Biochemistry (Moscow)

, Volume 83, Issue 9, pp 1068–1074 | Cite as

Dynamic Microtubules in Alzheimer’s Disease: Association with Dendritic Spine Pathology

  • E. I. Pchitskaya
  • V. A. Zhemkov
  • I. B. BezprozvannyEmail author


Alzheimer’s disease (AD) is the most common incurable neurodegenerative disorder that affects the processes of memory formation and storage. The loss of dendritic spines and alteration in their morphology in AD correlate with the extent of patient’s cognitive decline. Tubulin had been believed to be restricted to dendritic shafts, until recent studies demonstrated that dynamically growing tubulin microtubules enter dendritic spines and promote their maturation. Abnormalities of tubulin cytoskeleton may contribute to the process of dendritic spine shape alteration and their subsequent loss in AD. In this review, association between tubulin cytoskeleton dynamics and dendritic spine morphology is discussed in the context of dendritic spine alterations in AD. Potential implications of these findings for the development of AD therapy are proposed.


Alzheimer’s disease dendritic spines tubulin microtubule dynamics EB3 



Alzheimer’s disease


amyloid-precursor protein


end-binding protein 3



PS1 (2)

Presenilin 1(2)


microtubule plus-end-tracking proteins


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hardy, J., and Selkoe, D. J. (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics, Science, 297, 353–356.CrossRefPubMedGoogle Scholar
  2. 2.
    Hardy, J. (2009) The amyloid hypothesis for Alzheimer’s disease: a critical reappraisal, J. Neurochem., 110, 1129–1134.CrossRefPubMedGoogle Scholar
  3. 3.
    Bergmans, B. A., and De Strooper, B. (2010) Gamma-secretases: from cell biology to therapeutic strategies, Lancet Neurol., 9, 215–226.CrossRefPubMedGoogle Scholar
  4. 4.
    Duggan, S. P., and McCarthy, J. V. (2016) Beyond gammasecretase activity: the multifunctional nature of presenilins in cell signalling pathways, Cell. Signal., 28, 1–11.CrossRefPubMedGoogle Scholar
  5. 5.
    DeKosky, S. T., and Scheff, S. W. (1990) Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity, Ann. Neurol., 27, 457–464.CrossRefPubMedGoogle Scholar
  6. 6.
    Terry, R. D., Masliah, E., Salmon, D. P., Butters, N., DeTeresa, R., Hill, R., Hansen, L. A., and Katzman, R. (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment, Ann. Neurol., 30, 572–580.CrossRefPubMedGoogle Scholar
  7. 7.
    Koffie, R. M., Hyman, B. T., and Spires-Jones, T. L. (2011) Alzheimer’s disease: synapses gone cold, Mol. Neurodegener., 6,63.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Selkoe, D. J. (2002) Alzheimer’s disease is a synaptic failure, Science, 298, 789–791.CrossRefPubMedGoogle Scholar
  9. 9.
    Chen, Y., and Sabatini, B. L. (2012) Signaling in dendritic spines and spine microdomains, Curr. Opin. Neurobiol., 22, 389–396.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Bourne, J. N., and Harris, K. M. (2008) Balancing structure and function at hippocampal dendritic spines, Annu. Rev. Neurosci., 31, 47–67.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kasai, H., Matsuzaki, M., Noguchi, J., Yasumatsu, N., and Nakahara, H. (2003) Structure-stability-function relationships of dendritic spines, Trends Neurosci., 26, 360–368.CrossRefPubMedGoogle Scholar
  12. 12.
    Bourne, J., and Harris, K. M. (2007) Do thin spines learn to be mushroom spines that remember? Curr. Opin. Neurobiol., 17, 381–386.CrossRefPubMedGoogle Scholar
  13. 13.
    Hayashi, Y., and Majewska, A. K. (2005) Dendritic spine geometry: functional implication and regulation, Neuron, 46, 529–532.CrossRefPubMedGoogle Scholar
  14. 14.
    Hering, H., and Sheng, M. (2001) Dentritic spines: structure, dynamics and regulation, Nat. Rev. Neurosci., 2, 880–888.CrossRefPubMedGoogle Scholar
  15. 15.
    Tackenberg, C., Ghori, A., and Brandt, R. (2009) Thin, stubby or mushroom: spine pathology in Alzheimer’s disease, Curr. Alzheimer Res., 6, 261–268.PubMedGoogle Scholar
  16. 16.
    Popugaeva, E., Supnet, C., and Bezprozvanny, I. (2012) Presenilins, deranged calcium homeostasis, synaptic loss and dysfunction in Alzheimer’s disease, Messenger, 1, 53–62.CrossRefGoogle Scholar
  17. 17.
    Popugaeva, E., and Bezprozvanny, I. (2013) Role of endoplasmic reticulum Ca2+ signaling in the pathogenesis of Alzheimer disease, Front. Mol. Neurosci., 6,29.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Androuin, A., Potier, B., Nagerl, U. V., Cattaert, D., Danglot, L., Thierry, M., Youssef, I., Triller, A., Duyckaerts, C., El Hachimi, K. H., Dutar, P., Delatour, B., and Marty, S. (2018) Evidence for altered dendritic spine compartmentalization in Alzheimer’s disease and functional effects in a mouse model, Acta Neuropathol., 135, 839–854.CrossRefPubMedGoogle Scholar
  19. 19.
    Sun, S., Zhang, H., Liu, J., Popugaeva, E., Xu, N. J., Feske, S., White, C. L., 3rd, and Bezprozvanny, I. (2014) Reduced synaptic STIM2 expression and impaired store-operated calcium entry cause destabilization of mature spines in mutant presenilin mice, Neuron, 82, 79–93.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Zhang, H., Wu, L., Pchitskaya, E., Zakharova, O., Saito, T., Saido, T., and Bezprozvanny, I. (2015) Neuronal storeoperated calcium entry and mushroom spine loss in amyloid precursor protein knock-in mouse model of Alzheimer’s disease, J. Neurosci., 35, 13275–13286.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Saito, T., Matsuba, Y., Mihira, N., Takano, J., Nilsson, P., Itohara, S., Iwata, N., and Saido, T. C. (2014) Single App knock-in mouse models of Alzheimer’s disease, Nat. Neurosci., 17, 661–663.CrossRefPubMedGoogle Scholar
  22. 22.
    Penazzi, L., Tackenberg, C., Ghori, A., Golovyashkina, N., Niewidok, B., Selle, K., Ballatore, C., Smith Iii, A. B., Bakota, L., and Brandt, R. (2016) Aβ-mediated spine changes in the hippocampus are microtubule-dependent and can be reversed by a subnanomolar concentration of the microtubule-stabilizing agent epothilone D, Neuropharmacology, 105, 84–95.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Tackenberg, C., and Brandt, R. (2009) Divergent pathways mediate spine alterations and cell death induced by amyloid-beta, wild-type tau, and R406W tau, J. Neurosci., 29, 14439–14450.CrossRefPubMedGoogle Scholar
  24. 24.
    Popugaeva, E., Pchitskaya, E., Speshilova, A., Alexandrov, S., Zhang, H., Vlasova, O., and Bezprozvanny, I. (2015) STIM2 protects hippocampal mushroom spines from amyloid synaptotoxicity, Mol. Neurodegener., 10,37.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Qu, X., Yuan, F. N., Corona, C., Pasini, S., Pero, M. E., Gundersen, G. G., Shelanski, M. L., and Bartolini, F. (2017) Stabilization of dynamic microtubules by mDia1 drives Tau-dependent Abeta1-42 synaptotoxicity, J. Cell. Biol., 216, 3161–3178.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Boros, B. D., Greathouse, K. M., Gentry, E. G., Curtis, K. A., Birchall, E. L., Gearing, M., and Herskowitz, J. H. (2017) Dendritic spines provide cognitive resilience against Alzheimer’s disease, Ann. Neurol., 82, 602–614.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Mitchison, T., and Kirschner, M. (1984) Dynamic instability of microtubule growth, Nature, 312, 237–242.CrossRefPubMedGoogle Scholar
  28. 28.
    Baas, P. W., Rao, A. N., Matamoros, A. J., and Leo, L. (2016) Stability properties of neuronal microtubules, Cytoskeleton (Hoboken, N.J.), 73, 442–460.CrossRefGoogle Scholar
  29. 29.
    Dent, E. W. (2017) Of microtubules and memory: implications for microtubule dynamics in dendrites and spines, Mol. Biol. Cell, 28, 1–8.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Gu, J., Firestein, B. L., and Zheng, J. Q. (2008) Microtubules in dendritic spine development, J. Neurosci., 28, 12120–12124.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Hu, X., Viesselmann, C., Nam, S., Merriam, E., and Dent, E. W. (2008) Activity-dependent dynamic microtubule invasion of dendritic spines, J. Neurosci., 28, 13094–13105.CrossRefPubMedGoogle Scholar
  32. 32.
