Biochemistry (Moscow)

, Volume 83, Issue 9, pp 1030–1039 | Cite as

Molecular Pathogenesis in Huntington’s Disease

  • S. N. IllarioshkinEmail author
  • S. A. Klyushnikov
  • V. A. Vigont
  • Yu. A. Seliverstov
  • E. V. Kaznacheyeva


Huntington’s disease (HD) is a severe autosomal dominant neurodegenerative disorder characterized by a combination of motor, cognitive, and psychiatric symptoms, atrophy of the basal ganglia and the cerebral cortex, and inevitably progressive course resulting in death 5–20 years after manifestation of its symptoms. HD is caused by expansion of CAG repeats in the HTT gene, which leads to pathological elongation of the polyglutamine tract within the respective protein-huntingtin. In this review, we present a modern view on molecular biology of HD as a representative of the group of polyglutamine diseases, with an emphasis on conformational changes of mutant huntingtin, disturbances in its cellular processing, and proteolytic stress in degenerating neurons. Main pathogenetic mechanisms of neurodegeneration in HD are discussed in detail, such as systemic failure of transcription, mitochondrial dysfunction and suppression of energy metabolism, abnormalities of cytoskeleton and axonal transport, microglial inflammation, decrease in synthesis of brain-derived neurotrophic factor, etc.


Huntington’s disease molecular pathogenesis polyglutamine expansion proteolytic stress transcription dysregulation mitochondria 



brain-derived neurotrophic factor


central nervous system


Huntington’s disease


peroxisome proliferator-activated receptor γ coactivator 1α


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baig, S. S., Strong, M., and Quarrell, O. W. (2016) The global prevalence of Huntington’s disease: a systematic review and discussion, Neurodegener. Dis. Manag., 6, 331–343.CrossRefPubMedGoogle Scholar
  2. 2.
    Hayden, M. R. (1981) Huntington’s Chorea, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  3. 3.
    Bates, G. P., Dorsey, R., Gusella, J. F., Hayden, M. R., Kay, C., Leavitt, B. R., Nance, M., Ross, C. A., Scahill, R. I., Wetzel, R., Wild, E. J., and Tabrizi, S. J. (2015) Huntington’s disease, Nature Rev. Dis. Primers, 1, 1–21.Google Scholar
  4. 4.
    The Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes, Cell, 72, 971–983.Google Scholar
  5. 5.
    Paulson, H. L. (1999) Protein fate in neurodegenerative proteinopathies: polyglutamine diseases join the (mis)fold, Am. J. Hum. Genet., 64, 339–345.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Wheeler, V. C., Persichetti, F., McNeil, S. M., Mysore, J. S., Mysore, S. S., MacDonald, M. E., Myers, R. H., Gusella, J. F., Wexler, N. S., and The US-Venezuela Collaborative Research Group (2007) Factors associated with HD CAG repeat instability in Huntington’s disease, J. Med. Gen., 44, 695–701.CrossRefGoogle Scholar
  7. 7.
    Reiner, A., Dragatsis, I., and Dietrich, P. (2011) Genetics and neuropathology of Huntington’s disease, Int. Rev. Neurobiol., 98, 325–372.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Duyao, M., Ambrose, C., Myers, R., Novelletto, A., Persichetti, F., Frontali, M., Folstein, S., Ross, C., Franz, M., Abbott, M., Gray, J., Conneally, P., Young, A., Penney, J., Hollingsworth, Z., Shoulson, I., Lazzarini, A., Falek, A., Koroshetz, W., Sax, D., Bird, E., Vonsattel, J., Bonilla, E., Alvir, J., Bickham Conde, J., Cha, J.-H., Dure, L., Gomez, F., Ramos, M., Sanchez-Ramos, J., Snodgrass, S., de Young, M., Wexler, N., Moscowitz, C., Penchaszadeh, G., MacFarlane, H., Anderson, M., Jenkins, B., Srinidhi, J., Barnes, G., Gusella, J., and MacDonald, M. (1993) Trinucleotide repeat length instability and age of onset in Huntington’s disease, Nat. Genet., 4, 387–392.CrossRefPubMedGoogle Scholar
  9. 9.
