang, C., Wang, T., Liu, G., Baskys, A., Ueda, K., Chan, P., and Yu, S. (2011) a-Synuclein promotes clathrin-mediated NMDA receptor endocytosis and attenuates NMDA-induced dopaminergic cell death, J. Neurochem., 119, 815–825.CrossRefPubMedGoogle Scholar
  39. 39.
    Nojszewska, M., Pilczuk, B., Zakrzewska-Pniewska, B., and Rowinska-Marcinska, K. (2009) The auditory system involvement in Parkinson disease: electrophysiological and neuropsychological correlations, J. Clin. Neurophysiol., 26, 430–437.CrossRefPubMedGoogle Scholar
  40. 40.
    Illarioshkin, S. N., and Ivanova-Smolenskaya, I. A. (2011) Trembling Hyperkinesis [in Russian], Atmosfera, Moscow.Google Scholar
  41. 41.
    Illarioshkin, S. N., Ivanova-Smolenskaia, I. A., Markova, E. D., Shadrina, M. I., Kliushnikov, S. A., Zagorovskaia, T. V., Miklina, N. I., Slominskii, P. A., and Limborskaia, S. A. (2004) Molecular genetic analysis of hereditary neurodegenerative diseases, Genetika, 40, 816–826.PubMedGoogle Scholar
  42. 42.
    Ponomareva, N. V., Goltsov, A. Y., Kunijeva, S. S., Scheglova, N. S., Malina, D. D., Mitrofanov, A. A., Boikova, T. I., and Rogaev, E. I. (2012) Age-and genotype-related neurophysiologic reactivity to oxidative stress in healthy adults, Neurobiol. Aging, 33, 839.e11–21.CrossRefPubMedGoogle Scholar
  43. 43.
    Ponomareva, N., Andreeva, T., Protasova, M., Shagam, L., Malina, D., Goltsov, A., Fokin, V., Mitrofanov, A., and Rogaev, E. (2013) Age-dependent effect of Alzheimer’s risk variant of CLU on EEG alpha rhythm in non-demented adults, Front. Aging Neurosci., 5,86.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Fokin, V. F., and Ponomareva, N. V. (2003) Neuronergetics and Brain physiology [in Russian], Antidor, Moscow.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. V. Ponomareva
    • 1
    • 2
    Email author
  • T. V. Andreeva
    • 2
    • 3
  • M. A. Protasova
    • 2
  • Yu. V. Filippova
    • 1
  • E. P. Kolesnikova
    • 1
  • V. F. Fokin
    • 1
  • S. N. Illarioshkin
    • 1
  • E. I. Rogaev
    • 2
    • 3
    • 4
    Email author
  1. 1.Research Center for NeurologyMoscowRussia
  2. 2.Vavilov Institute of General GeneticsMoscowRussia
  3. 3.Department of Biology, Center of Genetics and Genetic TechnologiesLomonosov Moscow State UniversityMoscowRussia
  4. 4.Brudnick Neuropsychiatric Research Institute, Department of PsychiatryUniversity of Massachusetts Medical SchoolWorcesterUSA

Personalised recommendations