Advertisement

Biochemistry (Moscow)

, Volume 83, Issue 9, pp 1046–1056 | Cite as

Pluripotent Stem Cells for Modelling and Cell Therapy of Parkinson’s Disease

  • O. S. Lebedeva
  • M. A. LagarkovaEmail author
Review

Abstract

Studying pathogenesis of neurodegenerative diseases, including Parkinson’s disease (PD), requires adequate disease models. The available patient’s material is limited to biological fluids and post mortem brain samples. Disease modeling and drug screening can be done in animal models, although this approach has its own limitations, since laboratory animals do not suffer from many neurodegenerative diseases, including PD. The use of neurons obtained by targeted differentiation from induced pluripotent stem cells (iPSCs) with known genetic mutations, as well as from carriers of sporadic forms of the disease, will allow to elucidate new components of the molecular mechanisms of neurodegeneration. Such neuronal cultures can also serve as unique models for testing neuroprotective compounds and monitoring neurodegenerative changes against a background of various therapeutic interventions. In the future, dopaminergic neurons differentiated from iPSCs can be used for cell therapy of PD.

Keywords

Parkinson’s disease induced pluripotent stem cells cell model cell therapy dopaminergic neurons isogenic system 

Abbreviations

DNs

dopaminergic neurons

GHSR

growth hormone secretagogue receptor

(h)ESCs

(human) embryonic stem cells

hfVM

human fetal ventral mesencephalic (tissue)