    Andresen, J. M., Javiar, G., Djousse, L., Roberts, S., Brocklebank, D., Cherny, S. S., The US-Venezuela Collaborative Research Group, HD MAPS Collaborative Research Group, Cardon, L. R., Gusella, J. F., MacDonald, M. E., Myers, R. H., Housman, D. E., and Wexler, N. S. (2006) The relationship between CAG repeat length and age of onset differs for Huntington’s disease patients with juvenile onset or adult onset, Hum. Gen., 71, 295–301.CrossRefGoogle Scholar
  10. 10.
    Brinkman, R. R., Mezei, M. M., Theilmann, J., Almqvist, E., and Hayden, M. R. (1997) The likelihood of being affected with Huntington’s disease by a particular age, for a specific CAG size, Am. J. Hum. Genet., 60, 1202–1210.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Persichetti, F., Srinidhi, J., Kanaley, L., Ge, P., Myers, R. H., D’Arrigo, K., Barnes, G. T., MacDonald, M. E., Vonsattel, J. P., Gusella, J. F., and Bird, E. D. (1994) Huntington’s disease CAG trinucleotide repeats in pathologically confirmed post-mortem brains, Neurobiol. Dis., 1, 159–166.CrossRefPubMedGoogle Scholar
  12. 12.
    Illarioshkin, S. N., Igarashi, S., Onodera, O., Markova, E. D., Nikolskaya, N. N., Tanaka, H., Chabrashwili, T. Z., Insarova, N. G., Endo, K., Ivanova-Smolenskaya, I. A., and Tsuji, S. (1994) Trinucleotide repeat length and rate of progression of Huntington’s disease, Ann. Neurol., 36, 630–635.CrossRefPubMedGoogle Scholar
  13. 13.
    Brandt, J., Bylsma, F. W., Gross, R., Stine, O. C., Ranen, N., and Ross, C. A. (1996) Trinucleotide repeat length and clinical progression in Huntington’s disease, Neurology, 46, 527–531.CrossRefPubMedGoogle Scholar
  14. 14.
    Rosenblatt, A., Liang, K. Y., Zhou, H., Abbott, M. H., Gourley, L. M., Margolis, R. L., Brandt, J., and Ross, C. A. (2006) The association of CAG repeat length with clinical progression in Huntington’s disease, Neurology, 66, 1016–1020.CrossRefPubMedGoogle Scholar
  15. 15.
    Myers, R. H. (2004) Huntington’s disease genetics, NeuroRx, 1, 255–262.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Tautz, D., and Schlotterer, C. (1994) Simple sequences, Curr. Opin. Genet. Dev., 4, 832–837.CrossRefPubMedGoogle Scholar
  17. 17.
    Klintschar, M., Dauber, E.-M., Ricci, U., Cerri, N., Immel, U. D., Kleiber, M., and Mayr, W. R. (2004) Haplotype studies support slippage as the mechanism of germline mutations in short tandem repeats, Electrophoresis, 25, 3344–3348.CrossRefPubMedGoogle Scholar
  18. 18.
    Zuccato, C., and Cattaneo, E. (2016) The Huntington’s paradox, Sci. Am., 315, 56–61.CrossRefPubMedGoogle Scholar
  19. 19.
    Saudou, F., and Humbert, S. (2016) The biology of huntingtin, Neuron, 89, 910–926.CrossRefPubMedGoogle Scholar
  20. 20.
    Velier, J., Kim, M., Schwarz, C., Kim, T. W., Sapp, E., Chase, K., Aronin, N., and DiFiglia, M. (1998) Wild-type and mutant huntingtins function in vesicle trafficking in the secretory and endocytic pathways, Exp. Neurol., 152, 34–40.CrossRefPubMedGoogle Scholar
  21. 21.
