Advertisement

Biochemistry (Moscow)

, Volume 83, Issue 9, pp 1018–1029 | Cite as

Role of microRNA (miRNA) and Viroids in Lethal Diseases of Plants and Animals. Potential Contribution to Human Neurodegenerative Disorders

  • L. Cong
  • Y. Zhao
  • A. I. Pogue
  • W. J. LukiwEmail author
Review
  • 42 Downloads

Abstract

Both plants and animals have adopted a common strategy of using ~18–25-nucleotide small non-coding RNAs (sncRNAs), known as microRNAs (miRNAs), to transmit DNA-based epigenetic information. miRNAs (i) shape the total transcriptional output of individual cells; (ii) regulate and fine-tune gene expression profiles of cell clusters, and (iii) modulate cell phenotype in response to environmental stimuli and stressors. These miRNAs, the smallest known carriers of geneencoded post-transcriptional regulatory information, not only regulate cellular function in healthy cells but also act as important mediators in the development of plant and animal diseases. Plants possess their own specific miRNAs; at least 32 plant species have been found to carry infectious sncRNAs called viroids, whose mechanisms of generation and functions are strikingly similar to those of miRNAs. This review highlights recent remarkable and sometimes controversial findings in miRNA signaling in plants and animals. Special attention is given to the intriguing possibility that dietary miRNAs and/or sncRNAs can function as mobile epigenetic and/or evolutionary linkers between different species and contribute to both intra- and interkingdom signaling. Wherever possible, emphasis has been placed on the relevance of these miRNAs to the development of human neurodegenerative diseases, such as Alzheimer’s disease. Based on the current available data, we suggest that such xeno-miRNAs may (i) contribute to the beneficial properties of medicinal plants, (ii) contribute to the negative properties of disease-causing or poisonous plants, and (iii) provide cross-species communication between kingdoms of living organisms involving multiple epigenetic and/or potentially pathogenic mechanisms associated with the onset and pathogenesis of various diseases.

Keywords

Alzheimer’s disease inflammatory neurodegeneration microRNA plant miRNAs small non-coding RNAs viroids 

Abbreviations

AD

Alzheimer’s disease

AMD

age-related macular degeneration

CNS

central nervous system

LPS

lipopolysaccharide

miRNA

microRNA

mRNA

messenger RNA

nt

nucleotide

sncRNA

small non-coding RNA

3′-UTR

3′-untranslated region

vsRNA

viroid-specific sncRNA

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Moran, Y., Agron, M., Praher, D., and Technau, U. (2017) The evolutionary origin of plant and animal microRNAs, Nat. Ecol. Evol., 1,27.PubMedCrossRefGoogle Scholar
  2. 2.
    Lukiw, W. J., Handley, P., Wong, L., and Crapper McLachlan, D. R. (1992) BC200 RNA in normal human neocortex, non-Alzheimer dementia (NAD), and senile dementia of the Alzheimer type (AD), Neurochem. Res., 17, 591–597.PubMedCrossRefGoogle Scholar
  3. 3.
    Axtell, M. J., Westholm, J. O., and Lai, E. C. (2011) Vive la difference: biogenesis and evolution of microRNAs in plants and animals, Genome Biol., 12,221.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Pogue, A. I., Clement, C., Hill, J. M., and Lukiw, W. J. (2014) Evolution of microRNA (miRNA) structure and function in plants and animals: relevance to aging and disease, J. Aging Sci., 2,119.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Djami-Tchatchou, A. T., Sanan-Mishra, N., Ntushelo, K., and Dubery, I. A. (2017) Functional roles of microRNAs in agronomically important plants-potential as targets for crop improvement and protection, Front. Plant Sci., 8,378.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Zhao, Y., Cong, L., and Lukiw, W. J. (2018) Plant and animal microRNAs (miRNAs) and their potential for inter-kingdom communication, Cell. Mol. Neurobiol., 38, 133–140.PubMedCrossRefGoogle Scholar
  7. 7.
    Reinhart, B. J., Weinstein, E. G., Rhoades, M. W., Bartel, B., and Bartel, D. P. (2002) MicroRNAs in plants, Genes Dev., 16, 1616–1626.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Perge, P., Nagy, Z., Decmann, A., Igaz, I., and Igaz, P. (2017) Potential relevance of microRNAs in inter-species epigenetic communication, and implications for disease pathogenesis, RNA Biol., 14, 391–401.PubMedCrossRefGoogle Scholar
  9. 9.
    Pirro, S., Minutolo, A., Galgani, A., Potesta, M., Colizzi, V., and Montesano, C. (2016) Bioinformatics prediction and experimental validation of microRNAs involved in cross-kingdom interaction, J. Comput. Biol., 23, 976–989.PubMedCrossRefGoogle Scholar
  10. 10.
    Guo, H., Ingolia, N. T., Weissman, J. S., and Bartel, D. P. (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels, Nature, 466, 835–840.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Liang, H., Huang, L., Cao, J., Zen, K., Chen, X., and Zhang, C. Y. (2012) Regulation of mammalian gene expression by exogenous microRNAs, Wiley Interdiscip. Rev. RNA, 3, 733–742.PubMedCrossRefGoogle Scholar
  12. 12.
    Daros, J. A., Elena, S. F., and Flores, R. (2006) Viroids: an Ariadne’s thread into the RNA labyrinth, EMBO Rep., 7, 593–598.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Ding, B., and Wang, Y. (2009) Viroids: uniquely simple and tractable models to elucidate regulation of cell-to-cell trafficking of RNA, DNA Cell Biol., 28, 51–56.PubMedCrossRefGoogle Scholar
  14. 14.
    Pogue, A. I., Hill, J. M., and Lukiw, W. J. (2014) MicroRNA (miRNA): sequence and stability, viroid-like properties, and disease association in the CNS, Brain Res., 1584, 73–79.PubMedCrossRefGoogle Scholar
  15. 15.
    Arteaga-Vazquez, M., Caballero-Perez, J., and Vielle-Calzada, J. P. (2006) A family of microRNAs present in plants and animals, Plant Cell, 18, 3355–3369.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Zhao, Y., and Lukiw, W. J. (2018) Microbiome-mediated upregulation of microRNA-146a in sporadic Alzheimer’s disease, Front. Neurol., 9,145.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Marshall, M. (2018) Timeline: the evolution of life, https://doi.org/www.newscientist.com/article/dn17453-timeline-the-evolution-of-life/(last accessed 11 June 2018).Google Scholar
  18. 18.
    Wang, D. Y., Kumar, S., and Hedges, S. B. (1999) Divergence time estimates for the earl history of animal phyla and the origin of plants, animals and fungi, Proc. Biol. Sci., 266, 163–171.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Dato, S., Rose, G., Crocco, P., Monti, D., Garagnani, P., Franceschi, C., and Passarino, G. (2017) The genetics of human longevity: an intricacy of genes, environment, culture and microbiome, Mech. Ageing Dev., 165, 147–155.PubMedCrossRefGoogle Scholar
  20. 20.
    Vaucheret, H., and Chupeau, Y. (2012) Ingested plant miRNAs regulate gene expression in animals, Cell Res., 22, 3–5.PubMedCrossRefGoogle Scholar
  21. 21.
    Wagner, A. E., Piegholdt, S., Ferraro, M., Pallauf, K., and Rimbach, G. (2015) Food derived microRNAs, Food Funct., 6, 714–718.PubMedCrossRefGoogle Scholar
  22. 22.
    Lagos-Quintana, M., Rauhut, R., Lendeckel, W., and Tuschl, T. (2001) Identification of novel genes coding for small expressed RNAs, Science, 294, 853–858.PubMedCrossRefGoogle Scholar
  23. 23.
    Liang, H., Zen, K., Zhang, J., Zhang, C. Y., and Chen, X. (2013) New roles for microRNAs in cross-species communication, RNA Biol., 10, 367–370.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Bartel, D. P. (2009) MicroRNAs: target recognition and regulatory functions, Cell, 136, 215–233.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Carthew, R. W., and Sontheimer, E. J. (2009) Origins and mechanisms of miRNAs and siRNAs, Cell, 136, 642–655.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    UniProt Database; https://doi.org/www.uniprot.org/uniprot/Q9UPY3 (last accessed 11 June 2018).
  27. 27.
    GeneCards microRNA-146a; Human Gene Database; microRNA-146a; Weitzmann Institute, Rehovot Israel; https://doi.org/www.genecards.org/cgi-bin/carddisp.pl?gene=MIR146A (last accessed 11 June 2018).
  28. 28.
    National Center for Biological Information(NCBI); Bethesda MD, USA; Homo sapiens chromosome 5, GRCh38. p. 12. Primary Assembly. https://doi.org/www.ncbi.nlm.nih.gov/nuccore/NC_000005.10?strand=1&report=genbank&from=160485352&to=160485450 (last accessed 11 June 2018).
  29. 29.
    Idda, M. L., Munk, R., Abdelmohsen, K., and Gorospe, M. (2018) Noncoding RNAs in Alzheimer’s disease, Wiley Interdiscip. Rev. RNA, 9, doi: 10.1002/wrna.1463.Google Scholar
  30. 30.
    Miya Shaik, M., Tamargo, I. A., Abubakar, M. B., Kamal, M. A., Greig, N. H., and Gan, S. H. (2018) The role of microRNAs in Alzheimer’s disease and their therapeutic potentials, Genes (Basel), 9, E174.CrossRefGoogle Scholar
  31. 31.
    Lukiw, W. J. (2007) MicroRNA speciation in fetal, adult and Alzheimer’s disease hippocampus, Neuroreport, 18, 297–300.Google Scholar
  32. 32.
    Lukiw, W. J. (2012) Evolution and complexity of microRNA in the human brain, Front. Genet., 3, 166–175.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Zhao, Y., Pogue, A. I., and Lukiw, W. J. (2015) MicroRNA (miRNA) signaling in the human CNS in sporadic Alzheimer’s disease-novel and unique pathological features, Int. J. Mol. Sci., 16, 30105–30116.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Hill, J. M., and Lukiw, W. J. (2014) Comparing miRNAs and viroids; highly conserved molecular mechanisms for the transmission of genetic information, Front. Cell. Neurosci., 8,45.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Hill, J. M., and Lukiw, W. J. (2016) MicroRNA (miRNA)-mediated pathogenetic signaling in Alzheimer’s disease (AD), Neurochem. Res., 41, 96–100.PubMedCrossRefGoogle Scholar
  36. 36.
    Lukiw, W. J. (2012) Evolution and complexity of micro RNA in the human brain, Front. Genet., 3,166.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Taganov, K. D., Boldin, M. P., Chang, K.-J., and Baltimore, D. (2006) NF-kB-dependent induction of miRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses, Proc. Natl. Acad. Sci. USA, 103, 12481–12486.PubMedCrossRefGoogle Scholar
  38. 38.
    Sethi, P., and Lukiw, W. J. (2009) Micro-RNA abundance and stability in human brain: specific alterations in Alzheimer’s disease temporal lobe neocortex, Neurosci. Lett., 459, 100–104.PubMedCrossRefGoogle Scholar
  39. 39.
    Mann, M., Mehta, A., Zhao, J. L., Lee, K., Marinov, G. K., Garcia-Flores, Y., and Baltimore, D. (2017) An NF-kB-microRNA regulatory network tunes macrophage inflammatory responses, Nat. Commun., 8,851.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Zhao, Y., and Lukiw, W. J. (2018) Bacteroidetes neurotoxins and inflammatory neurodegeneration, Mol. Neurobiol., doi: 10.1007/s12035-018-1015-y.Google Scholar
  41. 41.
    Maudet, C., Mano, M., and Eulalio, A. (2014) MicroRNAs in the interaction between host and bacterial pathogens, FEBS Lett., 588, 4140–4147.PubMedCrossRefGoogle Scholar
  42. 42.
    Lukiw, W. J., Cui, J. G., Yuan, L. Y., Bhattacharjee, P. S., Corkern, M., Clement, C., Kammerman, E. M., Ball, M. J., Zhao, Y., Sullivan, P. M., and Hill, J. M. (2010) Acyclovir or Aβ42 peptides attenuate HSV-1-induced miRNA-146a levels in human primary brain cells, Neuroreport, 21, 922–927.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Jaber, V., Zhao, Y., and Lukiw, W. J. (2017) Alterations in micro RNA-messenger RNA (miRNA-mRNA) coupled signaling networks in sporadic Alzheimer’s disease (AD) hippocampal CA1, J. Alzheimers Dis. Parkinsonism, 7,312.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Lau, N. C., Lim, L. P., Weinstein, E. G., and Bartel, D. P. (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans, Science, 294, 858–862.PubMedCrossRefGoogle Scholar
  45. 45.
    Lee, R. C., and Ambros, V. (2001) An extensive class of small RNAs in Caenorhabditis elegans, Science, 294, 862–864.PubMedCrossRefGoogle Scholar
  46. 46.
    Prasad, K. N. (2017) Oxidative stress and pro-inflammatory cytokines may act as one of the signals for regulating microRNAs expression in Alzheimer’s disease, Mech. Ageing Dev., 162, 63–71.PubMedCrossRefGoogle Scholar
  47. 47.
    Previdi, M. C., Carotenuto, P., Zito, D., Pandolfo, R., and Braconi, C. (2017) Noncoding RNAs as novel biomarkers in pancreatic cancer: what do we know? Future Oncol., 13, 443–453.PubMedCrossRefGoogle Scholar
  48. 48.
    Alural, B., Genc, S., and Haggarty, S. J. (2017) Diagnostic and therapeutic potential of microRNAs in neuropsychiatric disorders: past, present, and future, Prog. Neuropsychopharmacol. Biol. Psychiatry, 73, 87–103.PubMedCrossRefGoogle Scholar
  49. 49.
    Fabris, L., and Calin, G. A. (2016) Circulating free xeno-microRNAs-the new kids on the block, Mol. Oncol., 10, 503–508.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Ding, Y., Sun, X., and Shan, P. F. (2017) MicroRNAs and cardiovascular disease, Biomed Res. Int., doi: 10.1155/2017/4080364.Google Scholar
  51. 51.
    Adams, M. J., and Carstens, E. B. (2012) Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses, Arch. Virol., 157, 1411–1422.PubMedCrossRefGoogle Scholar
  52. 52.
    Diener, T. O. (2003) Discovering viroids-a personal perspective, Nat. Rev. Microbiol., 1, 75–80.PubMedCrossRefGoogle Scholar
  53. 53.
    Navarro, B., Gisel, A., Rodio, M. E., Delgado, S., Flores R., and Di Serio, F. (2012) Viroids: how to infect a host and cause disease without encoding proteins, Biochimie, 94, 1474–1480.PubMedCrossRefGoogle Scholar
  54. 54.
    Muller, S., and Appel, B. (2016) In vitro circularization of RNA, RNA Biol., 14, 1018–1027.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Adams, M. J., Lefkowitz, E. J., King, A. M. Q., Harrach, B., Harrison, R. L., Knowles, N. J., Kropinski, A. M., Krupovic, M., Kuhn, J. H., Mushegian, A. R., Nibert, M., Sabanadzovic, S., Sanfaçon, H., Siddell, S. G., Simmonds, P., Varsani, A., Zerbini, F. M., Gorbalenya, A. E., and Davison, A. J. (2017) Changes to taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses, Arch Virol., 162, 2505–2538.PubMedCrossRefGoogle Scholar
  56. 56.
    Fox, A., and Mumford, R. A. (2017) Plant viruses and viroids in the United Kingdom: an analysis of first detections and novel discoveries from 1980 to 2014, Virus Res., 241, 10–18.PubMedCrossRefGoogle Scholar
  57. 57.
    Hammann, C., and Steger, G. (2012) Viroid-specific small RNA in plant disease, RNA Biol., 9, 809–819.PubMedCrossRefGoogle Scholar
  58. 58.
    Hill, J. M., Zhao, Y., Bhattacharjee, S., and Lukiw, W. J. (2014) miRNAs and viroids utilize common strategies in genetic signal transfer, Front. Mol. Neurosci., 7,10.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Zhang, B., Pan, X., Cobb, G. P., and Anderson, T. A. (2006) Plant microRNA: a small regulatory molecule with big impact, Dev. Biol., 289, 3–16.PubMedCrossRefGoogle Scholar
  60. 60.
    Chen, X., Liang, H., Zhang, J., Zen, K., and Zhang, C. Y. (2012) Secreted microRNAs: a new form of intercellular communication, Trends Cell Biol., 22, 125–132.PubMedCrossRefGoogle Scholar
  61. 61.
    Chellappan, P., Vanitharani, R., and Fauquet, C. M. (2005) MicroRNA-binding viral protein interferes with Arabidopsis development, Proc. Natl. Acad. Sci. USA, 102, 10381–10386.PubMedCrossRefGoogle Scholar
  62. 62.
    Budak, H., and Akpinar, B. A. (2015) Plant miRNAs: biogenesis, organization and origins, Funct. Integr. Genomics, 15, 523–531.PubMedCrossRefGoogle Scholar
  63. 63.
    Millar, A. A., and Waterhouse, P. M. (2005) Plant and animal microRNAs: similarities and differences, Funct. Integr. Genomics, 5, 129–135.PubMedCrossRefGoogle Scholar
  64. 64.
    Perkel, J. M. (2013) Assume nothing: the tale of circular RNA, Biotechniques, 55, 55–57.PubMedGoogle Scholar
  65. 65.
    Lukiw, W. J., and Bazan, N. G. (1997) Cyclooxygenase 2 RNA message abundance, stability, and hypervariability in sporadic Alzheimer neocortex, J. Neurosci. Res., 50, 937–945.PubMedGoogle Scholar
  66. 66.
    Calin, G. A., Dumitru, C. D., Shimizu, M., Bichi, R., Zupo, S., Noch, E., Aldler, H., Rattan, S., Keating, M., Rai, K., Rassenti, L., Kipps, T., Negrini, M., Bullrich, F., and Croce, C. M. (2002) Frequent deletions and down-regulation of micro-RNA genes miRNA-15 and miRNA-16 at 13q14 in chronic lymphocytic leukemia, Proc. Natl. Acad. Sci. USA, 99, 15524–15529.PubMedCrossRefGoogle Scholar
  67. 67.
    Mirzaei, H., Fathullahzadeh, S., Khanmohammadi, R., Darijani, M., Momeni, F., Masoudifar, A., Goodarzi, M., Mardanshah, O., Stenvang, J., Jaafari, M. R., and Mirzaei, H. R. (2018) State of the art in microRNA as diagnostic and therapeutic biomarkers in chronic lymphocytic leukemia, J. Cell. Physiol., 233, 888–900.PubMedCrossRefGoogle Scholar
  68. 68.
    Millan, M. J. (2017) Linking deregulation of non-coding RNA to the core pathophysiology of Alzheimer’s disease: an integrative review, Prog. Neurobiol., 156, 1–68.PubMedCrossRefGoogle Scholar
  69. 69.
    Recabarren, D., and Alarcon, M. (2017) Gene networks in neurodegenerative disorders, Life Sci., 183, 83–97.PubMedCrossRefGoogle Scholar
  70. 70.
    Budak, H., and Zhang, B. (2017) MicroRNAs in model and complex organisms, Funct. Integr. Genomics, 17, 121–124.PubMedCrossRefGoogle Scholar
  71. 71.
    Chen, X., Liang, H., Zhang, J., Zen, K., and Zhang, C. Y. (2012) Horizontal transfer of microRNAs: molecular mechanisms and clinical applications, Protein Cell, 3, 28–37.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Igaz, P., Nagy, Z., Vasarhelyi, B., Buzas, E., Falus, A., and Racz, K. (2012) Potential role for microRNAs in interindividual and inter-species communication, Orv. Hetil., 153, 1647–1650.PubMedCrossRefGoogle Scholar
  73. 73.
    Luo, Y., Wang, P., Wang, X., Wang, Y., Mu, Z., Li, Q., Fu, Y., Xiao, J., Li, G., Ma, Y., Gu, Y., Jin, L., Ma, J., Tang, Q., Jiang, A., Li, X., and Li, M. (2017) Detection of dietetically absorbed maize-derived microRNAs in pigs, Sci. Rep., 7,645.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    MirBASE release 21.0; microRNA database; University of Manchester, Manchester UK; https://doi.org/www.mirbase.org/cgi-bin/mirna_summary.pl?org=ath (last accessed 11 June 2018).
  75. 75.
    Zhang, H., Li, Y., Liu, Y., Liu, H., Wang, H., Jin, W., Zhang, Y., Zhang, C., and Xu, D. (2016) Role of plant microRNA in cross-species regulatory networks of humans, BMC Syst. Biol., 10,60.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Liang, H., Zhang, S., Fu, Z., Wang, Y., Wang, N., Liu, Y., Zhao, C., Wu, J., Hu, Y., Zhang, J., Chen, X., Zen, K., and Zhang, C. Y. (2015) Effective detection and quantification of dietetically absorbed plant microRNAs in human plasma, J. Nutr. Biochem., 26, 505–512.PubMedCrossRefGoogle Scholar
  77. 77.
    Walzer, K. A., and Chi, J. T. (2017) Trans-kingdom small RNA transfer during host-pathogen interactions: the case of P. falciparum and erythrocytes, RNA Biol., 14, 442–449.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Hoy, A. M., and Buck, A. H. (2012) Extracellular small RNAs: what, where, why? Biochem. Soc. Trans., 40, 886–890.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Makarova, J. A., Shkurnikov, M. U., Wicklein, D., Lange, T., Samatov, T. R., Turchinovich, A. A., and Tonevitsky, A. G. (2016) Intracellular and extracellular microRNA: an update on localization and biological role, Prog. Histochem. Cytochem., 51, 33–49.PubMedCrossRefGoogle Scholar
  80. 80.
    Xie, W., Weng, A., and Melzig, M. F. (2016) MicroRNAs as new bioactive components in medicinal plants, Planta Med., 82, 1153–1162.PubMedCrossRefGoogle Scholar
  81. 81.
    Turchinovich, A., Tonevitsky, A. G., and Burwinkel, B. (2016) Extracellular miRNA: a collision of two paradigms, Trends Biochem. Sci., 41, 883–892.PubMedCrossRefGoogle Scholar
  82. 82.
    Rutter, B. D., and Innes, R. W. (2018) Extracellular vesicles as key mediators of plant-microbe interactions, Curr. Opin. Plant Biol., 44, 16–22.PubMedCrossRefGoogle Scholar
  83. 83.
    Malloci, M., Perdomo, L., Veerasamy, M., Andriantsitohaina, R., Simard, G., and Martinez, M. C. (2018) Extracellular vesicles: mechanisms in human health and disease, Antioxid. Redox Signal., doi: 10.1089/ars.2017.7265.Google Scholar
  84. 84.
    Alexandrov, P. N., Dua, P., Hill, J. M., Bhattacharjee, S., Zhao, Y., and Lukiw, W. J. (2012) microRNA (miRNA) speciation in Alzheimer’s disease (AD) cerebrospinal fluid (CSF) and extracellular fluid (ECF), Int. J. Biochem. Mol. Biol., 3, 365–373.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Andreeva, T. V., Lukiw, W. J., and Rogaev, E. I. (2017) Biological basis for amyloidogenesis in Alzheimer’s disease, Biochemistry (Moscow), 82, 122–139.CrossRefGoogle Scholar
  86. 86.
    MiRBase; microRNA database; University of Manchester, Manchester UK; https://doi.org/www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000477 (last accessed 11 June 2018).
  87. 87.
    Genecards microRNA-146a; Weitzmann Institute, Rehovot Israel; https://doi.org/www.genecards.org/cgi-bin/carddisp.pl?gene=MIR146A (last accessed 11 June 2018).
  88. 88.
    Li, Y. Y., Alexandrov, P. N., Pogue, A. I., Zhao, Y., Bhattacharjee, S., and Lukiw, W. J. (2012) MiRNA-155 upregulation and complement factor H deficits in Down’s syndrome, Neuroreport, 23, 168–173.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Liang, H., Dong, Z., Liu, J. F., Chuang, W., Gao, L. Z., and Ren, Y. G. (2017) Targeting miRNA-155 suppresses proliferation and induces apoptosis of HL-60 cells by targeting Slug/PUMA signal, Histol. Histopathol., 32, 899–907.PubMedGoogle Scholar
  90. 90.
    Chen, Y., Wang, G., Liu, Z., Wang, S., and Wang, Y. (2016) Glucocorticoids regulate the proliferation of T cells via miRNA-155 in septic shock, Exp. Ther. Med., 12, 3723–3728.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Melnik, B. C., John, S. M., and Schmitz, G. (2014) Milk: an exosomal microRNA transmitter promoting thymic regulatory T cell maturation preventing the development of atopy? J. Transl. Med., 12,43.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Shriram, V., Kumar, V., Devarumath, R. M., Khare, T. S., and Wani, S. H. (2016) MicroRNAs as potential targets for abiotic stress tolerance in plants, Front. Plant Sci., 7,817.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Van Roosbroeck, K., Fanini, F., Setoyama, T., Ivan, C., Rodriguez-Aguayo, C., Fuentes-Mattei, E., Xiao, L., Vannini, I., Redis, R. S., D’Abundo, L., Zhang, X., Nicoloso, M. S., Rossi, S., Gonzalez-Villasana, V., Rupaimoole, R., Ferracin, M., Morabito, F., Neri, A., Ruvolo, P. P., Ruvolo, V. R., Pecot, C. V., Amadori, D., Abruzzo, L., Calin, S., Wang, X., You, M. J., Ferrajoli, A., Orlowski, R., Plunkett, W., Lichtenberg, T. M., Davuluri, R. V., Berindan-Neagoe, I., Negrini, M., Wistuba, I. I., Kantarjian, H. M., Sood, A. K., Lopez-Berestein, G., Keating, M. J., Fabbri, M., and Calin, G. A. (2017) Combining anti-miRNA-155 with chemotherapy for the treatment of lung cancers, Clin. Cancer Res., 23, 2891–2904.PubMedCrossRefGoogle Scholar
  94. 94.
    Wong, L. L., Wang, J., Liew, O. W., Richards, A. M., and Chen, Y. T. (2016) MicroRNA and heart failure, Int. J. Mol. Sci., 17,502.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Yan, L., Hu, F., Yan, X., Wei, Y., Ma, W., Wang, Y., Lu, S., and Wang, Z. (2016) Inhibition of microRNA-155 ameliorates experimental autoimmune myocarditis by modulating Th17/Treg immune response, J. Mol. Med. (Berlin), 94, 1063–1079.CrossRefGoogle Scholar
  96. 96.
    Zhao, Y., Pogue, A. I., and Lukiw, W. J. (2015) MicroRNA (miRNA) signaling in the human CNS in sporadic Alzheimer’s disease (AD)-novel and unique pathological features, Int. J. Mol. Sci., 16, 30105–30116.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Zhao, Y., Jaber, V., Percy, M. E., and Lukiw, W. J. (2017) A microRNA cluster (let-7c, miRNA-99a, miRNA-125b, miRNA-155 and miRNA-802) encoded at chr21q21.1-chr21q21.3 and the phenotypic diversity of Down’s syndrome (DS; trisomy 21), J. Nat. Sci., 3, e446.PubMedPubMedCentralGoogle Scholar
  98. 98.
    Pogue, A. I., and Lukiw, W. J. (2018) Up-regulated proinflammatory microRNAs (miRNAs) in Alzheimer’s disease (AD) and age-related macular degeneration (AMD), Cell. Mol. Neurobiol., 38, 1021–1031.PubMedCrossRefGoogle Scholar
  99. 99.
    Barker, K. R., Lu, Z., Kim, H., Zheng, Y., Chen, J., Conroy, A. L., Hawkes, M., Cheng, H. S., Njock, M. S., Fish, J. E., Harlan, J. M., Lopez, J. A., Liles, W. C., and Kain, K. C. (2017) MiRNA-155 modifies inflammation, endothelial activation and blood-brain barrier dysfunction in cerebral malaria, Mol. Med., 2,23.Google Scholar
  100. 100.
    MiRBase; microRNA database; University of Manchester, Manchester, UK; https://doi.org/www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000477 (last accessed 11 June 2018).
  101. 101.
    Genecards microRNA-155; Weitzmann Institute, Rehovot Israel; https://doi.org/www.genecards.org/cgi-bin/carddisp.pl?gene=MIR155 (last accessed 11 June 2018).
  102. 102.
    Banerjee, N., Talcott, S., Safe, S., and Mertens-Talcott, S. U. (2012) Cytotoxicity of pomegranate polyphenolics in breast cancer cells in vitro and vivo: potential role of miRNA-27a and miRNA-155 in cell survival and inflammation, Breast Cancer Res. Treat., 136, 21–34.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    De Figueiredo, S. M., de Freitas, M. C. D., de Oliveira, D. T., de Miranda, M. B., Vieira-Filho, S. A., and Caligiorne, R. B. (2017) Biological activities of red propolis: a review, Recent Pat. Endocr. Metab. Immune Drug Discov., 11, 3–12; doi: 10.2174/1872214812666180223120316.PubMedGoogle Scholar
  104. 104.
    Conti, B. J., Santiago, K. B., Cardoso, E. O., Freire, P. P., Carvalho, R. F., Golim, M. A., and Sforcin, J. M. (2016) Propolis modulates miRNAs involved in TLR-4 pathway, NF-kB activation, cytokine production and in the bactericidal activity of human dendritic cells, J. Pharm. Pharmacol., 68, 1604–1612.PubMedCrossRefGoogle Scholar
  105. 105.
    Alexandrov, P., Cui, J. G., Zhao, Y., and Lukiw, W. J. (2005) 24S-hydroxycholesterol induces inflammatory gene expression in primary human neural cells, Neuroreport, 16, 909–913.PubMedCrossRefGoogle Scholar
  106. 106.
    Bagyinszky, E., Giau, V. V., Shim, K., Suk, K., An, S. S. A., and Kim, S. (2017) Role of inflammatory molecules in the Alzheimer’s disease progression and diagnosis, J. Neurol. Sci., 376, 242–254.PubMedCrossRefGoogle Scholar
  107. 107.
    Hill, J. M., Pogue, A. I., and Lukiw, W. J. (2015) Pathogenic microRNAs common to brain and retinal degeneration; recent observations in Alzheimer’s disease and age-related macular degeneration, Front. Neurol., 6,232.PubMedPubMedCentralGoogle Scholar
  108. 108.
    MiRBase; microRNA database; University of Manchester; https://doi.org/www.mirbase.org/cgi-bin/mirna_summary.pl?fam=MIPF0000081 (last accessed 11 June 2018).
  109. 109.
    Hu, H., Rashotte, A. M., Singh, N. K., Weaver, D. B., Goertzen, L. R., Singh, S. R., and Locy, R. D. (2015) The complexity of posttranscriptional small RNA regulatory networks revealed by in silico analysis of Gossypium arboreum L. leaf, flower and boll small regulatory RNAs, PLoS One, 10, e0127468.PubMedGoogle Scholar
  110. 110.
    Zhang, L., Hou, D., Chen, X., Li, D., Zhu, L., Zhang, Y., Li, J., Bian, Z., Liang, X., Cai, X., Yin, Y., Wang, C., Zhang, T., Zhu, D., Zhang, D., Xu, J., Chen, Q., Ba, Y., Liu, J., Wang, Q., Chen, J., Wang, J., Wang, M., Zhang, Q., Zhang, J., Zen, K., and Zhang, C. Y. (2012) Exogenous plant miRNA-168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by miRNA, Cell Res., 22, 107–126.PubMedCrossRefGoogle Scholar
  111. 111.
    New Scientist-Timeline: The evolution of life; https://doi.org/www.newscientist.com/article/dn17453-timeline-the-evolution-of-life/ (last accessed 11 June 2018).
  112. 112.
    Rosenberg, E., and Zilber-Rosenberg, I. (2016) Microbes drive evolution of animals and plants: the hologenome concept, MBio, 7, e01395.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Lukiw, W. J. (2004) Gene expression profiling in fetal, aged, and Alzheimer hippocampus: a continuum of stress-related signaling, Neurochem. Res., 29, 1287–1297.PubMedCrossRefGoogle Scholar
  114. 114.
    Cui, J. G., Zhao, Y., and Lukiw, W. J. (2005) Isolation of high spectral quality RNA using run-on gene transcription; application to gene expression profiling of human brain, Cell. Mol. Neurobiol., 25, 789–794.PubMedCrossRefGoogle Scholar
  115. 115.
    Clement, C., Hill, J. M., Dua, P., Culicchia, F., and Lukiw, W. J. (2016) Analysis of RNA from Alzheimer’s disease post-mortem brain tissues, Mol. Neurobiol., 53, 1322–1328.PubMedCrossRefGoogle Scholar
  116. 116.
    Barbash, S., and Sakmar, T. P. (2017) Length-dependent gene mis-expression is associated with Alzheimer’s disease progression, Sci. Rep., 7,190.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Kang, W., Bang-Berthelsen, C. H., Holm, A., Houben, A. J., Muller, A. H., Thymann, T., Pociot, F., Estivill, X., and Friedlander, M. R. (2017) Survey of 800+ data sets from human tissue and body fluid reveals xenomiRs are likely artifacts, RNA, 23, 433–445.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Lukasik, A., and Zielenkiewicz, P. (2016) Plant microRNAs-novel players in natural medicine? Int. J. Mol. Sci., 18, E9.PubMedCrossRefGoogle Scholar
  119. 119.
    Kwakye, G. F., Jimenez, J., Jimenez, J. A., and Aschner, M. (2018) Atropa belladonna neurotoxicity: implications to neurological disorders, Food Chem. Toxicol., 116, 346–353.PubMedCrossRefGoogle Scholar
  120. 120.
    University of California Phylogeny Wing: The Phylogeny of Life; https://doi.org/www.ucmp.berkeley.edu/alllife/threedomains.html (last accessed 11 June 2018).
  121. 121.
    Astrobiology at NASA-Life in the Universe; The three domains of life; https://doi.org/astrobiology.nasa.gov/news/the-three-domains-of-life/(last accessed 11 June 2018).
  122. 122.
    Sciencing: Characteristics of the six kingdoms of organisms; https://doi.rog/sciencing.com/characteristics-six-kingdoms-organisms-8242194.html) (last accessed 11 June 2018).
  123. 123.
    Flores, R., Navarro, B., Kovalskaya, N., Hammond, R. W., and Di Serio, F. (2017) Engineering resistance against viroids, Curr. Opin. Virol., 26, 1–7.PubMedCrossRefGoogle Scholar
  124. 124.
    Lukasik, A., and Zielenkiewicz, P. (2014) In silico identification of plant miRNAs in mammalian breast milk exo-somes-a small step forward? PLoS One, 9, e99963.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Yu, Y., Jia, T., and Chen, X. (2017) The “how” and “where” of plant microRNAs, New Phytol., 216, 1002–1017.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Chen, X., Xie, D., Zhao, Q., and You, Z. H. (2017) MicroRNAs and complex diseases: from experimental results to computational models, Brief. Bioinform., doi: 10.1093/bib/bbx130.Google Scholar
  127. 127.
    Moran, Y., Agron, M., Praher, D., and Technau, U. (2017) The evolutionary origin of plant and animal microRNAs, Nat. Ecol. Evol., 1,27.PubMedCrossRefGoogle Scholar
  128. 128.
    Zhou, G., Zhou, Y., and Chen, X. (2017) New insight into inter-kingdom communication: horizontal transfer of mobile small RNAs, Front. Microbiol., 8,768.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Singh, N. K. (2017) miRNAs target databases: developmental methods and target identification techniques with functional annotations, Cell. Mol. Life Sci., 74, 2239–2261.PubMedCrossRefGoogle Scholar
  130. 130.
    Bhat, S. S., Jarmolowski, A., and Szweykowska-Kulinska, Z. (2016) MicroRNA biogenesis: epigenetic modifications as another layer of complexity in the microRNA expression regulation, Acta Biochim. Pol., 63, 717–723.PubMedCrossRefGoogle Scholar
  131. 131.
    Mal, C., Aftabuddin, M., and Kundu, S. (2018) IIKmTA: inter- and intra-kingdom miRNA-target analyzer, Interdiscip. Sci., doi: 10.1007/s12539-018-0291-6.Google Scholar
  132. 132.
    Mitchell, P. S., Parkin, R. K., Kroh, E. M., Fritz, B. R., Wyma, S. K., Pogosova-Agadjanyan, E. L., Peterson, A., Noteboom, J., O’Briant, K. C., Allen, A., Lin, D. W., Urban, N., Drescher, C. W., Knudsen, B. S., Stirewalt, D. L., Gentleman, R., Vessella, R. L., Nelson, P. S., Martin, D. B., and Tewari, M. (2008) Circulating microRNAs as stable blood-based markers for cancer detection, Proc. Natl. Acad. Sci. USA, 105, 10513–10518.PubMedCrossRefGoogle Scholar
  133. 133.
    Arroyo, J. D., Chevillet, J. R., Kroh, E. M., Ruf, I. K., Pritchard, C. C., Gibson, D. F., Mitchell, P. S., Bennett, C. F., Pogosova-Agadjanyan, E. L., Stirewalt, D. L., Tait, J. F., and Tewari, M. (2011) Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma, Proc. Natl. Acad. Sci. USA, 108, 5003–5008.PubMedCrossRefGoogle Scholar
  134. 134.
    Turchinovich, A., Weiz, L., Langheinz, A., and Burwinkel, B. (2011) Characterization of extracellular circulating microRNA, Nucleic Acids Res., 39, 7223–7233.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • L. Cong
    • 1
    • 2
  • Y. Zhao
    • 1
    • 3
  • A. I. Pogue
    • 4
  • W. J. Lukiw
    • 1
    • 5
    • 6
    Email author
  1. 1.Neuroscience Center, Louisiana State University School of MedicineLouisiana State University Health Sciences CenterNew OrleansUSA
  2. 2.Department of Neurology, Shengjing HospitalChina Medical UniversityHeping District, Shenyang, Liaoning ProvinceChina
  3. 3.Department of Anatomy and Cell Biology, Louisiana State University School of MedicineLouisiana State University Health Sciences CenterNew OrleansUSA
  4. 4.Alchem Biotech ResearchTorontoCanada
  5. 5.Department NeurologyLouisiana State University School of MedicineNew OrleansUSA
  6. 6.Department OphthalmologyLouisiana State University School of MedicineNew OrleansUSA

Personalised recommendations