iPSCs

induced pluripotent stem cells

MPTP

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

PD

Parkinson’s disease

SNCA

α-synuclein

SNP

single nucleotide polymorphism

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Illarioshkin, S. N. (2003) Conformational Brain Diseases [in Russian], Yanus-K, Moscow.Google Scholar
  2. 2.
    Levy, O. A., Malagelada, C., and Greene, L. A. (2009) Cell death pathways in Parkinson’s disease: proximal triggers, distal effectors, and final steps, Apoptosis, 14, 478–500.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Illarioshkin, S. N. (2004) Diseases of nervous system, Nervnye Bolezni, 4, 14–21.Google Scholar
  4. 4.
    Gardner, R. C., Burke, J. F., Nettiksimmons, J., Goldman, S., Tanner, C. M., and Yaffe, K. (2015) Traumatic brain injury in later life increases risk for Parkinson’s disease, Ann. Neurol., 77, 987–995.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Lee, P. C., Bordelon, Y., Bronstein, J., and Ritz, B. (2012) Traumatic brain injury, paraquat exposure, and their relationship to Parkinson’s disease, Neurology, 79, 2061–2066.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ratner, M. H., Farb, D. H., Ozer, J., Feldman, R. G., and Durso, R. (2014) Younger age at onset of sporadic Parkinson’s disease among subjects occupationally exposed to metals and pesticides, Interdiscip. Toxicol., 7, 123–133.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Deng, H., Wang, P., and Jankovic, J. (2018) The genetics of Parkinson’s disease, Ageing Res. Rev., 42, 72–85.CrossRefPubMedGoogle Scholar
  8. 8.
    Lab of Neuroscience, The HIT Center for Life Sciences, https://doi.org/hcls.hit.edu.cn/hclsen/wabwofwweurowwcience/list.htm.
  9. 9.
    Takahashi, K., and Yamanaka, S. (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors, Cell, 126, 663–676.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Rawat, N., and Singh, M. K. (2017) Induced pluripotent stem cell: a headway in reprogramming with promising approach in regenerative biology, Vet. World, 10, 640–649.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Park, I.-H., Arora, N., Huo, H., Maherali, N., Ahfeldt, T., Shimamura, A., Lensch, M. W., Cowan, C., Hochedlinger, K., and Daley, G. Q. (2008) Disease-specific induced pluripotent stem (iPS) cells, Cell, 134, 877–886.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Wernig, M., Zhao, J.-P., Pruszak, J., Hedlund, E., Fu, D., Soldner, F., Broccoli, V., Constantine-Paton, M., Isacson, O., and Jaenisch, R. (2008) Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease, Proc. Natl. Acad. Sci. USA, 105, 5856–5861.CrossRefPubMedGoogle Scholar
  13. 13.
    Hargus, G., Cooper, O., Deleidi, M., Levy, A., Lee, K., Marlow, E., Yow, A., Soldner, F., Hockemeyer, D., Hallett, P. J., Osborn, T., Jaenisch, R., and Isacson, O. (2010) Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats, Proc. Natl. Acad. Sci. USA, 107, 15921–15926.CrossRefPubMedGoogle Scholar
  14. 14.
    Fernandez-Santiago, R., Carballo-Carbajal, I., Castellano, G., Torrent, R., Richaud, Y., Sanchez-Danes, A., Vilarrasa-Blasi, R., Sanchez-Pla, A., Mosquera, J. L., Soriano, J., Lopez-Barneo, J., Canals, J. M., Alberch, J., Raya, A., Vila, M., Consiglio, A., Martin-Subero, J. I., Ezquerra, M., and Tolosa, E. (2015) Aberrant epigenome in iPSC-derived dopaminergic neurons from Parkinson’s disease patients, EMBO Mol. Med., 7, 1529–1546.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Martin, I., Kim, J. W., Dawson, V. L., and Dawson, T. M. (2014) LRRK2 pathobiology in Parkinson’s disease, J. Neurochem., 131, 554–565.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Healy, D. G., Falchi, M., O’Sullivan, S. S., Bonifati, V., Durr, A., Bressman, S., Brice, A., Aasly, J., Zabetian, C. P., Goldwurm, S., Ferreira, J. J., Tolosa, E., Kay, D. M., Klein, C., Williams, D. R., Marras, C., Lang, A. E., Wszolek, Z. K., Berciano, J., Schapira, A. H., Lynch, T., Bhatia, K. P., Gasser, T., Lees, A. J., and Wood, N. W. (2008) Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: a case-control study, Lancet Neurol., 7, 583–590.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Liu, G.-H., Qu, J., Suzuki, K., Nivet, E., Li, M., Montserrat, N., Yi, F., Xu, X., Ruiz, S., Zhang, W., Wagner, U., Kim, A., Ren, B., Li, Y., Goebl, A., Kim, J., Soligalla, R. D., Dubova, I., Thompson, J., Yates, J., 3rd, Esteban, C. R., Sancho-Martinez, I., and Belmonte, J. C. I. (2012) Progressive degeneration of human neural stem cells caused by pathogenic LRRK2, Nature, 491, 603–607.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Seibler, P., Graziotto, J., Jeong, H., Simunovic, F., Klein, C., and Krainc, D. (2011) Mitochondrial Parkin recruitment in neurons derived from mutant PINK1 iPS cells, J. Neurosci., 31, 5970–5976.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Sanchez-Danes, A., Richaud-Patin, Y., Carballo-Carbajal, I., Jimenez-Delgado, S., Caig, C., Mora, S., Di Guglielmo, C., Ezquerra, M., Patel, B., Giralt, A., Canals, J. M., Memo, M., Alberch, J., Lopez-Barneo, J., Vila, M., Cuervo, A. M., Tolosa, E., Consiglio, A., and Raya, A. (2012) Disease-specific phenotypes in dopamine neurons from human iPS-based models of genetic and sporadic Parkinson’s disease, EMBO Mol. Med., 4, 380–395.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Byers, B., Cord, B., Nguyen, H. N., Schule, B., Fenno, L., Lee, P. C., Deisseroth, K., Langston, J. W., Pera, R. R., and Palmer, T. D. (2011) SNCA triplication Parkinson’s patient’s iPSC-derived DA neurons accumulate α-synuclein and are susceptible to oxidative stress, PLoS One, 6, e26159.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Chung, C. Y., Khurana, V., Auluck, P. K., Tardiff, D. F., Mazzulli, J. R., Soldner, F., Baru, V., Lou, Y., Freyzon, Y., Cho, S., Mungenast, A. E., Muffat, J., Mitalipova, M., Pluth, M. D., Jui, N. T., Schule, B., Lippard, S. J., Tsai, L. H., Krainc, D., Buchwald, S. L., Jaenisch, R., and Lindquist, S. (2013) Identification and rescue of α-synuclein toxicity in Parkinson’s patient-derived neurons, Science, 342, 983–987.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Monzel, A. S., Smits, L. M., Hemmer, K., Hachi, S., Moreno, E. L., van Wuellen, T., Jarazo, J., Walter, J., Bruggemann, I., Boussaad, I., Berger, E., Fleming, R. M. T., Bolognin, S., and Schwamborn, J. C. (2017) Derivation of human midbrain-specific organoids from neuroepithelial stem cells, Stem Cell Rep., 8, 1144–1154.CrossRefGoogle Scholar
  23. 23.
    Cai, J., Yang, M., Poremsky, E., Kidd, S., Schneider, J. S., and Iacovitti, L. (2010) Dopaminergic neurons derived from human induced pluripotent stem cells survive and integrate into 6-OHDA-lesioned rats, Stem Cells Dev., 19, 1017–1023.CrossRefPubMedGoogle Scholar
  24. 24.
    Martinez-Morales, P. L., and Liste, I. (2012) Stem cells as in vitro model of Parkinson’s disease, Stem Cells Int., 2012, 980941.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Doi, D., Samata, B., Katsukawa, M., Kikuchi, T., Morizane, A., Ono, Y., Sekiguchi, K., Nakagawa, M., Parmar, M., and Takahashi, J. (2014) Isolation of human induced pluripotent stem cell-derived dopaminergic progenitors by cell sorting for successful transplantation, Stem Cell Rep., 2, 337–350.CrossRefGoogle Scholar
  26. 26.
    Nishimura, K., Murayama, S., and Takahashi, J. (2015) Identification of neurexophilin 3 as a novel supportive factor for survival of induced pluripotent stem cell-derived dopaminergic progenitors, Stem Cells Transl. Med., 4, 932–944.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    De Boni, L., Gasparoni, G., Haubenreich, C., Tierling, S., Schmitt, I., Peitz, M., Koch, P., Walter, J., Wullner, U., and Brustle, O. (2018) DNA methylation alterations in iPSC-and hESC-derived neurons: potential implications for neurological disease modeling, Clin. Epigenetics, 10,13.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Soldner, F., Stelzer, Y., Shivalila, C. S., Abraham, B. J., Latourelle, J. C., Barrasa, M. I., Goldmann, J., Myers, R. H., Young, R. A., and Jaenisch, R. (2016) Parkinson-associated risk variant in distal enhancer of α-synuclein modulates target gene expression, Nature, 533, 95–99.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Li, J. Q., Tan, L., and Yu, J. T. (2014) The role of the LRRK2 gene in parkinsonism, Mol. Neurodegener., 9,47.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Pollanen, M. S., Dickson, D. W., and Bergeron, C. (1993) Pathology and biology of the Lewy body, J. Neuropathol. Exp. Neurol., 52, 183–191.CrossRefPubMedGoogle Scholar
  31. 31.
    Spillantini, M. G., Schmidt, M. L., Lee, V. M., Trojanowski, J. Q., Jakes, R., and Goedert, M. (1997) α-Synuclein in Lewy bodies, Nature, 388, 839–884.CrossRefPubMedGoogle Scholar
  32. 32.
    Anderson, J. P., Walker, D. E., Goldstein, J. M., de Laat, R., Banducci, K., Caccavello, R. J., Barbour, R., Huang, J., Kling, K., Lee, M., Diep, L., Keim, P. S., Shen, X., Chataway, T., Schlossmacher, M. G., Seubert, P., Schenk, D., Sinha, S., Gai, W. P., and Chilcote, T. J. (2006) Phosphorylation of Ser-129 is the dominant pathological modification of α-synuclein in familial and sporadic Lewy body disease, J. Biol. Chem., 281, 29739–29752.CrossRefPubMedGoogle Scholar
  33. 33.
    Oueslati, A. (2016) Implication of α-synuclein phosphorylation at S129 in synucleinopathies: what have we learned in the last decade? J. Parkinson’s Dis., 6, 39–51.CrossRefGoogle Scholar
  34. 34.
    Alegre-Abarrategui, J., Ansorge, O., Esiri, M., and Wade-Martins, R. (2008) LRRK2 is a component of granular α-synuclein pathology in the brainstem of Parkinson’s disease, Neuropathol. Appl. Neurobiol., 34, 272–283.CrossRefPubMedGoogle Scholar
  35. 35.
    Martin, I., Dawson, V. L., and Dawson, T. M. (2011) Recent advances in the genetics of Parkinson’s disease, Annu. Rev. Genomics Hum. Genet., 12, 301–325.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Qing, X., Walter, J., Jarazo, J., Arias-Fuenzalida, J., Hillje, A. L., and Schwamborn, J. C. (2017) CRISPR/Cas9 and piggyBac-mediated footprint-free LRRK2-G2019S knock-in reveals neuronal complexity phenotypes and α-synucle-in modulation in dopaminergic neurons, Stem Cell Res., 24, 44–50.CrossRefPubMedGoogle Scholar
  37. 37.
    Ferreia, M., and Massano, J. (2017) An updated review of Parkinson’s disease genetics and clinicopathological correlations, Acta Neurol. Scand., 135, 273–284.CrossRefGoogle Scholar
  38. 38.
    Abizaid, A., Liu, Z. W., Andrews, Z. B., Shanabrough, M., Borok, E., Elsworth, J. D., Roth, R. H., Sleeman, M. W., Picciotto, M. R., Tschop, M. H., Gao, X. B., and Horvath, T. L. (2006) Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite, J. Clin. Invest., 116, 3229–3239.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Diano, S., Farr, S. A., Benoit, S. C., McNay, E. C., da Silva, I., Horvath, B., Gaskin, F. S., Nonaka, N., Jaeger, L. B., Banks, W. A., Morley, J. E., Pinto, S., Sherwin, R. S., Xu, L., Yamada, K. A., Sleeman, M. W., Tschop, M. H., and Horvath, T. L. (2006) Ghrelin controls hippocampal spine synapse density and memory performance, Nat. Neurosci., 9, 381–388.CrossRefPubMedGoogle Scholar
  40. 40.
    Kojima, M., Hosoda, H., Date, Y., Nakazato, M., Matsuo, H., and Kangawa, K. (1999) Ghrelin is a growth-hormone-releasing acylated peptide from stomach, Nature, 402, 656–660.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Nakazato, M., Murakami, N., Date, Y., Kojima, M., Matsuo, H., Kangawa, K., and Matsukura, S. (2001) A role for ghrelin in the central regulation of feeding, Nature, 409, 194–198.CrossRefPubMedGoogle Scholar
  42. 42.
    Cowley, M. A., Smith, R. G., Diano, S., Tschop, M., Pronchuk, N., Grove, K. L., Strasburger, C. J., Bidlingmaier, M., Esterman, M., Heiman, M. L., Garcia-Segura, L. M., Nillni, E. A., Mendez, P., Low, M. J., Sotonyi, P., Friedman, J. M., Liu, H., Pinto, S., Colmers, W. F., Cone, R. D., and Horvath, T. L. (2003) The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis, Neuron, 37, 649–661.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Shi, L., Bian, X., Qu, Z., Ma, Z., Zhou, Y., Wang, K., Jiang, H., and Xie, J. (2013) Peptide hormone ghrelin enhances neuronal excitability by inhibition of Kv7/KCNQ channels, Nat. Commun., 4, 1435.CrossRefPubMedGoogle Scholar
  44. 44.
    Suda, Y., Kuzumaki, N., Sone, T., Narita, M., Tanaka, K., Hamada, Y., Iwasawa, C., Shibasaki, M., Maekawa, A., Matsuo, M., Akamatsu, W., Hattori, N., Okano, H., and Narita, M. (2018) Down-regulation of ghrelin receptors on dopaminergic neurons in the substantia nigra contributes to Parkinson’s disease-like motor dysfunction, Mol. Brain, 11,6.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Brundin, P., Strecker, R. E., Lindvall, O., Isacson, O., Nilsson, O. G., Barbin, G., Prochiantz, A., Forni, C., Nieoullon, A., Widner, H., Gage, F. H., and Bjorklund, A. (1987) Intracerebral grafting of dopamine neurons. Experimental basis for clinical trials in patients with Parkinson’s disease, Ann. N. Y. Acad. Sci., 495, 473–496.CrossRefPubMedGoogle Scholar
  46. 46.
    Barker, R. A., Drouin-Ouellet, J., and Parmar, M. (2015) Cell-based therapies for Parkinson’s disease-past insights and future potential, Nat. Rev. Neurol., 11, 492–503.CrossRefPubMedGoogle Scholar
  47. 47.
    Barker, R. A., Parmar, M., Studer, L., and Takahashi, J. (2017) Human trials of stem cell-derived dopamine neurons for Parkinson’s disease: dawn of a new era, Cell Stem Cell, 21, 569–573.CrossRefPubMedGoogle Scholar
  48. 48.
    Shimohama, S., Sawada, H., Kitamura, Y., and Taniguchi, T. (2003) Disease model: Parkinson’s disease, Trends Mol. Med., 9, 360–365.CrossRefPubMedGoogle Scholar
  49. 49.
    Saiki, H., Hayashi, T., Takahashi, R., and Takahashi, J. (2010) Objective and quantitative evaluation of motor function in a monkey model of Parkinson’s disease, J. Neurosci. Methods, 190, 198–204.CrossRefPubMedGoogle Scholar
  50. 50.
    Takagi, Y., Takahashi, J., Saiki, H., Morizane, A., Hayashi, T., Kishi, Y., Fukuda, H., Okamoto, Y., Koyanagi, M., Ideguchi, M., Hayashi, H., Imazato, T., Kawasaki, H., Suemori, H., Omachi, S., Iida, H., Itoh, N., Nakatsuji, N., Sasai, Y., and Hashimoto, N. (2005) Dopaminergic neurons generated from monkey embryonic stem cells function in a Parkinson’s primate model, J. Clin. Invest., 115, 102–109.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Lebedeva, O. S., Lagar’kova, M. A., Kiselev, S. L., Mukhina, I. V., Vedunova, M. V., Usova, O. V., Stavrovskaya, A. V., Yamshchikova, N. G., Fedotova, E. Yu., Grivennikov, I. A., Khaspekov, L. G., and Illarioshkin, S. N. (2013) Morphofunctional properties of induced pluripotent stem cells derived from human skin fibroblasts and differentiated to dopaminergic neurons, Neirokhimiya, 3, 233–241.Google Scholar
  52. 52.
    Doi, D., Morizane, A., Kikuchi, T., Onoe, H., Hayashi, T., Kawasaki, T., Motono, M., Sasai, Y., Saiki, H., Gomi, M., Yoshikawa, T., Hayashi, H., Shinoyama, M., Refaat, M. M., Suemori, H., Miyamoto, S., and Takahashi, J. (2012) Prolonged maturation culture favors a reduction in the tumorigenicity and the dopaminergic function of human ESC-derived neural cells in a primate model of Parkinson’s disease, Stem Cells, 30, 935–945.CrossRefPubMedGoogle Scholar
  53. 53.
    Kikuchi, T., Morizane, A., Doi, D., Onoe, H., Hayashi, T., Kawasaki, T., Saiki, H., Miyamoto, S., and Takahashi, J. (2011) Survival of human induced pluripotent stem cell-derived midbrain dopaminergic neurons in the brain of a primate model of Parkinson’s disease, J. Parkinson’s Dis., 1, 395–412.Google Scholar
  54. 54.
    Kikuchi, T., Morizane, A., Doi, D., Magotani, H., Onoe, H., Hayashi, T., Mizuma, H., Takara, S., Takahashi, R., Inoue, H., Morita, S., Yamamoto, M., Okita, K., Nakagawa, M., Parmar, M., and Takahashi, J. (2017) Human iPS cell-derived dopaminergic neurons function in a primate Parkinson’s disease model, Nature, 548, 592–596.CrossRefPubMedGoogle Scholar
  55. 55.
    Morizane, A., Doi, D., Kikuchi, T., Okita, K., Hotta, A., Kawasaki, T., Hayashi, T., Onoe, H., Shiina, T., Yamanaka, S., and Takahashi, J. (2013) Direct comparison of autologous and allogeneic transplantation of iPSC-derived neural cells in the brain of a non-human primate, Stem Cell Rep., 1, 283–292.CrossRefGoogle Scholar
  56. 56.
    Okita, K., Matsumura, Y., Sato, Y., Okada, A., Morizane, A., Okamoto, S., Hong, H., Nakagawa, M., Tanabe, K., Tezuka, K., Shibata, T., Kunisada, T., Takahashi, M., Takahashi, J., Saji, H., and Yamanaka, S. (2011) A more efficient method to generate integration-free human iPS cells, Nat. Methods, 8, 409–412.CrossRefPubMedGoogle Scholar
  57. 57.
    Mandai, M., Watanabe, A., Kurimoto, Y., Hirami, Y., Morinaga, C., Daimon, T., Fujihara, M., Akimaru, H., Sakai, N., Shibata, Y., Terada, M., Nomiya, Y., Tanishima, S., Nakamura, M., Kamao, H., Sugita, S., Onishi, A., Ito, T., Fujita, K., Kawamata, S., Go, M. J., Shinohara, C., Hata, K. I., Sawada, M., Yamamoto, M., Ohta, S., Ohara, Y., Yoshida, K., Kuwahara, J., Kitano, Y., Amano, N., Umekage, M., Kitaoka, F., Tanaka, A., Okada, C., Takasu, N., Ogawa, S., Yamanaka, S., and Takahashi, M. (2017) Autologous induced stem-cell-derived retinal cells for macular degeneration, N. Engl. J. Med., 376, 1038–1046.CrossRefPubMedGoogle Scholar
  58. 58.
    Li, W., Englund, E., Winder, H., Mattsson, B., van Westen, D., Latt, D., Rehncrona, S., Brundin, P., Bjorklund, A., Lindvall, O., and Li, J. Y. (2016) Extensive graft-derived dopaminergic innervation is maintained 24 years after transplantation in the degenerating parkinsonian brain, Proc. Natl. Acad. Sci. USA, 113, 6544–6549.CrossRefPubMedGoogle Scholar
  59. 59.
    Morizane, A., and Takahashi, J. (2016) Cell therapy for Parkinson’s disease, Neurol. Med. Chir. (Tokyo), 56, 102–109.CrossRefGoogle Scholar
  60. 60.
    Grealish, S., Diguet, E., Kirkeby, A., Mattsson, B., Heuer, A., Bramoulle, Y., Van Camp, N., Perrier, A. L., Hantraye, P., Bjorklund, A., and Parmar, M. (2014) Human ESC-derived dopamine neurons show similar preclinical efficacy and potency to fetal neurons when grafted in a rat model of Parkinson’s disease, Cell Stem Cell, 15, 653–665.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Kirkeby, A., Grealish, S., Wolf, D. A., Nelander, J., Wood, J., Lundblad, M., Lindvall, O., and Parmar, M. (2012) Generation of regionally specified neural progenitors and functional neurons from human embryonic stem cells under defined conditions, Cell Rep., 1, 703–714.CrossRefPubMedGoogle Scholar
  62. 62.
    Kriks, S., Shim, J.-W., Piao, J., Ganat, Y. M., Wakeman, D. R., Xie, Z., Carrillo-Reid, L., Auyeung, G., Antonacci, C., Buch, A., Yang, L., Beal, M. F., Surmeier, D. J., Kordower, J. H., Tabar, V., and Studer, L. (2011) Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease, Nature, 480, 547–553.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Steinbeck, J. A., Choi, S. J., Mrejeru, A., Ganat, Y., Deisseroth, K., Sulzer, D., Mosharov, E. V., and Stude, L. (2015) Optogenetics enables functional analysis of human embryonic stem cell-derived grafts in a Parkinson’s disease model, Nat. Biotechnol., 33, 204–209.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Andrews, P. W., Ben-David, U., Benvenisty, N., Coffey, P., Eggan, K., Knowles, B. B., Nagy, A., Pera, M., Reubinoff, B., Rugg-Gunn, P. J., and Stacey, G. N. (2017) Assessing the safety of human pluripotent stem cells and their derivatives for clinical applications, Stem Cell Rep., 9, 1–4.CrossRefGoogle Scholar
  65. 65.
    Barker, R. A., Parmar, M., Kirkeby, A., Bjorklund, A., Thompson, L., and Brundin, P. (2016) Are stem cell-based therapies for Parkinson’s disease ready for the clinic in 2016? J. Parkinson’s Dis., 6, 57–63.CrossRefGoogle Scholar
  66. 66.
    Cyranoski, D. (2017) Trials of embryonic stem cells to launch in China, Nature, 546, 15–16.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Federal Research and Clinical Center of Physical-Chemical MedicineFederal Medical Biological AgencyMoscowRussia

Personalised recommendations