    Nithianantharajah, J., and Hannan, A. J. (2013) Dysregulation of synaptic proteins, dendritic spine abnormalities and pathological plasticity of synapses as experience-dependent mediators of cognitive and psychiatric symptoms in Huntington’s disease, Neuroscience, 251, 66–74.CrossRefPubMedGoogle Scholar
  22. 22.
    Martin, D. D. O., Ladha, S., Ehrnhoefer, D. E., and Hayden, M. R. (2014) Autophagy in Huntington’s disease and huntingtin in autophagy, Trends Neurosci., 38, 26–35.CrossRefPubMedGoogle Scholar
  23. 23.
    Perutz, M. F., Johnson, T., Suzuki, M., and Finch, J. T. (1994) Glutamine repeats as polar zippers: their possible role in inherited neurologic diseases, Proc. Natl. Acad. Sci. USA, 91, 5355–5358.CrossRefPubMedGoogle Scholar
  24. 24.
    Landles, C., Sathasivam, K., Weiss, A., Woodman, B., Moffitt, H., Finkbeiner, S., Sun, B., Gafni, J., Ellerby, L. M., Trottier, Y., Richards, W. G., Osmand, A., Paganetti, P., and Bates, G. P. (2010) Proteolysis of mutant huntingtin produces an exon 1 fragment that accumulates as an aggregated protein in neuronal nuclei in Huntington’s disease, J. Biol. Chem., 285, 8808–8823.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Rubinsztein, D. C., Wyttenbach, A., and Rankin, J. (1999) Intracellular inclusions, pathological markers in diseases caused by expanded polyglutamine tracts? J. Med. Genet., 36, 265–270.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Ross, C. A., Wood, J. D., and Schilling, G. (1999) Polyglutamine pathogenesis, Philos. Trans. R. Soc. Lond. B Biol. Sci., 354, 1005–1011.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Graham, R. K., Deng, Y., and Slow, E. J. (2006) Cleavage at the caspase-6 site is required for neuronal dysfunction and degeneration due to mutant huntingtin, Cell, 125, 1179–1191.CrossRefPubMedGoogle Scholar
  28. 28.
    Saudou, F., Finkbeiner, S., Devys, D., and Greenberg, M. E. (1998) Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions, Cell, 95, 55–66.CrossRefPubMedGoogle Scholar
  29. 29.
    Klement, I. A., Skinner, P. A., Kaytor, M. D., Yi, H., Hersch, S. M., Clark, H. B., Zoghbi, H. Y., and Orr, H. T. (1998) Ataxin-1 nuclear localisation and aggregation: role in polyglutamine-induced disease in SCA1 transgenic mice, Cell, 95, 41–53.CrossRefPubMedGoogle Scholar
  30. 30.
    DiFiglia, M., Sapp, E., Chase, K. O., Davies, S. W., Bates, G. P., Vonsattel, J. P., and Aronin, N. (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain, Science, 277, 1990–1993.CrossRefPubMedGoogle Scholar
  31. 31.
    Scherzinger, E., Lurz, R., Turmaine, M., Mangiarini, L., Hollenbach, B., Hasenbank, R., Bates, G. P., Davies, S. W., Lehrach, H., and Wanker, E. E. (1997) Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo, Cell, 90, 549–558.CrossRefPubMedGoogle Scholar
  32. 32.
    Davies, S. W., Turmaine, M., Cozens, B. A., DiFiglia, M., Sharp, A. H., Ross, C. A., Scherzinger, E., Wanker, E. E., Mangiarini, L., and Bates, G. P. (1997) Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation, Cell, 90, 537–548.CrossRefPubMedGoogle Scholar
  33. 33.
    Warrick, J. M., Paulson, H. L., Gray-Board, G. L., Bui, Q. T., Fischbeck, K. H., Pittman, R. N., and Bonini, N. M. (1998) Expanded polyglutamine protein forms nuclear inclusions and causes neural degeneration in Drosophila, Cell, 93, 939–949.CrossRefPubMedGoogle Scholar
  34. 34.
    Nekrasov, E. D., Vigont, V. A., Klyushnikov, S. A., Lebedeva, O. S., Vassina, E. M., Bogomazova, A. N., Chestkov, I. V., Semashko, T. A., Kiseleva, E., Suldina, L. A., Bobrovsky, P. A., Zimina, O. A., Ryazantseva, M. A., Skopin, A. Y., Illarioshkin, S. N., Kaznacheyeva, E. V., Lagarkova, M. A., and Kiselev, S. L. (2016) Manifestation of Huntington’s disease pathology in human induced pluripotent stem cell-derived neurons, Mol. Neurodegener., 11,27.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Kalchman, M. A., Graham, R. K., Xia, G., Koide, H. B., Hodgson, J. G., Graham, K. C., Goldberg, Y. P., Gietz, R. D., Pickart, C. M., and Hayden, M. R. (1996) Huntingtin is ubiquitinated and interacts with a specific ubiquitin-conjugating enzyme, J. Biol. Chem., 271, 19385–19394.CrossRefPubMedGoogle Scholar
  36. 36.
    Chai, Y., Koppenhafer, S. L., Shoesmith, S. J., Perez, M. K., and Paulson, H. L. (1999) Evidence for proteasome involvement in polyglutamine disease: localization to nuclear inclusions in SCA3/MJD and suppression of poly-glutamine aggregation in vitro, Hum. Mol. Genet., 8, 673–682.CrossRefPubMedGoogle Scholar
  37. 37.
    Holmberg, C. I., Staniszewski, K. E., Mensah, K. N., Matouschek, A., and Morimoto, R. I. (2004) Inefficient degradation of truncated polyglutamine proteins by the proteasome, EMBO J., 23, 4307–4318.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Labbadia, J., and Morimoto, R. I. (2013) Huntington’s disease: underlying molecular mechanisms and emerging concepts, Trends Biochem. Sci., 38, 378–385.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Zhao, T., Hong, Y., Li, X.-J., and Li, S.-H. (2016) Subcellular clearance and accumulation of Huntington’s disease protein: a mini-review, Front. Mol. Neurosci., 9,27.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Ravikumar, B., Vacher, C., Berger, Z., Davies, J. E., Luo, S., Oroz, L. G., Scaravilli, F., Easton, D. F., Duden, R., O’Kane, C. J., and Rubinsztein, D. C. (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington’s disease, Nat. Genet., 36, 585–595.CrossRefPubMedGoogle Scholar
  41. 41.
    Ravikumar, B., Acevedo-Arozena, A., Imarisio, S., Berger, Z., Vacher, C., O’Kane, C. J., Brown, S. D., and Rubinsztein, D. C. (2005) Dynein mutations impair autophagic clearance of aggregate-prone proteins, Nat. Genet., 37, 771–776.CrossRefPubMedGoogle Scholar
  42. 42.
    Harding, R. J., and Tong, Y. F. (2018) Proteostasis in Huntington’s disease: disease mechanisms and therapeutic opportunities, Acta Pharmacol. Sin., 39, 754–769.CrossRefPubMedGoogle Scholar
  43. 43.
    Kim, M., Lee, H.-S., LaForet, G., McIntyre, C., Martin, E. J., Chang, P., Kim, T. W., Williams, M., Reddy, P. H., Tagle, D., Boyce, F. M., Won, L., Heller, A., Aronin, N., and DiFiglia, M. (1999) Mutant huntingtin expression in clonal striatal cells: dissociation of inclusion formation and neuronal survival by caspase inhibition, J. Neurosci., 19, 964–973.CrossRefPubMedGoogle Scholar
  44. 44.
    Cummings, C. J., Reinstein, E., Sun, Y., Antalffy, B., Jiang, Y., Ciechanover, A., Orr, H. T., Beaudet, A. L., and Zoghbi, H. Y. (1999) Mutation of the E6-AP ubiquitin ligase reduces nuclear inclusion frequency while accelerating polyglutamine-induced pathology in SCA1 mice, Neuron, 24, 879–892.CrossRefPubMedGoogle Scholar
  45. 45.
    Valor, L. M. (2015) Transcription, epigenetics and ameliorative strategies in Huntington’s disease: a genome-wide perspective, Mol. Neurobiol., 51, 406–423.CrossRefPubMedGoogle Scholar
  46. 46.
    La Spada, A. R., Weydt, P., and Pineda, V. V. (2011) Huntington’s disease pathogenesis: mechanisms and path-ways, in Neurobiology of Huntington’s Disease: Applications to Drug Discovery (Lo, D. C., and Hughes, R. E., eds.), Chap. 2, Taylor & Francis, Boca Raton.Google Scholar
  47. 47.
    Cong, S. Y., Pepers, B. A., Evert, B. O., Rubinsztein, D. C., Roos, R. A., van Ommen, G. J., and Dorsman, J. C. (2005) Mutant huntingtin represses CBP, but not p300, by binding and protein degradation, Mol. Cell. Neurosci., 30, 560–571.CrossRefPubMedGoogle Scholar
  48. 48.
    Qiu, Z., Norflus, F., Singh, B., Swindell, M. K., Buzescu, R., Bejarano, M., Chopra, R., Zucker, B., Benn, C. L., DiRocco, D. P., Cha, J. H., Ferrante, R. J., and Hersch, S. M. (2006) Sp1 is up-regulated in cellular and transgenic models of Huntington’s disease, and its reduction is neuroprotective, J. Biol. Chem., 281, 16672–16680.CrossRefPubMedGoogle Scholar
  49. 49.
    Futter, M., Diekmann, H., Schoenmakers, E., Sadiq, O., Chatterjee, K., and Rubinsztein, D. C. (2009) Wild-type but not mutant huntingtin modulates the transcriptional activity of liver X receptors, J. Med. Genet., 46, 438–446.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Zuccato, C., and Cattaneo, E. (2007) Role of brain-derived neurotrophic factor in Huntington’s disease, Prog. Neurobiol., 81, 294–330.CrossRefPubMedGoogle Scholar
  51. 51.
    Kelly, D. P., and Scarpulla, R. C. (2004) Transcriptional regulatory circuits controlling mitochondrial biogenesis and function, Genes Dev., 18, 357–368.CrossRefPubMedGoogle Scholar
  52. 52.
    Beal, M. F., Brouillet, E., Jenkins, B. G., Ferrante, R. J., Kowall, N. W., Miller, J. M., Storey, E., Srivastava, R., Rosen, B. R., and Hyman, B. T. (1993) Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid, J. Neurosci., 13, 4181–4189.CrossRefPubMedGoogle Scholar
  53. 53.
    Tabrizi, S. J., Cleeter, M. W., Xuereb, J., Taanman, J. W., Cooper, J. M., and Schapira, A. H. (1999) Biochemical abnormalities and excitotoxicity in Huntington’s disease brain, Ann. Neurol., 45, 25–32.CrossRefPubMedGoogle Scholar
  54. 54.
    Johri, A., Chandra, A., and Beal, M. F. (2013) PGC-1a, mitochondrial dysfunction, and Huntington’s disease, Free Radic. Biol. Med., 62, 37–46.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Harms, L., Meierkord, H., Timm, G., Pfeiffer, L., and Ludolph, A. C. (1997) Decreased N-acetylaspartate/choline ratio and increased lactate in the frontal lobe of patients with Huntington’s disease: a proton magnetic resonance spectroscopy study, J. Neurol. Neurosurg. Psychiatry, 62, 27–30.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Reddy, P. H., and Shirendeb, U. P. (2012) Mutant huntingtin, abnormal mitochondrial dynamics, defective axonal transport of mitochondria, and selective synaptic degeneration in Huntington’s disease, Biochim. Biophys. Acta, 1822, 101–110.CrossRefPubMedGoogle Scholar
  57. 57.
    Orr, A. L., Li, S., Wang, C. E., Li, H., Wang, J., Rong, J., Xu, X., Mastroberardino, P. G., Greenamyre, J. T., and Li, X. J. (2008) N-terminal mutant huntingtin associates with mitochondria and impairs mitochondrial trafficking, J. Neurosci., 28, 2783–2792.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Twig, G., and Shirihai, O. S. (2011) The interplay between mitochondrial dynamics and mitophagy, Antioxid. Redox Signal., 14, 1939–1951.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Martinez-Vicente, M., Talloczy, Z., Wong, E., Tang, G., Koga, H., Kaushik, S., de Vries, R., Arias, E., Harris, S., Sulzer, D., and Cuervo, A. M. (2010) Cargo recognition failure is responsible for inefficient autophagy in Huntington’s disease, Nat. Neurosci., 13, 567–576.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Puigserver, P., and Spiegelman, B. M. (2003) Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator, Endocr. Rev., 24, 78–90.CrossRefPubMedGoogle Scholar
  61. 61.
    Lin, J., Wu, P. H., Tarr, P. T., Lindenberg, K. S., St.-Pierre, J., Zhang, C. Y., Mootha, V. K., Jager, S., Vianna, C. R., Reznick, R. M., Cui, L., Manieri, M., Donovan, M. X., Wu, Z., Cooper, M. P., Fan, M. C., Rohas, L. M., Zavacki, A. M., Cinti, S., Shulman, G. I., Lowell, B. B., Krainc, D., and Spiegelman, B. M. (2004) Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice, Cell, 119, 121–123.CrossRefPubMedGoogle Scholar
  62. 62.
    Leone, T. C., Lehman, J. J., and Finck, B. N. (2005) PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis, PLoS Biol., 3, e101.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Gunawardena, S., and Goldstein, L. S. (2005) Polyglutamine diseases and transport problems: deadly traffic jams on neuronal highways, Arch. Neurol., 62, 46–51.CrossRefPubMedGoogle Scholar
  64. 64.
    Zala, D., Hinckelmann, M. V., Yu, H., Lyra da Cunha, M. M., Liot, G., Cordelieres, F. P., Marco, S., and Saudou, F. (2013) Vesicular glycolysis provides on-board energy for fast axonal transport, Cell, 152, 479–491.CrossRefPubMedGoogle Scholar
  65. 65.
    Gauthier, L. R., Charrin, B. C., Borrell-Pages, M., Dompierre, J. P., Rangone, H., Cordelieres, F. P., De Mey, J., MacDonald, M. E., Lessmann, V., Humbert, S., and Saudou, F. (2004) Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules, Cell, 118, 127–138.CrossRefPubMedGoogle Scholar
  66. 66.
    Trushina, E., Dyer, R. B., Badger, J. D., Ure, D., Eide, L., Tran, D. D., Vrieze, B. T., Legendre-Guillemin, V., McPherson, P. S., Mandavilli, B. S., Van Houten, B., Zeitlin, S., McNiven, M., Aebersold, R., Hayden, M., Parisi, J. E., Seeberg, E., Dragatsis, I., Doyle, K., Bender, A., Chacko, C., and McMurray, C. T. (2004) Mutant huntingtin impairs axonal trafficking in mammalian neurons in vivo and in vitro, Mol. Cell. Biol., 24, 8195–8209.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Crotti, A., and Glass, C. K. (2015) The choreography of neuroinflammation in Huntington’s disease, Trends Immunol., 36, 364–373.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Nimmerjahn, A., Kirchhoff, F., and Helmchen, F. (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo, Science, 308, 1314–1318.CrossRefPubMedGoogle Scholar
  69. 69.
    Banati, R. B. (2002) Visualizing microglial activation in vivo, Glia, 40, 206–217.CrossRefPubMedGoogle Scholar
  70. 70.
    Sapp, E., Kegel, K. B., Aronin, N., Hashikawa, T., Uchiyama, Y., Tohyama, K., Bhide, P. G., Vonsattel, J. P., and DiFiglia, M. (2001) Early and progressive accumulation of reactive microglia in the Huntington’s disease brain, J. Neuropathol. Exp. Neurol., 60, 161–172.CrossRefPubMedGoogle Scholar
  71. 71.
    Tai, Y. F., Pavese, N., Gerhard, A., Tabrizi, S. J., Barker, R. A., Brooks, D. J., and Piccini, P. (2007) Microglial activation in presymptomatic Huntington’s disease gene carriers, Brain, 130, 1759–1766.CrossRefPubMedGoogle Scholar
  72. 72.
    Crotti, A., Benner, C., Kerman, B. E., Lagier-Tourenne, C., Zuccato, C., Cattaneo, E., Gage, F. H., Cleveland, D. W., and Glass, C. K. (2014) Mutant Huntingtin promotes autonomous microglia activation via myeloid lineage-determining factors, Nat. Neurosci., 4, 513–521.CrossRefGoogle Scholar
  73. 73.
    Kumar, A., and Ratan, R. R. (2016) Oxidative stress and Huntington’s disease: the good, the bad, and the ugly, J. Huntington’s Dis., 5, 217–237.CrossRefGoogle Scholar
  74. 74.
    Hands, S., Sajjad, M. U., Newton, M. J., and Wyttenbach, A. (2011) In vitro and in vivo aggregation of a fragment of huntingtin protein directly causes free radical production, J. Biol. Chem., 286, 44512–44520.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Block, M. L., Zecca, L., and Hong, J. S. (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms, Nat. Rev. Neurosci., 8, 57–69.CrossRefPubMedGoogle Scholar
  76. 76.
    Firdaus, W. J., Wyttenbach, A., Giuliano, P., Kretz-Remy, C., Currie, R. W., and Arrigo, A. P. (2006) Huntingtin inclusion bodies are iron-dependent centers of oxidative events, FEBS J., 273, 5428–5441.CrossRefPubMedGoogle Scholar
  77. 77.
    Hodgson, J. G., Agopyan, N., Gutekunst, C.-A., Leavitt, B. R., LePiane, F., Singaraja, R., Smith, D. J., Bissada, N., McCutcheon, K., Nasir, J., Jamot, L., Li, X. J., Stevens, M. E., Rosemond, E., Roder, J. C., Phillips, A. G., Rubin, E. M., Hersch, S. M., and Hayden, M. R. (1999) A YAC mouse model for Huntington’s disease with full-length mutant huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration, Neuron, 23, 181–192.CrossRefPubMedGoogle Scholar
  78. 78.
    Skotte, N. H., Andersen, J. V., Santos, A., Aldana, B. I., Willert, C. W., Norremolle, A., Waagepetersen, H. S., and Nielsen, M. L. (2018) Integrative characterization of the R6/2 mouse model of Huntington’s disease reveals dysfunctional astrocyte metabolism, Cell Rep., 23, 2211–2224.CrossRefPubMedGoogle Scholar
  79. 79.
    Lievens, J. C., Rival, T., Iche, M., Chneiweiss, H., and Birman, S. (2005) Expanded polyglutamine peptides disrupt EGF receptor signaling and glutamate transporter expression in Drosophila, Hum. Mol. Genet., 14, 713–724.CrossRefPubMedGoogle Scholar
  80. 80.
    Canals, J. M., Pineda, J. R., Torres-Peraza, J. F., Bosch, M., Martin-Ibanez, R., Munoz, M. T., Mengod, G., Ernfors, P., and Alberch, J. (2004) Brain-derived neurotrophic factor regulates the onset and severity of motor dysfunction associated with enkephalinergic neuronal degeneration in Huntington’s disease, J. Neurosci., 24, 7727–7739.CrossRefPubMedGoogle Scholar
  81. 81.
    Strand, A. D., Baquet, Z. C., Aragaki, A. K., Holmans, P., Yang, L., Cleren, C., Beal, M. F., Jones, L., Kooperberg, C., Olson, J. M., and Jones, K. R. (2007) Expression profiling of Huntington’s disease models suggests that brain-derived neurotrophic factor depletion plays a major role in striatal degeneration, J. Neurosci., 27, 11758–11768.CrossRefPubMedGoogle Scholar
  82. 82.
    Sanchez, I., Xu, C.-J., Juo, P., Kakizaka, A., Blenis, J., and Yuan, J. (1999) Caspase-8 is required for cell death induced by expanded polyglutamine repeats, Neuron, 22, 623–633.CrossRefPubMedGoogle Scholar
  83. 83.
    Dragatsis, I., Levine, M. S., and Zeitlin, S. (2000) Inactivation of Hdh in the brain and testis results in progressive neurodegeneration and sterility in mice, Nat. Genet., 26, 300–306.CrossRefPubMedGoogle Scholar
  84. 84.
    Van Raamsdonk, J. M., Pearson, J., Rogers, D. A., Bissada, N., Vogl, A. W., Hayden, M. R., and Leavitt, B. R. (2005) Loss of wild-type huntingtin influences motor dysfunction and survival in the YAC128 mouse model of Huntington’s disease, Hum. Mol. Genet., 14, 1379–1392.CrossRefPubMedGoogle Scholar
  85. 85.
    Sun, Y., Savanenin, A., Reddy, P. H., and Liu, Y. F. (2001) Polyglutamine-expanded huntingtin promotes sensitization of N-methyl-D-aspartate receptors via post-synaptic density 95, J. Biol. Chem., 276, 24713–24718.CrossRefPubMedGoogle Scholar
  86. 86.
    Francelle, L., Lotz, C., Outeiro, T., Brouillet, E., and Merienne, K. (2017) Contribution of neuroepigenetics to Huntington’s disease, Front. Hum. Neurosci., 11,17.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Coarelli, G., Diallo, A., Thion, M. S., Rinaldi, D., Calvas, F., Boukbiza, O. L., Tataru, A., Charles, P., Tranchant, C., Marelli, C., Ewenczyk, C., Tchikviladze, M., Monin, M. L., Carlander, B., Anheim, M., Brice, A., Mochel, F., Tezenas du Montcel, S., Humbert, S., and Durr, A. (2017) Low cancer prevalence in polyglutamine expansion diseases, Neurology, 88, 1114–1119.CrossRefPubMedGoogle Scholar
  88. 88.
    Sorensen, S. A., Fenger, K., and Olsen, J. H. (1999) Significantly lower incidence of cancer among patients with Huntington’s disease: an apoptotic effect of an expanded polyglutamine tract? Cancer, 86, 1342–1346.CrossRefPubMedGoogle Scholar
  89. 89.
    Mestre, T. A., and Sampaio, C. (2017) Huntington’s disease: linking pathogenesis to the development of experimental therapeutics, Curr. Neurol. Neurosci. Rep., 17, 18.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. N. Illarioshkin
    • 1
    Email author
  • S. A. Klyushnikov
    • 1
    • 2
  • V. A. Vigont
    • 2
  • Yu. A. Seliverstov
    • 1
  • E. V. Kaznacheyeva
    • 2
  1. 1.Research Center of NeurologyMoscowRussia
  2. 2.Institute of CytologyRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations