Advertisement

Biochemistry (Moscow)

, Volume 83, Issue 8, pp 992–1001 | Cite as

Laccase-Catalyzed Heterocoupling of Dihydroquercetin and p-Aminobenzoic Acid: Effect of the Reaction Product on Cultured Cells

  • M. E. Khlupova
  • O. V. Morozova
  • I. S. Vasil’eva
  • G. P. Shumakovich
  • N. V. Pashintseva
  • L. I. Kovalev
  • S. S. Shishkin
  • V. A. Chertkov
  • A. K. Shestakova
  • A. V. Kisin
  • A. I. YaropolovEmail author
Article

Abstract

Derivatization of the natural flavonoid dihydroquercetin with p-aminobenzoic acid was carried out in an ethyl acetate/citric buffer biphasic system using laccase from the fungus Trametes hirsuta. The main reaction product yield was ~68 mol %. The product was characterized by 1H NMR, 13C NMR, and liquid chromatography-mass spectroscopy, and its structure was elucidated. The reaction product affected viability of cultured human rhabdomyosarcoma cells (RD cell line) in a dose-dependent manner and, therefore, can be of interest to pharmaceutical industry.

Keywords

dihydroquercetin p-aminobenzoic acid laccase biotransformation 1H and 13C NMR spectra proteomics 

Abbreviations

ABA

p-aminobenzoic acid

ABTS

2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)

COSY

proton-proton correlation spectroscopy

DHQ

dihydroquercetin

FBS

fetal bovine serum

HMBC

heteronuclear multiple-bond correlation spectroscopy

HSQC

heteronuclear single quantum correlation spectroscopy

J

spin-spin coupling constant

oligoDHQ

dihydroquercetin oligomer

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hollmann, F., and Arends, I. W. C. E. (2012) Enzyme initiated radical polymerizations, Polymers, 4, 759–793.CrossRefGoogle Scholar
  2. 2.
    Morozova, O. V., Shumakovich, G. P., Gorbacheva, M. A., Shleev, S. V., and Yaropolov, A. I. (2007) “Blue” laccases, Biochemistry (Moscow), 72, 1136–1150.CrossRefGoogle Scholar
  3. 3.
    Witayakran, S., and Ragauskas, A. J. (2009) Synthetic applications of laccase in green chemistry, Adv. Synth. Catal., 351, 1187–1209.CrossRefGoogle Scholar
  4. 4.
    Tatsumi, K., Freyer, A., Minard, R. D., and Bollag, J. M. (1994) Enzymatic coupling of chloroanilines with syringic acid, vanillic acid and protocatechuic acid, Soil Biol. Biochem., 26, 735–742.CrossRefGoogle Scholar
  5. 5.
    Thurston, F. (1994) The structure and function of fungal laccases, Microbiology, 140, 19–26.CrossRefGoogle Scholar
  6. 6.
    Weidmann, A. E. (2012) Dihydroquercetin: more than just an impurity? Eur. J. Pharmacol., 684, 19–26.CrossRefPubMedGoogle Scholar
  7. 7.
    Pantouris, G., and Mowat, Ch. G. (2014) Antitumour agents as inhibitors of tryptophan 2,3–dioxygenase, Biochem. Biophys. Res. Commun., 443, 28–31.CrossRefPubMedGoogle Scholar
  8. 8.
    Polyak, S. J., Morishima, Ch., Lohmann, V., Pal, S., Lee, D. Y. W., Liu, Y., and Graf, T. N. (2010) Identification of hepatoprotective flavonolignans from silymarin, PNAS, 107, 5995–5999.CrossRefPubMedGoogle Scholar
  9. 9.
    Sato, M., Murakami, K., Uno, M., Ikubo, H., Nakagawa, Y., Katayama, S., Akagi, K., and Irie, K. (2013) Structure–activity relationship for (+)–taxifolin isolated from silymarin as an inhibitor of amyloid β aggregation, Biosci. Biotechnol. Biochem., 77, 1100–1103.CrossRefPubMedGoogle Scholar
  10. 10.
    Pozharitskaya, O. N., Karlina, M. V., Shikov, A. N., Kosman, V. M., Makarova, M. N., and Makarov, V. G. (2009) Determination and pharmacokinetic study of taxi–folin in rabbit plasma by high–performance liquid chro–matography, Phytomedicine, 16, 244–251.CrossRefPubMedGoogle Scholar
  11. 11.
    Ma, C., Yang, L., Wang, W., Yang, F., Zhao, C., and Zu, Y. (2012) Extraction of dihydroquercetin from Larix gmelinii with ultrasound–assisted and microwave–assisted alternant digestion, Int. J. Mol. Sci., 13, 8789–8804.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Gorshina, E. S., Rusinova, T. V., Biryukov, V. V., Morozova, O. V., Shleev, S. V., and Yaropolov, A. I. (2006) The dynamics of oxidase activity during cultivation of basidiomycetes from the genus Trametes Fr., Appl. Biochem. Microbiol., 42, 558–563.CrossRefGoogle Scholar
  13. 13.
    Khlupova, M., Vasil’eva, I., Shumakovich, G., Morozova, O., Chertkov, V., Shestakova, A., Kisin, A., and Yaropolov, A. (2016) Laccase–mediated biotransformation of dihydro–quercetin (taxifolin), J. Mol. Catal. B: Enzymatic, 123, 62–66.CrossRefGoogle Scholar
  14. 14.
    Lisitskaya, K. V., Sokueva, N. A., Malysheva, Yu. G., Ivanov, A. V., Shishkin, S. S., and Syatkin, S. P. (2013) Identification of the functional activity of synthetic polyamine analogues using a biotest system based on high–ly proliferating cultured human cells, Appl. Biochem. Microbiol., 49, 100–105.CrossRefGoogle Scholar
  15. 15.
    Kovalyova, M. A., Kovalyov, L. I., Toropygin, I. Yu., Shigeev, S. V., Ivanov, A. V., and Shishkin, S. S. (2009) Proteomic analysis of human skeletal muscle (m. vastus lateralis) proteins: identification of 89 gene expression prod–ucts, Biochemistry (Moscow), 74, 1239–1252.CrossRefGoogle Scholar
  16. 16.
    Pashintseva, N. V., Shishkin, S. S., Lisitskaya, K. V., Kovalev, L. I., Kovaleva, M. A., Eryomina, L. S., Kamenikhina, I. A., Novikova, L. A., and Sadykhov, E. G. (2016) Study of splicing factor, proline–and glutamine–rich by proteomic techniques in human malignant and nonma–lignant cell lines, Protein Peptide Lett., 23, 958–966.CrossRefGoogle Scholar
  17. 17.
    Shishkin, S., Kovaleva, M., Ivanov, A., Eryomina, L., Lisitskaya, K., Toropugin, I., Kovalev, L., Okhritz, V., and Loran, O. (2011) Comparative proteomic study of proteins in prostate cancer and benign hyperplasia cells, J. Cancer Sci. Ther., S1, 003; doi: 10.4172/1948–5956.S1–003.Google Scholar
  18. 18.
    Kolesnik, Y. A., Titova, E. V., Chertkov, V. A., Tashlitskiy, V. N., Tichonov, V. P., and Shmatkov, D. A. (2011) Stereoisomeric composition of two bioflavonoids from Larix sibirica, Planta Med., 77, 1266.CrossRefGoogle Scholar
  19. 19.
    Cotterill, P. J., Scheinmann, F., and Stenhouse, I. A. (1978) Extractives from Guttiferae. Pt.34. Kolaflavanone, a new biflavanone from the nuts of Garcinia kola Heckel. Applications of 13C nuclear magnetic resonance in elucidation of the structures of flavonoids, J. Chem. Soc. Perkin Trans., 1, 532–539.CrossRefGoogle Scholar
  20. 20.
    Sinha, R., Joshi, A., Joshi, U. J., Srivastava, S., and Govil, G. (2014) Localization and interaction of hydroxyflavones with lipid bilayer model membranes: a study using DSC and multinuclear NMR, Eur. J. Med. Chem., 80, 285–294.CrossRefPubMedGoogle Scholar
  21. 21.
    Chertkov, V. A., Shestakova, A. K., and Davydov, D. V. (2011) Regioselective N–arylation of nitroazoles. Determination of the structure of N–arylnitroazoles on the basis of NMR spectroscopic data and quantum–chemical calculations, Chem. Heterocycl. Compd., 47, 45–54.CrossRefGoogle Scholar
  22. 22.
    Ernst, L., Wray, V., Chertkov, V. A., and Sergeyev, N. M. (1977) High resolution proton–coupled 13C NMR spectra of monosubstituted benzenes. Theoretical and empirical correlations of JCH, J. Magn. Reson., 25, 123–139.Google Scholar
  23. 23.
    Leshcheva, I. F., Torocheshnikov, V. N., Sergeyev, N. M., Chertkov, V. A., and Khlopkov, V. N. (1991) Iterative line shape analysis of 13C–2D multiplets. II. Toluene–CH2D and toluene–CD3, J. Magn. Reson., 94, 9–19.Google Scholar
  24. 24.
    Pashintseva, N. V., Lisitskaya, K. V., Kovalev, L. I., Eremina, L. S., and Sishkin, S. S. (2015) Proteomic investigation of proteins in cultivated cells of rhabdomyosarcoma RD and some other cells of mesenchymal origin, Sovrem. Probl. Nauki Obrazov., 5.Google Scholar
  25. 25.
    Koushyar, S., Jiang, W. G., and Dart, D. A. (2015) Unveiling the potential of prohibitin in cancer, Cancer Lett., 369, 316–322.CrossRefPubMedGoogle Scholar
  26. 26.
    Fan, W., Yang, H., Liu, T., Wang, J., Li, T. W. H., Mavila, N., Tang, Y., Yang, J., Peng, H., Tu, J., Annamalai, A., Noureddin, M., Krishnan, A., Gores, G. J., Martinez–Chantar, M. L., Mato, J. M., and Lu, S. C. (2017) Prohibitin 1 suppresses liver cancer tumorigenesis in mice and human hepatocellular and cholangiocarcinoma cells, Hepatology, 65, 1249–1266.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. E. Khlupova
    • 1
  • O. V. Morozova
    • 1
  • I. S. Vasil’eva
    • 1
  • G. P. Shumakovich
    • 1
  • N. V. Pashintseva
    • 1
  • L. I. Kovalev
    • 1
  • S. S. Shishkin
    • 1
  • V. A. Chertkov
    • 2
  • A. K. Shestakova
    • 3
  • A. V. Kisin
    • 3
  • A. I. Yaropolov
    • 1
    Email author
  1. 1.Research Center of Biotechnology, Bach Institute of BiochemistryRussian Academy of SciencesMoscowRussia
  2. 2.Lomonosov Moscow State University, Faculty of ChemistryMoscowRussia
  3. 3.State Research Institute of Chemistry and Technology of Organoelement CompoundsMoscowRussia

Personalised recommendations