    Jaworski, L., Kapitein, L. C., Gouveia, S. M., Dortland, B. R., Wulf, P. S., Grigoriev, I., Camera, P., Spangler, S. A., DiStefano, P., Demmers, L., Krugers, H., Defilippi, P., Akhmanova, A., and Hoogenraad, C. C. (2009) Dynamic microtubules regulate dendritic spine morphology and synaptic plasticity, Neuron, 61, 85–100.CrossRefPubMedGoogle Scholar
  33. 33.
    Merriam, E. B., Millette, M., Lumbard, D. C., Saengsawang, W., Fothergill, T., Hu, X., Ferhat, L., and Dent, E. W. (2013) Synaptic regulation of microtubule dynamics in dendritic spines by calcium, F-actin, and drebrin, J. Neurosci., 33, 16471–16482.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Hu, X., Ballo, L., Pietila, L., Viesselmann, C., Ballweg, J., Lumbard, D., Stevenson, M., Merriam, E., and Dent, E. W. (2011) BDNF-induced increase of PSD-95 in dendritic spines requires dynamic microtubule invasions, J. Neurosci., 31, 15597–15603.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Uchida, S., Martel, G., Pavlowsky, A., Takizawa, S., Hevi, C., Watanabe, Y., Kandel, E. R., Alarcon, J. M., and Shumyatsky, G. P. (2014) Learning-induced and stathmin-dependent changes in microtubule stability are critical for memory and disrupted in ageing, Nat. Commun., 5, 4389–4389.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Akhmanova, A., and Steinmetz, M. O. (2010) Microtubule +TIPs at a glance, J. Cell Sci., 123, 3415–3419.CrossRefPubMedGoogle Scholar
  37. 37.
    Nakagawa, H., Koyama, K., Murata, Y., Morito, M., Akiyama, T., and Nakamura, Y. (2000) EB3, a novel member of the EB1 family preferentially expressed in the central nervous system, binds to a CNS-specific APC homologue, Oncogene, 19, 210–216.CrossRefPubMedGoogle Scholar
  38. 38.
    Merriam, E. B., Lumbard, D. C., Viesselmann, C., Ballweg, J., Stevenson, M., Pietila, L., Hu, X., and Dent, E. W. (2011) Dynamic microtubules promote synaptic NMDA receptor-dependent spine enlargement, PLoS One, 6, e27688.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Stepanova, T., Slemmer, J., Hoogenraad, C. C., Lansbergen, G., Dortland, B., De Zeeuw, C. I., Grosveld, F., van Cappellen, G., Akhmanova, A., and Galjart, N. (2003) Visualization of microtubule growth in cultured neurons via the use of EB3-GFP (end-binding protein 3-green fluorescent protein), J. Neurosci., 23, 2655–2664.CrossRefPubMedGoogle Scholar
  40. 40.
    Pchitskaya, E., Kraskovskaya, N., Chernyuk, D., Popugaeva, E., Zhang, H., Vlasova, O., and Bezprozvanny, I. (2017) Stim2-Eb3 association and morphology of dendritic spines in hippocampal neurons, Sci. Rep., 7, 17625.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Zhang, H., Sun, S., Wu, L., Pchitskaya, E., Zakharova, O., Fon Tacer, K., and Bezprozvanny, I. (2016) Store-operated calcium channel complex in postsynaptic spines: a new therapeutic target for Alzheimer’s disease treatment, J. Neurosci., 36, 11837–11850.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Pchitskaya, E., Popugaeva, E., and Bezprozvanny, I. (2018) Calcium signaling and molecular mechanisms underlying neurodegenerative diseases, Cell Calcium, 70, 87–94.CrossRefPubMedGoogle Scholar
  43. 43.
    Chang, C. L., Chen, Y. J., Quintanilla, C. G., Hsieh, T. S., and Liou, J. (2018) EB1 binding restricts STIM1 translocation to ER-PM junctions and regulates store-operated Ca2+ entry, J. Cell Biol., 6, 2047–2058.CrossRefGoogle Scholar
  44. 44.
    Grigoriev, I., Gouveia, S. M., van der Vaart, B., Demmers, J., Smyth, J. T., Honnappa, S., Splinter, D., Steinmetz, M. O., Putney, J. W., Hoogenraad, C. C., and Akhmanova, A. (2008) STIM1 is a microtubule plus end tracking protein involved in remodeling of the endoplasmic reticulum, Curr. Biol., 18, 177–182.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Geraldo, S., Khanzada, U. K., Parsons, M., Chilton, J. K., and Gordon-Weeks, P. R. (2008) Targeting of the F-actinbinding protein drebrin by the microtubule plus-tip protein EB3 is required for neuritogenesis, Nat. Cell Biol., 10, 1181–1189.CrossRefPubMedGoogle Scholar
  46. 46.
    Ishizuka, Y., and Hanamura, K. (2017) in Drebrin. Advances in Experimental Medicine and Biology (Shirao T., and Sekino, Y., eds.), Vol. 1006, Springer, Tokyo, pp. 203–223.Google Scholar
  47. 47.
    Gordon-Weeks, P. R. (2016) The role of the drebrin/EB3/Cdk5 pathway in dendritic spine plasticity, implications for Alzheimer’s disease, Brain Res. Bull., 126, 293–299.CrossRefPubMedGoogle Scholar
  48. 48.
    Fanara, P., Husted, K. H., Selle, K., Wong, P. Y., Banerjee, J., Brandt, R., and Hellerstein, M. K. (2010) Changes in microtubule turnover accompany synaptic plasticity and memory formation in response to contextual fear conditioning in mice, Neuroscience, 168, 167–178.CrossRefPubMedGoogle Scholar
  49. 49.
    Buck, K. B., and Zheng, J. Q. (2002) Growth cone turning induced by direct local modification of microtubule dynamics, J. Neurosci., 22, 9358–9367.CrossRefPubMedGoogle Scholar
  50. 50.
    Selkoe, D. J., and Hardy, J. (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years, EMBO Mol. Med., 8, 595–608.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Zempel, H., Luedtke, J., Kumar, Y., Biernat, J., Dawson, H., Mandelkow, E., and Mandelkow, E.-M. (2013) Amyloid-β oligomers induce synaptic damage via tau-dependent microtubule severing by TTLL6 and spastin, EMBO J., 32, 2920–2937.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Mota, S. I., Ferreira, I. L., Pereira, C., Oliveira, C. R., and Rego, A. C. (2012) Amyloid-beta peptide 1–42 causes microtubule deregulation through N-methyl-D-aspartate receptors in mature hippocampal cultures, Curr. Alzheimer Res., 9, 844–856.CrossRefPubMedGoogle Scholar
  53. 53.
    Cash, A. D., Aliev, G., Siedlak, S. L., Nunomura, A., Fujioka, H., Zhu, X., Raina, A. K., Vinters, H. V., Tabaton, M., Johnson, A. B., Paula-Barbosa, M., Avila, J., Jones, P. K., Castellani, R. J., Smith, M. A., and Perry, G. (2003) Microtubule reduction in Alzheimer’s disease and aging is independent of tau filament formation, Am. J. Pathol., 162, 1623–1627.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Pianu, B., Lefort, R., Thuiliere, L., Tabourier, E., and Bartolini, F. (2014) The Abeta(1)(–)(4)(2) peptide regulates microtubule stability independently of tau, J. Cell Sci., 127, 1117–1127.CrossRefPubMedGoogle Scholar
  55. 55.
    Tackenberg, C., Grinschgl, S., Trutzel, A., Santuccione, A. C., Frey, M. C., Konietzko, U., Grimm, J., Brandt, R., and Nitsch, R. M. (2013) NMDA receptor subunit composition determines beta-amyloid-induced neurodegeneration and synaptic loss, Cell Death Dis., 25,129.Google Scholar
  56. 56.
    Kovalevich, J., Cornec, A.-S., Yao, Y., James, M., Crowe, A., Lee, V. M. Y., Trojanowski, J. Q., Smith, A. B., Ballatore, C., and Brunden, K. R. (2016) Characterization of brain-penetrant pyrimidine-containing molecules with differential microtubule-stabilizing activities developed as potential therapeutic agents for Alzheimer’s disease and related tauopathies, J. Pharmacol. Exp. Ther., 357, 432–450.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Makani, V., Zhang, B., Han, H., Yao, Y., Lassalas, P., Lou, K., Paterson, I., Lee, V. M., Trojanowski, J. Q., Ballatore, C., Smith, A. B., 3rd, and Brunden, K. R. (2016) Evaluation of the brain-penetrant microtubule-stabilizing agent, dictyostatin, in the PS19 tau transgenic mouse model of tauopathy, Acta Neuropathol. Commun., 4,106.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Lou, K., Yao, Y., Hoye, A. T., James, M. J., Cornec, A. S., Hyde, E., Gay, B., Lee, V. M., Trojanowski, J. Q., Smith, A. B., 3rd, Brunden, K. R., and Ballatore, C. (2014) Brain-penetrant, orally bioavailable microtubule-stabilizing small molecules are potential candidate therapeutics for Alzheimer’s disease and related tauopathies, J. Med. Chem., 57, 6116–6127.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. I. Pchitskaya
    • 1
  • V. A. Zhemkov
    • 1
  • I. B. Bezprozvanny
    • 1
    • 2
    Email author
  1. 1.Laboratory of Molecular Neurodegeneration, Department of Medical PhysicsPeter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia
  2. 2.Department of PhysiologyUT Southwestern Medical Center at DallasDallasUSA

Personalised recommendations