Biochemistry (Moscow)

, Volume 83, Issue 7, pp 800–812 | Cite as

The Regulatory Role of NAD in Human and Animal Cells

  • V. A. Kulikova
  • D. V. Gromyko
  • A. A. NikiforovEmail author


Nicotinamide adenine dinucleotide (NAD) and its phosphorylated form NADP are the major coenzymes in the redox reactions of various essential metabolic pathways. NAD+ also serves as a substrate for several families of regulatory proteins, such as protein deacetylases (sirtuins), ADP-ribosyltransferases, and poly(ADP-ribose) polymerases, that control vital cell processes including gene expression, DNA repair, apoptosis, mitochondrial biogenesis, unfolded protein response, and many others. NAD+ is also a precursor for calcium-mobilizing secondary messengers. Proper regulation of these NAD-dependent metabolic and signaling pathways depends on how efficiently cells can maintain their NAD levels. Generally, mammalian cells regulate their NAD supply through biosynthesis from the precursors delivered with the diet: nicotinamide and nicotinic acid (vitamin B3), as well as nicotinamide riboside and nicotinic acid riboside. Administration of NAD precursors has been demonstrated to restore NAD levels in tissues (i.e., to produce beneficial therapeutic effects) in preclinical models of various diseases, such as neurodegenerative disorders, obesity, diabetes, and metabolic syndrome.


NAD metabolism deacetylation ADP-ribosylation biosynthesis 





cyclic ADP-ribose


apoptosis inducing factor






clostridial toxin-like ADP-ribosyltransferase


diphtheria toxin-like ADP-ribosyltransferase


endoplasmic reticulum


lysine deacetylase


nicotinic acid


nicotinic acid adenine dinucleotide


nicotinic acid adenine dinucleotide phosphate




nicotinic acid mononucleotide


nicotinic acid riboside


nicotinic acid phosphoribosyltransferase


nicotinamide mononucleotide


nicotinamide mononucleotide adenylyltransferase


nicotinamide riboside


poly(ADP-ribose) polymerase


silent information regulator 2


sirtuins 1-7


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Houtkooper, R. H., Pirinen, E., and Auwerx, J. (2012) Sirtuins as regulators of metabolism and healthspan, Nat. Rev. Mol. Cell Biol., 13, 225–238.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Hassa, P. O., and Hottiger, M. O. (2008) The diverse bio–logical roles of mammalian PARPS, a small but powerful family of poly–ADP–ribose polymerases, Front. Biosci., 13, 3046–3082.PubMedCrossRefGoogle Scholar
  3. 3.
    Nikiforov, A., Kulikova, V., and Ziegler, M. (2015) The human NAD metabolome: functions, metabolism and compartmentalization, Crit. Rev. Biochem. Mol. Biol., 50, 284–297.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Bai, P. (2015) Biology of poly(ADP–ribose) polymerases: the factotums of cell maintenance, Mol. Cell, 58, 947–958.PubMedCrossRefGoogle Scholar
  5. 5.
    Feijs, K. L., Verheugd, P., and Luscher, B. (2013) Expanding functions of intracellular resident mono–ADP–ribosylation in cell physiology, FEBS J., 280, 3519–3529.PubMedCrossRefGoogle Scholar
  6. 6.
    Fliegert, R., Gasser, A., and Guse, A. H. (2007) Regulation of calcium signalling by adenine–based second messengers, Boichem. Soc. Trans., 35, 109–114.CrossRefGoogle Scholar
  7. 7.
    Belenky, P., Bogan, K. L., and Brenner, C. (2007) NAD+ metabolism in health and disease, Trends Biochem. Sci., 32, 12–19.PubMedCrossRefGoogle Scholar
  8. 8.
    Chiarugi, A., Dolle, C., Felici, R., and Ziegler, M. (2012) The NAD metabolome–a key determinant of cancer cell biology, Nat. Rev. Cancer, 12, 741–752.PubMedCrossRefGoogle Scholar
  9. 9.
    Katsyuba, E., and Auwerx, J. (2017) Modulating NAD+ metabolism, from bench to bedside, EMBO J., 36, 2670–2683.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Dolle, C., Skoge, R. H., Vanlinden, M. R., and Ziegler, M. (2013) NAD biosynthesis in humans–enzymes, metabo–lites and therapeutic aspects, Curr. Top. Med. Chem., 13, 2907–2917.PubMedCrossRefGoogle Scholar
  11. 11.
    Leidecker, O., Bonfiglio, J. J., Colby, T., Zhang, Q., Atanassov, I., Zaja, R., Palazzo, L., Stockum, A., Ahel, I., and Matic, I. (2016) Serine is a new target residue for endogenous ADP–ribosylation on histones, Nat. Chem. Biol., 12, 998–1000.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Daniels, C. M., Ong, S. E., and Leung, A. K. (2014) Phosphoproteomic approach to characterize protein mono–and poly(ADP–ribosyl)ation sites from cells, J. Proteome Res., 13, 3510–3522.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Burkle, A. (2005) Poly(ADP–ribose). The most elaborate metabolite of NAD+, FEBS J., 272, 4576–4589.PubMedCrossRefGoogle Scholar
  14. 14.
    Vyas, S., Matic, I., Uchima, L., Rood, J., Zaja, R., Hay, R. T., Ahel, I., and Chang, P. (2014) Family–wide analysis of poly(ADP–ribose) polymerase activity, Nat. Commun., 5, 4426.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Schreiber, V., Ame, J. C., Dolle, P., Schultz, I., Rinaldi, B., Fraulob, V., Menissier–de Murcia, J., and de Murcia, G. (2002) Poly(ADP–ribose) polymerase–2 (PARP–2) is required for efficient base excision DNA repair in association with PARP–1 and XRCC1, J. Biol. Chem., 277, 23028–23036.PubMedCrossRefGoogle Scholar
  16. 16.
    De Vos, M., Schreiber, V., and Dantzer, F. (2012) The diverse roles and clinical relevance of PARPs in DNA dam–age repair: current state of the art, Biochem. Pharmacol., 84, 137–146.PubMedCrossRefGoogle Scholar
  17. 17.
    Huambachano, O., Herrera, F., Rancourt, A., and Satoh, M. S. (2011) Double–stranded DNA binding domain of poly(ADP–ribose) polymerase–1 and molecular insight into the regulation of its activity, J. Biol. Chem., 286, 7149–7160.PubMedCrossRefGoogle Scholar
  18. 18.
    Jungmichel, S., Rosenthal, F., Altmeyer, M., Lukas, J., Hottiger, M. O., and Nielsen, M. L. (2013) Proteome–wide identification of poly(ADP–ribosyl)ation targets in differ–ent genotoxic stress responses, Mol. Cell, 52, 272–285.PubMedCrossRefGoogle Scholar
  19. 19.
    Messner, S., Altmeyer, M., Zhao, H., Pozivil, A., Roschitzki, B., Gehrig, P., Rutishauser, D., Huang, D., Caflisch, A., and Hottiger, M. O. (2010) PARP1 ADP–ribosylates lysine residues of the core histone tails, Nucleic Acids Res., 38, 6350–6362.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Poirier, G. G., de Murcia, G., Jongstra–Bilen, J., Niedergang, C., and Mandel, P. (1982) Poly(ADP–ribo–syl)ation of polynucleosomes causes relaxation of chro–matin structure, Proc. Natl. Acad. Sci. USA, 79, 3423–3427.PubMedCrossRefGoogle Scholar
  21. 21.
    Krietsch, J., Rouleau, M., Pic, E., Ethier, C., Dawson, T. M., Dawson, V. L., Masson, J. Y., Poirier, G. G., and Gagne, J. P. (2013) Reprogramming cellular events by poly(ADP–ribose)–binding proteins, Mol. Aspects Med., 34, 1066–1087.PubMedCrossRefGoogle Scholar
  22. 22.
    Yu, S. W., Wang, H., Poitras, M. F., Coombs, C., Bowers, W. J., Federoff, H. J., Poirier, G. G., Dawson, T. M., and Dawson, V. L. (2002) Mediation of poly(ADP–ribose) polymerase–1–dependent cell death by apoptosis–inducing factor, Science, 297, 259–263.PubMedCrossRefGoogle Scholar
  23. 23.
    Wang, H., Shimoji, M., Yu, S. W., Dawson, T. M., and Dawson, V. L. (2003) Apoptosis inducing factor and PARP–mediated injury in the MPTP mouse model of Parkinson’s disease, Ann. N. Y. Acad. Sci., 991, 132–139.PubMedCrossRefGoogle Scholar
  24. 24.
    Fouquerel, E., Goellner, E. M., Yu, Z., Gagne, J. P., Barbi de Moura, M., Feinstein, T., Wheeler, D., Redpath, P., Li, J., Romero, G., Migaud, M., Van Houten, B., Poirier, G. G., and Sobol, R. W. (2014) ARTD1/PARP1 negatively regulates glycolysis by inhibiting hexokinase 1 independent of NAD+ depletion, Cell Rep., 8, 1819–1831.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Ha, H. C., and Snyder, S. H. (1999) Poly(ADP–ribose) polymerase is a mediator of necrotic cell death by ATP depletion, Proc. Natl. Acad. Sci. USA, 96, 13978–13982.PubMedCrossRefGoogle Scholar
  26. 26.
    Krishnakumar, R., Gamble, M. J., Frizzell, K. M., Berrocal, J. G., Kininis, M., and Kraus, W. L. (2008) Reciprocal binding of PARP–1 and histone H1 at promot–ers specifies transcriptional outcomes, Science, 319, 819–821.PubMedCrossRefGoogle Scholar
  27. 27.
    Gibson, B. A., Zhang, Y., Jiang, H., Hussey, K. M., Shrimp, J. H., Lin, H., Schwede, F., Yu, Y., and Kraus, W. L. (2016) Chemical genetic discovery of PARP targets reveals a role for PARP–1 in transcription elongation, Science, 353, 45–50.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Jwa, M., and Chang, P. (2012) PARP16 is a tail–anchored endoplasmic reticulum protein required for the PERK–and IRE1alpha–mediated unfolded protein response, Nat. Cell Biol., 14, 1223–1230.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Feijs, K. L., Kleine, H., Braczynski, A., Forst, A. H., Herzog, N., Verheugd, P., Linzen, U., Kremmer, E., and Luscher, B. (2013) ARTD10 substrate identification on protein microarrays: regulation of GSK3beta by mono–ADP–ribosylation, Cell Commun. Signal., 11, 5.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Mehrotra, P., Riley, J. P., Patel, R., Li, F., Voss, L., and Goenka, S. (2011) PARP–14 functions as a transcriptional switch for Stat6–dependent gene activation, J. Biol. Chem., 286, 1767–1776.PubMedCrossRefGoogle Scholar
  31. 31.
    Hottiger, M. O., Hassa, P. O., Luscher, B., Schuler, H., and Koch–Nolte, F. (2010) Toward a unified nomenclature for mammalian ADP–ribosyltransferases, Trends Biochem. Sci., 35, 208–219.PubMedCrossRefGoogle Scholar
  32. 32.
    Jiang, H., Khan, S., Wang, Y., Charron, G., He, B., Sebastian, C., Du, J., Kim, R., Ge, E., Mostoslavsky, R., Hang, H. C., Hao, Q., and Lin, H. (2013) SIRT6 regulates TNF–alpha secretion through hydrolysis of long–chain fatty acyl lysine, Nature, 496, 110–113.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Martin, A., Tegla, C. A., Cudrici, C. D., Kruszewski, A. M., Azimzadeh, P., Boodhoo, D., Mekala, A. P., Rus, V., and Rus, H. (2015) Role of SIRT1 in autoimmune demyelination and neurodegeneration, Immunol. Res., 61, 187–197.PubMedCrossRefGoogle Scholar
  34. 34.
    Kuny, C. V., and Sullivan, C. S. (2016) Virus–host interac–tions and the ARTD/PARP family of enzymes, PLoS Pathog., 12, e1005453.Google Scholar
  35. 35.
    Yang, C. S., Jividen, K., Spencer, A., Dworak, N., Ni, L., Oostdyk, L. T., Chatterjee, M., Kusmider, B., Reon, B., Parlak, M., Gorbunova, V., Abbas, T., Jeffery, E., Sherman, N. E., and Paschal, B. M. (2017) Ubiquitin modification by the E3 ligase/ADP–ribosyltransferase Dtx3L/Parp9, Mol. Cell, 66, 503–516 e505.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Seman, M., Adriouch, S., Haag, F., and Koch–Nolte, F. (2004) Ecto–ADP–ribosyltransferases (ARTs): emerging actors in cell communication and signaling, Curr. Med. Chem., 11, 857–872.PubMedCrossRefGoogle Scholar
  37. 37.
    Mashimo, M., Kato, J., and Moss, J. (2013) ADP–ribosyl–acceptor hydrolase 3 regulates poly (ADP–ribose) degrada–tion and cell death during oxidative stress, Proc. Natl. Acad. Sci. USA, 110, 18964–18969.PubMedCrossRefGoogle Scholar
  38. 38.
    Niere, M., Mashimo, M., Agledal, L., Dolle, C., Kasamatsu, A., Kato, J., Moss, J., and Ziegler, M. (2012) ADP–ribosylhydrolase 3 (ARH3), not poly(ADP–ribose) glycohydrolase (PARG) isoforms, is responsible for degra–dation of mitochondrial matrix–associated poly(ADP–ribose), J. Biol. Chem., 287, 16088–16102.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Slade, D., Dunstan, M. S., Barkauskaite, E., Weston, R., Lafite, P., Dixon, N., Ahel, M., Leys, D., and Ahel, I. (2011) The structure and catalytic mechanism of a poly(ADP–ribose) glycohydrolase, Nature, 477, 616–620.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Jankevicius, G., Hassler, M., Golia, B., Rybin, V., Zacharias, M., Timinszky, G., and Ladurner, A. G. (2013) A family of macrodomain proteins reverses cellular mono–ADP–ribosylation, Nat. Struct. Mol. Biol., 20, 508–514.PubMedCrossRefGoogle Scholar
  41. 41.
    Sharifi, R., Morra, R., Appel, C. D., Tallis, M., Chioza, B., Jankevicius, G., Simpson, M. A., Matic, I., Ozkan, E., Golia, B., Schellenberg, M. J., Weston, R., Williams, J. G., Rossi, M. N., Galehdari, H., Krahn, J., Wan, A., Trembath, R. C., Crosby, A. H., Ahel, D., Hay, R., Ladurner, A. G., Timinszky, G., Williams, R. S., and Ahel, I. (2013) Deficiency of terminal ADP–ribose protein glyco–hydrolase TARG1/C6orf130 in neurodegenerative disease, EMBO J., 32, 1225–1237.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Fontana, P., Bonfiglio, J. J., Palazzo, L., Bartlett, E., Matic, I., and Ahel, I. (2017) Serine ADP–ribosylation reversal by the hydrolase ARH3, Elife, 6, e28533.Google Scholar
  43. 43.
    Moss, J., Stanley, S. J., Nightingale, M. S., Murtagh, J. J., Jr., Monaco, L., Mishima, K., Chen, H. C., Williamson, K. C., and Tsai, S. C. (1992) Molecular and immunological characterization of ADP–ribosylarginine hydrolases, J. Biol. Chem., 267, 10481–10488.PubMedGoogle Scholar
  44. 44.
    Palazzo, L., Thomas, B., Jemth, A. S., Colby, T., Leidecker, O., Feijs, K. L., Zaja, R., Loseva, O., Puigvert, J. C., Matic, I., Helleday, T., and Ahel, I. (2015) Processing of protein ADP–ribosylation by Nudix hydrolases, Biochem. J., 468, 293–301.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Talhaoui, I., Lebedeva, N. A., Zarkovic, G., Saint–Pierre, C., Kutuzov, M. M., Sukhanova, M. V., Matkarimov, B. T., Gasparutto, D., Saparbaev, M. K., Lavrik, O. I., and Ishchenko, A. A. (2016) Poly(ADP–ribose) polymerases covalently modify strand break termini in DNA fragments in vitro, Nucleic Acids Res., 44, 9279–9295.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Munnur, D., and Ahel, I. (2017) Reversible mono–ADP–ribosylation of DNA breaks, FEBS J., 284, 4002–4016.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Kaelin, W. G., Jr., and McKnight, S. L. (2013) Influence of metabolism on epigenetics and disease, Cell, 153, 56–69.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Roth, S. Y., Denu, J. M., and Allis, C. D. (2001) Histone acetyltransferases, Annu. Rev. Biochem., 70, 81–120.PubMedCrossRefGoogle Scholar
  49. 49.
    Haberland, M., Montgomery, R. L., and Olson, E. N. (2009) The many roles of histone deacetylases in develop–ment and physiology: implications for disease and therapy, Nat. Rev. Genet., 10, 32–42.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Brachmann, C. B., Sherman, J. M., Devine, S. E., Cameron, E. E., Pillus, L., and Boeke, J. D. (1995) The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromo–some stability, Genes Dev., 9, 2888–2902.PubMedCrossRefGoogle Scholar
  51. 51.
    Tanner, K. G., Landry, J., Sternglanz, R., and Denu, J. M. (2000) Silent information regulator 2 family of NAD–dependent histone/protein deacetylases generates a unique product, 1–O–acetyl–ADP–ribose, Proc. Natl. Acad. Sci. USA, 97, 14178–14182.PubMedCrossRefGoogle Scholar
  52. 52.
    Michishita, E., Park, J. Y., Burneskis, J. M., Barrett, J. C., and Horikawa, I. (2005) Evolutionarily conserved and non–conserved cellular localizations and functions of human SIRT proteins, Mol. Biol. Cell, 16, 4623–4635.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Imai, S., Armstrong, C. M., Kaeberlein, M., and Guarente, L. (2000) Transcriptional silencing and longevi–ty protein Sir2 is an NAD–dependent histone deacetylase, Nature, 403, 795–800.PubMedCrossRefGoogle Scholar
  54. 54.
    Landry, J., Sutton, A., Tafrov, S. T., Heller, R. C., Stebbins, J., Pillus, L., and Sternglanz, R. (2000) The silencing pro–tein SIR2 and its homologs are NAD–dependent protein deacetylases, Proc. Natl. Acad. Sci. USA, 97, 5807–5811.PubMedCrossRefGoogle Scholar
  55. 55.
    Senawong, T., Peterson, V. J., and Leid, M. (2005) BCL11A–dependent recruitment of SIRT1 to a promoter template in mammalian cells results in histone deacetyla–tion and transcriptional repression, Arch. Biochem. Biophys., 434, 316–325.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Vaquero, A., Scher, M., Lee, D., Erdjument–Bromage, H., Tempst, P., and Reinberg, D. (2004) Human SirT1 inter–acts with histone H1 and promotes formation of facultative heterochromatin, Mol. Cell, 16, 93–105.PubMedCrossRefGoogle Scholar
  57. 57.
    Martinez–Redondo, P., and Vaquero, A. (2013) The diver–sity of histone versus nonhistone sirtuin substrates, Genes Cancer, 4, 148–163.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Sawada, M., Sun, W., Hayes, P., Leskov, K., Boothman, D. A., and Matsuyama, S. (2003) Ku70 suppresses the apop–totic translocation of Bax to mitochondria, Nat. Cell Biol., 5, 320–329.PubMedCrossRefGoogle Scholar
  59. 59.
    Bosch–Presegue, L., and Vaquero, A. (2011) The dual role of sirtuins in cancer, Genes Cancer, 2, 648–662.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Kaidi, A., Weinert, B. T., Choudhary, C., and Jackson, S. P. (2010) Human SIRT6 promotes DNA end resection through CtIP deacetylation, Science, 329, 1348–1353.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Lin, S. J., Ford, E., Haigis, M., Liszt, G., and Guarente, L. (2004) Calorie restriction extends yeast life span by lower–ing the level of NADH, Genes Dev., 18, 12–16.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Desquiret–Dumas, V., Gueguen, N., Leman, G., Baron, S., Nivet–Antoine, V., Chupin, S., Chevrollier, A., Vessieres, E., Ayer, A., Ferre, M., Bonneau, D., Henrion, D., Reynier, P., and Procaccio, V. (2013) Resveratrol induces a mitochondrial complex I–dependent increase in NADH oxidation responsible for sirtuin activation in liver cells, J. Biol. Chem., 288, 36662–36675.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Lagouge, M., Argmann, C., Gerhart–Hines, Z., Meziane, H., Lerin, C., Daussin, F., Messadeq, N., Milne, J., Lambert, P., Elliott, P., Geny, B., Laakso, M., Puigserver, P., and Auwerx, J. (2006) Resveratrol improves mitochon–drial function and protects against metabolic disease by activating SIRT1 and PGC–1alpha, Cell, 127, 1109–1122.PubMedCrossRefGoogle Scholar
  64. 64.
    Jiang, W., Wang, S., Xiao, M., Lin, Y., Zhou, L., Lei, Q., Xiong, Y., Guan, K. L., and Zhao, S. (2011) Acetylation reg–ulates gluconeogenesis by promoting PEPCK1 degradation via recruiting the UBR5 ubiquitin ligase, Mol. Cell, 43, 33–44.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    North, B. J., Marshall, B. L., Borra, M. T., Denu, J. M., and Verdin, E. (2003) The human Sir2 ortholog, SIRT2, is an NAD+–dependent tubulin deacetylase, Mol. Cell, 11, 437–444.PubMedGoogle Scholar
  66. 66.
    Schlicker, C., Gertz, M., Papatheodorou, P., Kachholz, B., Becker, C. F., and Steegborn, C. (2008) Substrates and reg–ulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5, J. Mol. Biol., 382, 790–801.PubMedCrossRefGoogle Scholar
  67. 67.
    Mao, Z., Hine, C., Tian, X., Van Meter, M., Au, M., Vaidya, A., Seluanov, A., and Gorbunova, V. (2011) SIRT6 promotes DNA repair under stress by activating PARP1, Science, 332, 1443–1446.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Du, J., Zhou, Y., Su, X., Yu, J. J., Khan, S., Jiang, H., Kim, J., Woo, J., Kim, J. H., Choi, B. H., He, B., Chen, W., Zhang, S., Cerione, R. A., Auwerx, J., Hao, Q., and Lin, H. (2011) Sirt5 is a NAD–dependent protein lysine demalonylase and desuccinylase, Science, 334, 806–809.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Haigis, M. C., Mostoslavsky, R., Haigis, K. M., Fahie, K., Christodoulou, D. C., Murphy, A. J., Valenzuela, D. M., Yancopoulos, G. D., Karow, M., Blander, G., Wolberger, C., Prolla, T. A., Weindruch, R., Alt, F. W., and Guarente, L. (2006) SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells, Cell, 126, 941–954.PubMedCrossRefGoogle Scholar
  70. 70.
    Sassone–Corsi, P. (2016) The epigenetic and metabolic lan–guage of the circadian clock, in A Time for Metabolism and Hormones (Sassone–Corsi, P., and Christen, Y., eds.), Springer, pp. 1–11.Google Scholar
  71. 71.
    Imai, S., and Guarente, L. (2014) NAD+ and sirtuins in aging and disease, Trends Cell. Biol., 24, 464–471.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Cao, Y., Jiang, X., Ma, H., Wang, Y., Xue, P., and Liu, Y. (2016) SIRT1 and insulin resistance, J. Diabetes Complications, 30, 178–183.PubMedCrossRefGoogle Scholar
  73. 73.
    Lee, H. C. (2012) Cyclic ADP–ribose and nicotinic acid adenine dinucleotide phosphate (NAADP) as messengers for calcium mobilization, J. Biol. Chem., 287, 31633–31640.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Sumoza–Toledo, A., and Penner, R. (2011) TRPM2: a mul–tifunctional ion channel for calcium signalling, J. Physiol., 589, 1515–1525.PubMedCrossRefGoogle Scholar
  75. 75.
    Malavasi, F., Deaglio, S., Funaro, A., Ferrero, E., Horenstein, A. L., Ortolan, E., Vaisitti, T., and Aydin, S. (2008) Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology, Physiol. Rev., 88, 841–886.PubMedCrossRefGoogle Scholar
  76. 76.
    Bruzzone, S., Guida, L., Zocchi, E., Franco, L., and De Flora, A. (2001) Connexin 43 hemi channels mediate Ca2+–regulated transmembrane NAD+ fluxes in intact cells, FASEB J., 15, 10–12.PubMedCrossRefGoogle Scholar
  77. 77.
    Podesta, M., Benvenuto, F., Pitto, A., Figari, O., Bacigalupo, A., Bruzzone, S., Guida, L., Franco, L., Paleari, L., Bodrato, N., Usai, C., De Flora, A., and Zocchi, E. (2005) Concentrative uptake of cyclic ADP–ribose generated by BST–1+ stroma stimulates proliferation of human hematopoietic progenitors, J. Biol. Chem., 280, 5343–5349.PubMedCrossRefGoogle Scholar
  78. 78.
    Franco, L., Guida, L., Bruzzone, S., Zocchi, E., Usai, C., and De Flora, A. (1998) The transmembrane glycoprotein CD38 is a catalytically active transporter responsible for generation and influx of the second messenger cyclic ADP–ribose across membranes, FASEB J., 12, 1507–1520.PubMedCrossRefGoogle Scholar
  79. 79.
    Song, E. K., Rah, S. Y., Lee, Y. R., Yoo, C. H., Kim, Y. R., Yeom, J. H., Park, K. H., Kim, J. S., Kim, U. H., and Han, M. K. (2011) Connexin–43 hemichannels mediate cyclic ADP–ribose generation and its Ca2+–mobilizing activity by NAD+/cyclic ADP–ribose transport, J. Biol. Chem., 286, 44480–44490.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Zhao, Y. J., Zhu, W. J., Wang, X. W., Zhang, L. H., and Lee, H. C. (2015) Determinants of the membrane orienta–tion of a calcium signaling enzyme CD38, Biochim. Biophys. Acta, 1853, 2095–2103.PubMedCrossRefGoogle Scholar
  81. 81.
    Bieganowski, P., and Brenner, C. (2004) Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss–Handler independent route to NAD+ in fungi and humans, Cell, 117, 495–502.PubMedCrossRefGoogle Scholar
  82. 82.
    Kulikova, V., Shabalin, K., Nerinovski, K., Dolle, C., Niere, M., Yakimov, A., Redpath, P., Khodorkovskiy, M., Migaud, M. E., Ziegler, M., and Nikiforov, A. (2015) Generation, release, and uptake of the NAD precursor nicotinic acid riboside by human cells, J. Biol. Chem., 290, 27124–27137.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Guillemin, G. J., and Brew, B. J. (2002) Implications of the kynurenine pathway and quinolinic acid in Alzheimer’s dis–ease, Redox Rep., 7, 199–206.PubMedCrossRefGoogle Scholar
  84. 84.
    Bahn, A., Hagos, Y., Reuter, S., Balen, D., Brzica, H., Krick, W., Burckhardt, B. C., Sabolic, I., and Burckhardt, G. (2008) Identification of a new urate and high affinity nicotinate transporter, hOAT10 (SLC22A13), J. Biol. Chem., 283, 16332–16341.PubMedCrossRefGoogle Scholar
  85. 85.
    Gopal, E., Miyauchi, S., Martin, P. M., Ananth, S., Roon, P., Smith, S. B., and Ganapathy, V. (2007) Transport of nicotinate and structurally related compounds by human SMCT1 (SLC5A8) and its relevance to drug transport in the mammalian intestinal tract, Pharm. Res., 24, 575–584.PubMedCrossRefGoogle Scholar
  86. 86.
    Kanai, Y., Segawa, H., Miyamoto, K., Uchino, H., Takeda, E., and Endou, H. (1998) Expression cloning and characterization of a transporter for large neutral amino acids activated by the heavy chain of 4F2 antigen (CD98), J. Biol. Chem., 273, 23629–23632.PubMedCrossRefGoogle Scholar
  87. 87.
    Pillai, S. M., and Meredith, D. (2011) SLC36A4 (hPAT4) is a high affinity amino acid transporter when expressed in Xenopus laevis oocytes, J. Biol. Chem., 286, 2455–2460.PubMedCrossRefGoogle Scholar
  88. 88.
    Nikiforov, A., Dolle, C., Niere, M., and Ziegler, M. (2011) Pathways and subcellular compartmentation of NAD biosynthesis in human cells: from entry of extracellular pre–cursors to mitochondrial NAD generation, J. Biol. Chem., 286, 21767–21778.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    VanLinden, M. R., Dolle, C., Pettersen, I. K., Kulikova, V. A., Niere, M., Agrimi, G., Dyrstad, S. E., Palmieri, F., Nikiforov, A. A., Tronstad, K. J., and Ziegler, M. (2015) Subcellular distribution of NAD+ between cytosol and mitochondria determines the metabolic profile of human cells, J. Biol. Chem., 290, 27644–27659.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Pittelli, M., Formentini, L., Faraco, G., Lapucci, A., Rapizzi, E., Cialdai, F., Romano, G., Moneti, G., Moroni, F., and Chiarugi, A. (2010) Inhibition of nicotinamide phosphoribosyltransferase: cellular bioenergetics reveals a mitochondrial insensitive NAD pool, J. Biol. Chem., 285, 34106–34114.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Dolle, C., Niere, M., Lohndal, E., and Ziegler, M. (2010) Visualization of subcellular NAD pools and intra–organel–lar protein localization by poly–ADP–ribose formation, Cell. Mol. Life Sci., 67, 433–443.PubMedCrossRefGoogle Scholar
  92. 92.
    Van Linden, M. R., Niere, M., Nikiforov, A. A., Ziegler, M., and Dolle, C. (2017) Compartment–specific poly–ADP–ribose formation as a biosensor for subcellular NAD pools, Methods Mol. Biol., 1608, 45–56.CrossRefGoogle Scholar
  93. 93.
    Agrimi, G., Russo, A., Scarcia, P., and Palmieri, F. (2012) The human gene SLC25A17 encodes a peroxisomal trans–porter of coenzyme A, FAD and NAD+, Biochem. J., 443, 241–247.PubMedCrossRefGoogle Scholar
  94. 94.
    Senesi, S., Csala, M., Marcolongo, P., Fulceri, R., Mandl, J., Banhegyi, G., and Benedetti, A. (2010) Hexose–6–phos–phate dehydrogenase in the endoplasmic reticulum, Biol. Chem., 391, 1–8.PubMedCrossRefGoogle Scholar
  95. 95.
    Fabrizio, G., Di Paola, S., Stilla, A., Giannotta, M., Ruggiero, C., Menzel, S., Koch–Nolte, F., Sallese, M., and Di Girolamo, M. (2015) ARTC1–mediated ADP–ribosyla–tion of GRP78/BiP: a new player in endoplasmic reticulum stress responses, Cell. Mol. Life Sci., 72, 1209–1225.PubMedCrossRefGoogle Scholar
  96. 96.
    Williams, P. A., Harder, J. M., Foxworth, N. E., Cochran, K. E., Philip, V. M., Porciatti, V., Smithies, O., and John, S. W. (2017) Vitamin B3 modulates mitochondrial vulnerability and prevents glaucoma in aged mice, Science, 355, 756–760.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Gong, B., Pan, Y., Vempati, P., Zhao, W., Knable, L., Ho, L., Wang, J., Sastre, M., Ono, K., Sauve, A. A., and Pasinetti, G. M. (2013) Nicotinamide riboside restores cog–nition through an upregulation of proliferator–activated receptor–gamma coactivator 1alpha regulated beta–secretase 1 degradation and mitochondrial gene expression in Alzheimer’s mouse models, Neurobiol. Aging, 34, 1581–1588.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Brown, K. D., Maqsood, S., Huang, J. Y., Pan, Y., Harkcom, W., Li, W., Sauve, A., Verdin, E., and Jaffrey, S. R. (2014) Activation of SIRT3 by the NAD+ precursor nicotinamide riboside protects from noise–induced hear–ing loss, Cell Metab., 20, 1059–1068.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Trammell, S. A., Weidemann, B. J., Chadda, A., Yorek, M. S., Holmes, A., Coppey, L. J., Obrosov, A., Kardon, R. H., Yorek, M. A., and Brenner, C. (2016) Nicotinamide ribo–side opposes type 2 diabetes and neuropathy in mice, Sci. Rep., 6, 26933.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Canto, C., Houtkooper, R. H., Pirinen, E., Youn, D. Y., Oosterveer, M. H., Cen, Y., Fernandez–Marcos, P. J., Yamamoto, H., Andreux, P. A., Cettour–Rose, P., Gademann, K., Rinsch, C., Schoonjans, K., Sauve, A. A., and Auwerx, J. (2012) The NAD+ precursor nicotinamide riboside enhances oxidative metabolism and protects against high–fat diet–induced obesity, Cell Metab., 15, 838–847.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Khan, N. A., Auranen, M., Paetau, I., Pirinen, E., Euro, L., Forsstrom, S., Pasila, L., Velagapudi, V., Carroll, C. J., Auwerx, J., and Suomalainen, A. (2014) Effective treat–ment of mitochondrial myopathy by nicotinamide ribo–side, a vitamin B3, EMBO Mol. Med., 6, 721–731.PubMedPubMedCentralGoogle Scholar
  102. 102.
    Cerutti, R., Pirinen, E., Lamperti, C., Marchet, S., Sauve, A. A., Li, W., Leoni, V., Schon, E. A., Dantzer, F., Auwerx, J., Viscomi, C., and Zeviani, M. (2014) NAD+–dependent activation of Sirt1 corrects the phenotype in a mouse model of mitochondrial disease, Cell Metab., 19, 1042–1049.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Yoshino, J., Mills, K. F., Yoon, M. J., and Imai, S. (2011) Nicotinamide mononucleotide, a key NAD+ intermedi–ate, treats the pathophysiology of diet–and age–induced diabetes in mice, Cell Metab., 14, 528–536.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Yamamoto, T., Byun, J., Zhai, P., Ikeda, Y., Oka, S., and Sadoshima, J. (2014) Nicotinamide mononucleotide, an intermediate of NAD+ synthesis, protects the heart from ischemia and reperfusion, PLoS One, 9, e98972.Google Scholar
  105. 105.
    Mills, K. F., Yoshida, S., Stein, L. R., Grozio, A., Kubota, S., Sasaki, Y., Redpath, P., Migaud, M. E., Apte, R. S., Uchida, K., Yoshino, J., and Imai, S. I. (2016) Long–term administration of nicotinamide mononucleotide mitigates age–associated physiological decline in mice, Cell Metab., 24, 795–806.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. A. Kulikova
    • 1
    • 2
  • D. V. Gromyko
    • 1
  • A. A. Nikiforov
    • 1
    • 2
    Email author
  1. 1.Institute of CytologyRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations