Advertisement

Biochemistry (Moscow)

, Volume 83, Issue 8, pp 890–906 | Cite as

Biochemistry of Direct Cell−Cell Interactions. Signaling Factors Regulating Orchestration of Cell Populations

  • V. Y. BrodskyEmail author
Review
  • 43 Downloads

Abstract

Biochemical mechanisms for the orchestration of cell populations are discussed in view of direct cell−cell inter-actions and composition of the intercellular medium. In our works of the last 20 years, we used circahoralian (ultradian) rhythm of protein synthesis as a marker of cell interactions. Experiments in cell cultures are described; some influences on the organism native medium were performed. Information is presented on the signaling membrane factors that trigger a cascade of processes in the cytoplasm and lead to the orchestration of cell activity in vitro and in vivo. Among these factors are blood serum neurotransmitters, gangliosides, and some hormones. Studying protein synthesis kinetics allowed us to understand the importance of maintaining the constant levels of signaling factors in mammalian blood. The literature on protein phosphorylation as a key process of cell organization is reviewed. The persistence of the organizing signal for several days is described as a type of cell “memory”. It seems promising to extend the area for application of direct cell−cell interactions (respiration of cells, proliferation, etc.) to study possibilities of epigenetic regulation. It is important to continue the studies on the mechanisms of biochemical action of the known drugs as signaling factors.

Keywords

biochemistry of cell−cell communication kinetics of protein synthesis gangliosides prenervous neurotransmit-ters serotonin norepinephrine glutamic acid melatonin gangliosides 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Buznikov, G. A. (1967) Low–Molecular–Weight Regulators of Development [in Russian], Nauka, Moscow.Google Scholar
  2. 2.
    Buznikov, G. A., and Manukhin, B. N. (1960) Effect of serotonin on the embryonic motility of the nudibranchiate mollusks, Zh. Obshch. Biol., 21, 347–352.Google Scholar
  3. 3.
    Buznikov, G. A., and Chudakova, I. V. (1963) Serotonin in developing embryos of sea urchin, Dokl. Akad. Nauk SSSR, 152, 1014–1016.Google Scholar
  4. 4.
    Buznikov, G. A., Chudakova, I. V., and Zvezdina, N. D. (1964) A possible participation of serotonin and other neurohormones in the protein synthesis regulation: experiments on sea urchin oocytes, Dokl. Akad. Nauk SSSR, 166, 1252–1255.Google Scholar
  5. 5.
    Buznikov, G. A. (1990) Neurotransmitters in Embryogenesis, Academic Press.Google Scholar
  6. 6.
    Buznikov, G. A. (2007) Preneural transmitters as regulators of ontogenesis, Ontogenez, 38, 262–270.PubMedGoogle Scholar
  7. 7.
    Shmukler, Y., and Nikishin, D. (2012) Transmitters in blastomere interactions, in Cell Interactions (Cowder, S., ed.) In Tech, Chap. 2, pp. 31–65.Google Scholar
  8. 8.
    Nikishin, D. A. (2013) Expression of Preneural Serotoninergic System Components in Embryogenesis of Clawed Frogs and Sea Urchins: Ph.D. dissertation [in Russian], Moscow State University, Moscow.Google Scholar
  9. 9.
    Voronezhskaya, E. E., Khabarova, M. Y., and Nezlin, L. P. (2004) Apical sensory neurons mediate developmental retardation induced by nonspecific environmental stimuli in freshwater pulmonate snails, Development, 131, 3671–3682.PubMedCrossRefGoogle Scholar
  10. 10.
    Voronezhskaya, E. E., Khabarova, M. Y., Nezlin, L. P., and Ivashkin, E. G. (2012) Delayed action of serotonin in molluscan development, Acta Biol. Hung., 63, 210–216.PubMedCrossRefGoogle Scholar
  11. 11.
    Ivashkin, E., Khabarova, M. Y., Melnikova, V., Nezlin, L. P., Kharchenko, O., Voronezhskaya, E. E., and Adameyko, I. (2015) Serotonin mediates maternal effects and directs developmental and behavioral changes in the progeny of snails, Cell. Reports, 12, 1–15.CrossRefGoogle Scholar
  12. 12.
    Ugrumov, M. V. (1999) Mechanisms of Neuroendocrine Regulation [in Russian], Nauka, Moscow.Google Scholar
  13. 13.
    Ugrumov, M. V. (2010) Developing brain as an endocrine organ: a paradoxical reality, Neurochem. Res., 35, 837–850.PubMedCrossRefGoogle Scholar
  14. 14.
    Ugrumov, M. V. (2009) Endocrine functions of the brain in adult mammals and in ontogenesis, Ontogenez, 40, 1–11.Google Scholar
  15. 15.
    Ugrumov, M. V. (2013) Brain neurons partly expressing dopaminergic phenotype: location, development and functional significance, Adv. Pharmacol., 68, 37–91.PubMedCrossRefGoogle Scholar
  16. 16.
    Ugrumov, M. V. (2014) Neurodegenerative Diseases [in Russian], Vols. 1–2, Nauchnyi Mir, Moscow.Google Scholar
  17. 17.
    Lyte, M., and Ernst, S. (1992) Catecholamine induced growth of gram–negative bacteria, Life Sci., 50, 203–212.PubMedCrossRefGoogle Scholar
  18. 18.
    Strakhovskaya, M. G., Ivanova, E. V., and Fraikin, G. Y. (1993) Stimulatory effect of serotonin on growth of the yeast Candida guillermondii and bacteria Streptococcus faecalis, Microbiology (Moscow), 62, 46–49.Google Scholar
  19. 19.
    Oleskin, A. V., Kirovskaia, T. A., Botvinko, I. V., and Lysak, L. V. (1998) Effect of serotonin (5–oxytryptamine) on the growth and development of organisms, Microbiology (Moscow), 67, 305–312.Google Scholar
  20. 20.
    Hastings, J. W., and Greenberg, E. P. (1999) Quorum sens–ing: the explanation of a curious phenomenon reveals a common characteristic of bacteria, J. Bacteriol., 181, 2667–2668.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Burton, C. L., Chabra, S. R., Swift, S., Baldwin, T. J., Withers, H., Hill, S. J., and Williams, P. (2002) The growth response of Escherichia coli to neurotransmitters and related catecholamine drugs requires a functional enterobactin biosynthesis and uptake system, Infect. Immun., 70, 5913–5923.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Ahmer, B. M. (2004) Cell–to–cell signaling in Escherichia coli and Salmonella enterica, Mol. Microbiol., 52, 933–945.PubMedCrossRefGoogle Scholar
  23. 23.
    Shishov, V. A. (2010) Biogenic Amines in Growth Dynamics of Microorganisms: Ph.D. dissertation [in Russian], Moscow State University, Moscow.Google Scholar
  24. 24.
    Lloyd, D., and Kippert, F. (1987) A temperature–compensated ultradian clock explains quantal cell cycle times, Soc. Exper. Biol., 41, 135–155.Google Scholar
  25. 25.
    Seravin, L. N., and Gudkov, A. V. (2003) Formation of complex organisms as a result of the contact aggregative behavior of protists, Zool. Zh., 82, 1155–1167.Google Scholar
  26. 26.
    Seravin, L. N., and Gudkov, A. V. (2005) Trichoplax adhaerens (Type Placozoa) Is One of the Most Primitive Multicellular Animals [in Russian], St. Petersburg State University, St. Petersburg.Google Scholar
  27. 27.
    Roshchina, V. V. (1991) Biomediators in Plants. Acetylcholine and Biogenic Amines [in Russian], Pushchino, Moscow Region.Google Scholar
  28. 28.
    Brodsky, V. Y., and Lloyd, D. (2008) Self–organized intracellular ultradian rhythms provide direct cell–cell commu–nication, in Ultradian Rhythms from Molecules to Mind (Lloyd, D., and Rossi, A., eds.) London, pp. 85–104.Google Scholar
  29. 29.
    Sakharov, D. A. (1990) Diversity of neurotransmitters: the functional significance, Zh. Evol. Biokhim. Fiziol., 26, 733–740.PubMedGoogle Scholar
  30. 30.
    Sakharov, D. A. (2012) Biological substrate of behavioral act generation, Zh. Obshch. Biol., 73, 334–348.PubMedGoogle Scholar
  31. 31.
    Sakharov, D. A. (1991) Integrative function of serotonin common to distantly related invertebrate animals, in Early Brain (Gustavson, M., and Reuter, M., eds.) Academic Press, pp. 73–88.Google Scholar
  32. 32.
    D’yakonova, V. E. (2007) Behavioral effects of octopamine and serotonin, some paradoxes of comparative physiology, Usp. Fiziol. Nauk, 38, 3–20.Google Scholar
  33. 33.
    D’yakonova, V. E. (2012) Neurotransmitter mechanisms of context–dependent behavior, Zh. Vysshei Nervn. Deyat., 62, 664–680.Google Scholar
  34. 34.
    Brodsky, V. Y. (1975) Protein synthesis rhythm, J. Theor. Biol., 55, 167–200.CrossRefGoogle Scholar
  35. 35.
    Brodsky, V. Y. (1992) Rhythm of protein synthesis and other circahoralian oscillations. Possible involvement of fractals, in Ultradian Rhythms in Life Processes (Lloyd, D., and Rossi, E., eds.) London, pp. 23–40.Google Scholar
  36. 36.
    Brodsky, V. Y. (2006) Direct cell–cell communication. A new approach derived from recent data on the nature and self–organization of ultradian (circahoralian) intracellular rhythms, Biol. Rev. Cambridge Phyl. Soc., 82, 143–162.Google Scholar
  37. 37.
    Brodsky, V. Y. (2014) Circahoralian (ultradian) metabolic rhythms, Biochemistry (Moscow), 79, 483–495.CrossRefGoogle Scholar
  38. 38.
    Brodsky, V. Y., Dubovaya, T. K., Nechaeva, N. V., Fateeva, V. I., Novikova, T. E., and Gvazava, I. G. (1995) Protein synthesis rhythm in the denervated liver, Izv. Ros. Akad. Nauk (Biol.), 2, 133–137.Google Scholar
  39. 39.
    Brodsky, V. Y., Nechaeva, N. V., Novikova, T. E., Gvazava, I. G., and Fateeva, V. I. (1994) Self–synchronization of cells in the culture of hepatocytes with counter–phase oscillations of the protein synthesis intensity, Izv. Ros. Akad. Nauk (Biol.), 6, 853–858.Google Scholar
  40. 40.
    Brodsky, V. Y., Nechaeva, N. V., Terskikh, V. V., Novikova, T. E., Gvazava, I. G., and Fateeva, V. I. (1996) Serum–free medium retaining the normal morphology and a high level of protein synthesis in hepatocytes in vitro, Izv. Ros. Akad. Nauk (Biol.), 4, 398–401.Google Scholar
  41. 41.
    Brodsky, V. Y., Nechaeva, N. V., Zvezdina, N. D., Prokazova, N. V., Golovanova, N. K., Novikova, T. E., Gvasava, I. G., and Fateeva, V. I. (2000) Ganglioside–mediated synchronization of the protein synthesis activity in cultured hepatocytes, Cell Biol. Int., 24, 211–222.PubMedCrossRefGoogle Scholar
  42. 42.
    Zvezdina, N. D., Gracheva, E. V., Golovanova, N. K., Prokazova, N. V., Gvazava, I. G., Fateeva, V. I., and Brodsky, V. Y. (2000) Accumulation of ganglioside GM1 in the medium conditioned with the rat hepatocyte culture, Izv. Ros. Akad. Nauk (Biol.), 6, 410–419.Google Scholar
  43. 43.
    Brodsky, V. Y., Nechaeva, N. V., Novikova, T. E., Gvazava, I. G., and Fateeva, V. I. (1995) Conditioned medium facilitates synchronization of the protein synthesis intensity in hepatocytes in vitro, Dokl. Biol. Sci., 340, 712–714.Google Scholar
  44. 44.
    Hakomori, S.–I. (1981) Glycosphingolipids in cellular interaction, differentiation and oncogenesis, Ann. Rev. Biochem., 50, 733–764.PubMedCrossRefGoogle Scholar
  45. 45.
    Prokazova, N. V. (1982) The receptor role of the cell surface glycophospholipids, Usp. Biol. Khim., 23, 40–60.Google Scholar
  46. 46.
    Tettamanti, G., and Riboni, L. (1994) Gangliosides turnover and neural function, Prog. Brain Res., 101, 77–100.PubMedCrossRefGoogle Scholar
  47. 47.
    Shaposhnikova, G. T., Zvezdina, N. D., Malchenko, L. A., Teplits, N. A., Prokazova, N. V., Buznikov, G. A., and Bergelson, L. D. (1982) The influence of gangliosides released by the ascitic hepatoma 22a cells on the protein synthesis intensity in these cells and on their sensitivity to Indocard, Byul. Eksp. Biol. Med., 10, 91–93.Google Scholar
  48. 48.
    Guerold, B., Massarelli, R., Forster, V., Freysz, L., and Dreifus, H. (1992) Exogenous gangliosides modulate calcium fluxes in cultured neuronal cells, J. Neurosci. Res., 32, 110–115.PubMedCrossRefGoogle Scholar
  49. 49.
    Vasilevskaya, V. V., Zvezdina, N. D., Korotaeva, A. A., and Prokazova, N. V. (1995) The influence of gangliosides on serotonin binding and uptake by human platelets, Platelets, 6, 37–42.CrossRefGoogle Scholar
  50. 50.
    Arakane, F., Fukunada, K., Satake, M., Miyazaki, K., Okamura, H., and Miyamoto, E. (1995) Stimulation of cyclic adenosine 3′,5′–monophosphate–dependent protein kinase with brain gangliosides, Neurochem. Int., 26, 187–193.PubMedCrossRefGoogle Scholar
  51. 51.
    Dyatlovitskaya, E. V. (1984) Gangliosides and antibodies against them in blood serum, Biochemistry (Moscow), 7, 1004–1010.Google Scholar
  52. 52.
    Bergelson, L. D. (1995) Serum gangliosides as endogenous immunomodulators, Immunol. Today, 16, 483–486.PubMedCrossRefGoogle Scholar
  53. 53.
    Brodsky, V. Y., Zvezdina, N. D., Nechaeva, N. V., Novikova, T. E., Gvasava, I. G., Fateeva, V. I., and Gracheva, H. (2003) Loss of the hepatocyte co–operative activity after inhibition of ganglioside synthesis and shed–ding, Cell. Biol. Int., 27, 935–942.PubMedCrossRefGoogle Scholar
  54. 54.
    Zvezdina, N. D., Malchenko, L. A., Fateeva, V. I., and Brodsky, V. Y. (2008) Signaling factors of self–organization of protein synthesis rhythm function independently, Rus. J. Dev. Biol., 39, 158–167.CrossRefGoogle Scholar
  55. 55.
    Li, R., and Ladisch, S. (1997) Inhibition of endogenous ganglioside synthesis does not block neurite formation by retinoic acid–treated neuroblastoma cells, J. Biol. Chem., 272, 1349–1354.PubMedCrossRefGoogle Scholar
  56. 56.
    Olshefski, R., and Ladisch, S. (1998) Synthesis, shedding, and intracellular transfer of human medulloblastoma gangliosidoses: abrogation by a new inhibitor of glycosylceramide synthase, J. Neurochem., 70, 467–472.PubMedCrossRefGoogle Scholar
  57. 57.
    Brodsky, V. Y., Nechaeva, N. V., Zvezdina, N. D., Novikova, T. E., Gvazava, I. G., Fateeva, V. I., and Malchenko, L. A. (2003) Cooperation of hepatocytes in vitro in the protein synthesis rhythm is intensified with ganglioside GM1 in vesicles and liposomes, Izv. Ros. Akad. Nauk (Biol.), 6, 650–657.Google Scholar
  58. 58.
    Brodsky, V. Y., and Zvezdina, N. D. (2010) Melatonin as the most effective organizer of the protein synthesis rhythm in hepatocytes in vitro and in vivo, Cell Biol. Int., 34, 1199–1204.PubMedCrossRefGoogle Scholar
  59. 59.
    Brodsky, V. Y., Malchenko, L. A., Konchenko, D. S., Zvezdina, N. D., and Dubovaya, T. K. (2016) Glutamic acid − amino acid, neurotransmitter and drug − is responsible for protein synthesis rhythm in hepatocytes populations in vitro and in vivo, Biochemistry (Moscow), 81, 892–897.CrossRefGoogle Scholar
  60. 60.
    Brodsky, V. Y., Malchenko, L. A., Butorina, N. N., Lazarev (Konchenko), D. S., Zvezdina, N. D., and Dubovaya, T. K. (2017) Glutamic acid as enhancer of protein synthesis kinetics in hepatocytes from old rats, Biochemistry (Moscow), 82, 957–961.CrossRefGoogle Scholar
  61. 61.
    Woods, N. M., Cuthbertson, K. S. R., and Cobbold, P. H. (1986) Repetitive rises in cytoplasm free calcium in hormone–stimulated hepatocytes, Nature, 319, 600–602.PubMedCrossRefGoogle Scholar
  62. 62.
    Tordjmann, T., Berthon, B., Claret, M., and Combettes, L. (1997) Coordinated intercellular calcium waves induced by norepinephrine in rat hepatocytes, EMBO J., 16, 5398–5407.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Gilbert, D. A., and Hammond, K. D. (2008) Phosphorylation dynamics in mammalian cells, in Ultradian Rhythms from Molecules to Mind (Lloyd, D., and Rossi, E. L., eds.) Springer–Verlag, London–NY, pp. 105–128.Google Scholar
  64. 64.
    Bhoola, R., and Hammond, K. D. (2000) Modulation of the rhythmic patterns of expression of phosphoprotein phosphatases in human leukemia cells, Cell. Biol. Int., 24, 539–547.PubMedCrossRefGoogle Scholar
  65. 65.
    Calvert–Evers, J. L., and Hammond, K. D. (2002) Modification of oscillatory behavior of protein tyrosine kinase and phosphatase during all–trans retinoic acid–induced differentiation of leukemic cells, Cell. Biol. Int., 26, 1035–1042.PubMedCrossRefGoogle Scholar
  66. 66.
    Bodalina, U. M., Hammond, K. D., and Gilbert, D. A. (2005) Temporal changes in the expression of protein phosphatase 1 and protein phosphatase 2A in proliferating and differentiating murine erythroleukemia cells, Cell. Biol. Int., 29, 287–299.PubMedCrossRefGoogle Scholar
  67. 67.
    Lloyd, D. (1992) Intracellular time–keeping: epigenetic oscillations reveal functions of an ultradian clock, in Ultradian Rhythms in Life Processes (Lloyd, D., and Rossi, E. L., eds.) Springer, London, pp. 5–22.Google Scholar
  68. 68.
    Lloyd, D., Salgado, L. E., Turner, M. P., Suller, M. T. E., and Murray, D. (2002) Cycles of mitochondrial energiza–tion driven by the ultradian clock in a continuous culture of Saccharomyces cerevisiae, Microbiology, 48, 3715–3724.CrossRefGoogle Scholar
  69. 69.
    Lloyd, D., and Murray, D. B. (2005) Ultradian metronome: timekeeper for orchestration of cellular coherence, Trends Biochem. Sci., 30, 373–377.PubMedCrossRefGoogle Scholar
  70. 70.
    Anisimov, V. N., Popovich, I. G., Zaberzhinski, M. A., Anisimov, S. V., Vesnushkin, G. M., and Vinogradova, I. A. (2006) Melatonin as antioxidant, genoprotector and anti–carcinogen, Biochim. Biophys. Acta, 1757, 573–589.PubMedCrossRefGoogle Scholar
  71. 71.
    Kvetnoy, I. M., Ingel, I. E., Kvetnaya, T. V., Malinovskaya, N. K., Rapoport, S. I., Raikhlin, N. T., Trovimov, A. V., and Yuzakov, V. V. (2002) Gastrointestinal melatonin. Cellular identification and biological role, Neuroendocrin. Lett., 23, 121–132.Google Scholar
  72. 72.
    Tan, D.–X., Manchester, L. C., Terron, M. P., Flores, L. J., and Reiter, R. J. (2007) One molecule, many derivatives: a never ending interaction of melatonin with reactive oxygen and nitrogen species, J. Pineal. Res., 42, 28–42.PubMedCrossRefGoogle Scholar
  73. 73.
    Brodsky, V. Y., Rapoport, S. I., Dubovaya, T. K., Zvezdina, N. D., Fateeva, V. I., and Malchenko, L. A. (2010) Melatonin injected into rat efficiently synchronizes the protein synthesis rhythm in primary hepatocyte cultures, Rus. J. Dev. Biol., 41, 77–81.CrossRefGoogle Scholar
  74. 74.
    Sjoblom, M., Safsten, B., and Flemstrom, G. (2003) Melatonin–induced calcium signaling in clusters of human and rat duodenal enterocytes, Am. J. Physiol., 284, 1034–1044.Google Scholar
  75. 75.
    Brodsky, V. Y., Terskikh, V. V., Vasiliev, A. V., Zvezdina, N. D., Vorotelyak, T. F., Fateeva, V. I., and Malchenko, L. A. (2011) Self–organization of protein synthesis rhythm in HaCat cultures of human keratinocytes, Rus. J. Dev. Biol., 42, 272–279.CrossRefGoogle Scholar
  76. 76.
    Brodsky, V. Y., Vasiliev, A. V., Terskikh, V. V., Zvezdina, N. D., Fateeva, V. I., Malchenko, L. A., Kiseleva, E. V., and Bueverova, E. I. (2012) Mesenchymal stromal cells do not self–synchronize protein synthesis rhythm but are able to respond to the melatonin synchronizing signal, J. Cell. Tissue Res., 12, 3157–3162.Google Scholar
  77. 77.
    Beaulieu, J.–M., and Gainetdinov, R. (2011) The physiology, signaling, and pharmacology of dopamine receptors, Pharmacol. Rev., 63, 182–217.PubMedCrossRefGoogle Scholar
  78. 78.
    Brodsky, V. Y., Vorotelyak, E. A., Terskikh, V. V., Vasiliev, A. V., Malchenko, L. A., Konchenko, D. S., Dubovaya, T. K., and Zvezdina, N. D. (2016) Dopamine disorganizes direct intercellular interactions in keratinocytes cultures: a com–parison to hepatocytes, Rus. J. Dev. Biol., 47, 77–82.CrossRefGoogle Scholar
  79. 79.
    Brodsky, V. Y., Konchenko, D. S., Zvezdina, N. D., Malchenko, L. A., and Dubovaya, T. K. (2012) Unlike norepinephrine and serotonin, dopamine disorganizes direct cell–cell communication in hepatocyte cultures, J. Cell. Tissue Res., 12, 3265–3271.Google Scholar
  80. 80.
    Brodsky, V. Y., Dubovaya, T. K., Zvezdina, N. D., Konchenko, D. S., and Malchenko, L. A. (2013) Dopamine disorganizes the protein synthesis rhythm affecting the hepatocyte self–organization in vitro, Byul. Eksp. Biol. Med., 156, 45–48.Google Scholar
  81. 81.
    Brodsky, V. Y., Malchenko, L. A., Dubovaya, T. K., Konchenko, D. S., and Zvezdina, N. D. (2014) Dopamine injected into a rat disorganizes the protein synthesis rhythm in the hepatocytes, Byul. Eksp. Biol. Med., 157, 182–185.Google Scholar
  82. 82.
    Brodsky, V. Y., Nechaeva, N. V., Zvezdina, N. D., Novikova, T. E., Fateeva, V. I., and Malchenko, L. A. (2006) Aftereffect of synchronizers of protein synthesis in hepatocytes cultures, Rus. J. Dev. Biol., 37, 54–57.CrossRefGoogle Scholar
  83. 83.
    Brodsky, V. Y., Malchenko, L. A., Butorina, N. N., Lazarev, D. S., Dubovaya, T. K., and Zvezdina, N. D. (2017) Glutamic acid signal synchronizes protein synthesis kinetics in hepatocytes from old rats for the following sev–eral days. Cell metabolism memory, Biochemistry (Moscow), 82, 294–298.CrossRefGoogle Scholar
  84. 84.
    Brodsky, V. Y., Nechaeva, N. V., and Prilutsky, V. I. (1973) Trace processes in kinetics of the parotid salivary gland protein contents, Tsitologiya, 15, 177–182.Google Scholar
  85. 85.
    Lloyd, D., and Kippert, F. (1993) Intracellular coordination by the ultradian clock, Cell Biol. Int., 17, 1047–1052.PubMedCrossRefGoogle Scholar
  86. 86.
    Ferreira, G. M. H., Hammond, K. D., and Gilbert, D. A. (1994) Insulin stimulation of high frequency phosphorylation dynamics in murine erythroleukemic cells, BioSystems, 33, 31–43.PubMedCrossRefGoogle Scholar
  87. 87.
    Brodsky, V. Y., Nechaeva, N. V., Zvezdina, N. D., Novikova, T. E., Fateeva, V. I., and Malchenko, L. A. (2004) Small cooperative activity of old rat’s hepatocytes may depend on composition of the intercellular medium, Cell Biol. Int., 28, 311–316.PubMedCrossRefGoogle Scholar
  88. 88.
    Brodsky, V. Y., Khavinson, V. K., Zolotarev, Y. A., Nechaeva, N. V., Malinin, V. V., Novikova, T. E., Gvazava, I. G., and Fateeva, V. I. (2001) Protein synthesis rhythm in hepatocytes of different age rats. The norm and effect of the peptide livagen, Izv. Ros. Akad. Nauk (Biol.), 5, 517–521.Google Scholar
  89. 89.
    Brodsky, V. Y., Nechaeva, N. V., Zvezdina, N. D., Novikova, T. E., Fateeva, V. I., and Malchenko, L. A. (2005) Age–related features of protein synthesis rhythm, Rus. J. Dev. Biol., 36, 6–13.CrossRefGoogle Scholar
  90. 90.
    Brodsky, V. Y., Golichenkov, V. A., Zvezdina, N. D. Dubovaya, T. K., Fateeva, V. I., Malchenko, L. A., Burlakova, O. V., and Bespjatuk, A. Y. (2008) Melatonin promotes and synchronizes protein synthesis in hepatocytes cultures of old rats, Rus. J. Dev. Biol., 39, 357–361.CrossRefGoogle Scholar
  91. 91.
    Brodsky, V. Y., Malchenko, L. A., Butorina, N. N., Lazarev, D. S., Zvezdina, N. D., and Dubovaya, T. K. (2017) Glutamic acid as enhancer of protein synthesis kinetics in hepatocytes from old rats, Biochemistry (Moscow), 82, 957–961.CrossRefGoogle Scholar
  92. 92.
    Prozorovskaya, M. P. (1983) Age–dependent changes in the epinephrine/norepinephrine ratio in rat’s tissues, Fiziol. Zh. SSSR, 69, 1244–1246.Google Scholar
  93. 93.
    Nakamura, Y., Hishimoto, Y., Yamakawa, T., and Suzuki, A. (1993) Age–dependent changes in GM1 and GD1a expression in mouse liver, J. Biochem., 103, 396–398.CrossRefGoogle Scholar
  94. 94.
    Ozkok, E., Cendiz, S., and Guevener, B. (1999) Age–dependent changes in liver ganglioside levels, J. Basic. Clin. Physiol. Pharmacol., 10, 337–344.PubMedCrossRefGoogle Scholar
  95. 95.
    Avdonin, P. V., and Tkachuk, V. A. (1994) Receptors and Intracellular Calcium [in Russian], Nauka, Moscow.Google Scholar
  96. 96.
    Berridge, M. J. (1990) Calcium oscillations, J. Biol. Chem., 265, 9583–9586.PubMedGoogle Scholar
  97. 97.
    Berridge, M. J. (1993) Inositol triphosphate and calcium signaling, Nature, 361, 315–325.PubMedCrossRefGoogle Scholar
  98. 98.
    Brodsky, V. Y., Nechaeva, N. V., Zvezdina, N. D., Avdonin, P. V., Novikova, T. E., and Fateeva, V. I. (2002) Changes in concentration of calcium ions and protein synthesis rhythm in culture of hepatocytes, Izv. Ros. Akad. Nauk (Biol.), 1, 10–16.Google Scholar
  99. 99.
    Zvezdina, N. D., Nechaeva, N. V., Gracheva, E. V., Novikova, T. E., Gvazava, I. G., Fateeva, V. I., Malchenko, L. A., and Brodsky, V. Y. (2003) Disorders in the hepatocyte cooperation in the protein synthesis rhythm with a chelators of cytoplasmic calcium BAPTA–AM, Izv. Ros. Akad. Nauk (Biol.), 1, 14–19.Google Scholar
  100. 100.
    Brodsky, V. Y., Zvezdina, N. D., Nechaeva, N. V., Avdonin, P. V., Novikova, T. E., Gvasava, I. G., Fateeva, V. I., and Malchenko, L. A. (2003) Calcium ions as a factor of cell–cell cooperation in hepatocyte cultures, Cell. Biol. Int., 27, 965–976.PubMedCrossRefGoogle Scholar
  101. 101.
    Kodorova, A. B., and Astashkin, E. I. (1994) A dual effect of arachidonic acid on Ca2+ transport systems in lymphocytes, FEBS Lett., 353, 167–170.CrossRefGoogle Scholar
  102. 102.
    Brodsky, V. Y., Zvezdina, N. D., Fateeva, V. I., and Malchenko, L. A. (2006) Mechanism of direct cell–cell interactions, Rus. J. Dev. Biol., 37, 321–329.CrossRefGoogle Scholar
  103. 103.
    Brodsky, V. Y., Zvezdina, N. D., Fateeva, V. I., and Malchenko, L. A. (2007) Involvement of protein kinases in self–organization of the protein synthesis rhythm by direct cell–cell communication, Cell. Biol. Int., 31, 65–73.PubMedCrossRefGoogle Scholar
  104. 104.
    Leon, A., Facci, I., and Toffano, G. (1981) Activation of ATPase by nanomolar concentration of GM1 ganglioside, J. Neurochem., 37, 350–357.PubMedCrossRefGoogle Scholar
  105. 105.
    Yarygin, K. N., Nechaeva, N. V., Fateeva, V. I., Novikova, T. E., and Brodsky, V. Y. (1979) Circahoralian rhythm of the cAMP concentration in section of rat’s parotid gland, Byul. Eksp. Biol. Med., 12, 711–712.Google Scholar
  106. 106.
    Brodsky, V. Y., Boikov, P. Y., Nechaeva, N. V., Yurovitsky, Y. G., Novikova, T. E., Fateeva, V. I., and Shevchenko, N. A. (1992) The rhythm of protein synthesis does not depend on oscillations of ATP level, J. Cell. Sci., 103, 363–370.PubMedGoogle Scholar
  107. 107.
    Khrushchov, G. K., and Brodsky, V. Y. (1961) Organ and cell, Usp. Sovrem. Biol., 52, 181–208.PubMedGoogle Scholar
  108. 108.
    Raymond, J. R., Mukhin, Y. V., Gelasco, A., Turner, J., Gollinsworth, T. W., Gettys, G., Grewal, J. S., and Garnovskaya, M. N. (2001) Multiplicity of mechanisms of serotonin receptor signal transduction, Pharmacol. Therap., 92, 179–212.CrossRefGoogle Scholar
  109. 109.
    Pytliak, M., Vargova, V., Mechirova, V., and Felsoci, M. (2011) Serotonin receptors–from molecular biology to clinical applications, Physiol. Res., 60, 15–25.PubMedGoogle Scholar
  110. 110.
    Galactionov, V. G. (1998) Immunology [in Russian], MGU Publishers, Moscow.Google Scholar
  111. 111.
    Wolpert, L. (1969) Positional information and the spatial pattern of cellular differentiation, J. Theor. Biol., 25, 1–47.PubMedCrossRefGoogle Scholar
  112. 112.
    Barlow, P. W., and Carr, D. J. (1984) Positional Control in Plant Development, Cambridge University Press.Google Scholar
  113. 113.
    Ozernyuk, N. D., and Isaeva, V. V. (2016) Evolution of Ontogenesis [in Russian], TNK, Moscow.Google Scholar
  114. 114.
    Aleksandrova, M. A. (2001) Biological foundations for neurotransplantation, Rus. J. Devel. Biol., 32, 106–113.Google Scholar
  115. 115.
    Markitantova, J. V., Avdonin, P. P., and Grigorian, E. N. (2014) FGF2 signaling pathway components in tissues of the posterior yet sector in the adult new Pleurodeles, Izv. Rus. Acad. Sci. (Ser. Biol.), 4, 414–442.Google Scholar
  116. 116.
    Brodsky, V. Y., Komarov, F. I., and Rapoport, S. I. (2007) Circahoralian rhythms, Klin. Med., 5, 4–10.Google Scholar
  117. 117.
    Belousov, L. V. (2015) Morphomechanics of Development, Springer, NY.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Koltsov Institute of Developmental BiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations