Biochemistry (Moscow)

, Volume 83, Issue 6, pp 766–777 | Cite as

Identification and Characterization of MicroRNAs in Skin of Chinese Giant Salamander (Andrias davidianus) by the Deep Sequencing Approach

  • Yong HuangEmail author
  • Wang Bao Gong


MicroRNAs (miRNA) play a pivotal role in regulating a broad range of biological processes, acting by cleaving mRNAs or by translational repression. However, the miRNAs from skin of Andrias davidianus have not been reported. In this study, a small-RNA cDNA library was constructed and sequenced from skin of A. davidianus. A total of 513 conserved miRNAs belonging to 174 families were identified. The remaining 108 miRNAs we identified were novel and likely to be skin tissue-specific but were expressed at low levels. The presence of randomly selected 15 miRNAs identified and their expression in eight different tissues from A. davidianus were validated by stem-loop qRT-PCR. For better understanding the functions of miRNAs, 129,791 predicated target genes were analyzed by GO and their pathways illustrated by KEGG pathway analyses. The results show that these identified miRNAs from A. davidianus skin are involved in a broad range of physiological functions including metabolism, growth, development, and immune responses. This study exhaustively identifies miRNAs and their target genes, which will ultimately pave the way for understanding their role in skin of A. davidianus and other amphibians. Further studies are necessary to better understand miRNA-mediated gene regulation.


Andrias davidianus microRNA skin deep sequencing target gene 


GO analysis

gene ontology enrichment analysis

KEGG analysis

Kyoto Encyclopedia of Genes and Genomes pathway analysis




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bartel, D. P. (2009) MicroRNAs: target recognition and regulatory functions, Cell, 136, 215–233.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Chekulaeva, M., and Filipowicz, W. (2009) Mechanisms of miRNA-mediated post-transcriptional regulation in ani-mal cells, Curr. Opin. Cell Biol., 21, 452–460.CrossRefPubMedGoogle Scholar
  3. 3.
    Johanson, T. M., Lew, A. M., and Chong, M. M. (2013) MicroRNA-independent roles of the RNase III enzymes Drosha and Dicer, Open Biol., 3, 130144.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Gregory, R. I., Chendrimada, T. P., Cooch, N., and Shiekhattar, R. (2005) Human RISC couples microRNA biogenesis and posttranscriptional gene silencing, Cell, 123, 631–640.CrossRefPubMedGoogle Scholar
  5. 5.
    Tang, G. (2005) siRNA and miRNA: an insight into RISCs, Trends Biochem. Sci., 30, 106–114.CrossRefPubMedGoogle Scholar
  6. 6.
    Shukla, G. C., Singh, J., and Barik, S. (2011) MicroRNAs: processing, maturation, target recognition and regulatory functions, Mol. Cell Pharmacol., 3, 83–92.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Huang, Y., Shen, X. J., Zou, Q., Wang, S. P., Tang, S. M., and Zhang, G. Z. (2011) Biological functions of microRNAs: a review, J. Physiol. Biochem., 67, 129–139.CrossRefPubMedGoogle Scholar
  8. 8.
    Shi, C., Zhang, X., Li, X., Zhang, L., Li, L., Sun, Z., Fu, X., Wu, J., Chang, Y., Li, W., Chen, Q., and Zhang, M. (2016) Effects of microRNA-21 on the biological functions of T-cell acute lymphoblastic lymphoma/leukemia, Oncol. Lett., 12, 4173–4180.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Wang, L., Li, G., Yao, Z. Q., Moorman, J. P., and Ning, S. (2015) MicroRNA regulation of viral immunity, latency, and carcinogenesis of selected tumor viruses and HIV, Rev. Med. Virol., 25, 320–341.CrossRefPubMedGoogle Scholar
  10. 10.
    Martin, R. C., Liu, P. P., Goloviznina, N. A., and Nonogaki, H. (2010) MicroRNA, seeds, and Darwin?: diverse function of miRNA in seed biology and plant responses to stress, J. Exp. Bot., 61, 2229–2234.CrossRefPubMedGoogle Scholar
  11. 11.
    Murphy, R. W., Fu, J., Upton, D. E., de Lema, T., and Zhao, E. M. (2000) Genetic variability among endangered Chinese giant salamanders, Andrias davidianus, Mol. Ecol., 9, 1539–1547.CrossRefPubMedGoogle Scholar
  12. 12.
    Gao, K. Q., and Shubin, N. H. (2003) Earliest known crown-group salamanders, Nature, 422, 424–428.CrossRefPubMedGoogle Scholar
  13. 13.
    Gao, K. Q., and Shubin, N. H. (2001) Late Jurassic sala-manders from Northern China, Nature, 410, 574–577.CrossRefPubMedGoogle Scholar
  14. 14.
    Huang, Y., Yang, Y. B., Gao, X. C., Ren, H. T., and Sun, X. H. (2017) Identification and characterization of the Chinese giant salamander (Andrias davidianus) miRNAs by deep sequencing and predication of their targets, 3 Biotech., 7, 235.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Pounds, J. A., Bustamante, M. R., Coloma, L. A., Consuegra, J. A., Fogden, M. P., Foster, P. N., La Marca, E., Masters, K. L., Merino-Viteri, A., Puschendorf, R., Ron, S. R., Sa’nchez-Azofeifa, G. A., Still, C. J., and Young, B. E. (2006) Widespread amphibian extinctions from epidemic disease driven by global warming, Nature, 439, 161–167.CrossRefPubMedGoogle Scholar
  16. 16.
    Fisher, M. C., Henk, D. A., Briggs, C. J., Brownstein, J. S., Madoff, L. C., McCraw, S. L., and Gurr, S. J. (2012) Emerging fungal threats to animal, plant and ecosystem health, Nature, 484, 186–194.CrossRefPubMedGoogle Scholar
  17. 17.
    Simmaco, M., Mignogna, G., and Barra, D. (1998) Antimicrobial peptides from amphibian skin: what do they tell us? Biopolymers, 47, 435–450.CrossRefPubMedGoogle Scholar
  18. 18.
    Li, F., Wang, L., Lan, Q., Yang, H., Li, Y., Liu, X., and Yang, Z. (2015) RNA-Seq analysis and gene discovery of Andrias davidianus using Illumina short read sequencing, PLoS One, 10, e0123730.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Chen, R., Du, J., Ma, L., Wang, L. Q., Xie, S. S., Yang, C. M., Lan, X. Y., Pan, C. Y., and Dong, W. Z. (2017) Comparative microRNAome analysis of the testis and ovary of the Chinese giant salamander, Reproduction, 154, 169–179.CrossRefPubMedGoogle Scholar
  20. 20.
    Huang, Y., Ren, H. T., Xiong, J. L., Gao, X. C., and Sun, X. H. (2017) Identification and characterization of known and novel microRNAs in three tissues of Chinese giant salamander base on deep sequencing approach, Genomics, 109, 258–264.CrossRefPubMedGoogle Scholar
  21. 21.
    Huang, Y., Gao, X. C., Xiong, J. L., Ren, H. T., and Sun, X. H. (2017) Sequencing and de novo transcriptome assem-bly of the Chinese giant salamander (Andrias davidianus), Genom. Data, 12, 109–110.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Hurley, J., Roberts, D., Bond, A., Keys, D., and Chen, C. (2012) Stem-loop RT-qPCR for microRNA expression profiling, Methods Mol. Biol., 822, 33–52.CrossRefPubMedGoogle Scholar
  23. 23.
    Yang, L. H., Wang, S. L., Tang, L. L., Liu, B., Ye, W. L., Wang, L. L., Wang, Z. Y., Zhou, M. T., and Chen, B. C. (2014) Universal stem-loop primer method for screening and quantification of microRNA, PLoS One, 9, e115293.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Huang, Y., Cheng, J. H., Luo, F. N., Pan, H., Sun, X. J., Diao, L. Y., and Qin, X. J. (2016) Genome-wide identifica-tion and characterization of microRNA genes and their tar-gets in large yellow croaker (Larimichthys crocea), Gene, 576, 261–267.CrossRefPubMedGoogle Scholar
  25. 25.
    Sun, J., Zhang, B., Lan, X., Zhang, C., Lei, C., and Chen, H. (2014) Comparative transcriptome analysis reveals sig-nificant differences in microRNA expression and their tar-get genes between adipose and muscular tissues in cattle, PLoS One, 9, e102142.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Fu, Y., Shi, Z., Wu, M., Zhang, J., Jia, L., and Chen, X. (2011) Identification and differential expression of microRNAs during metamorphosis of the Japanese floun-der (Paralichthys olivaceus), PLoS One, 6, e22957.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Yu, X., Zhou, Q., Cai, Y., Luo, Q., Lin, H., Hu, S., and Yu, J. (2009) A discovery of novel microRNAs in the silkworm (Bombyx mori) genome, Genomics, 94, 438–444.CrossRefPubMedGoogle Scholar
  28. 28.
    Ji, Z., Wang, G., Xie, Z., Zhang, C., and Wang, J. (2012) Identification and characterization of microRNA in the dairy goat (Capra hircus) mammary gland by Solexa deep-sequencing technology, Mol. Biol. Rep., 39, 9361–9371.CrossRefPubMedGoogle Scholar
  29. 29.
    Ambady, S., Wu, Z., and Dominko, T. (2012) Identification of novel microRNAs in Xenopus laevis metaphase II arrest-ed eggs, Genesis, 50, 286–299.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Sun, G. R., Li, M., Li, G. X., Tian, Y. D., Han, R. L., and Kang, X. T. (2012) Identification and abundance of miRNA in chicken hypothalamus tissue determined by Solexa sequencing, Genet. Mol. Res., 11, 4682–4694.CrossRefPubMedGoogle Scholar
  31. 31.
    Reinhart, B. J., Slack, F. J., Basson, M., Pasquinelli, A. E., Bettinger, J. C., Rougvie, A. E., Horvitz, H. R., and Ruvkun, G. (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans, Nature, 403, 901–906.CrossRefPubMedGoogle Scholar
  32. 32.
    Roush, S., and Slack, F. J. (2008) The let-7 family of microRNAs, Trends Cell Biol., 18, 505–516.CrossRefPubMedGoogle Scholar
  33. 33.
    Lehmann, S. M., Kruger, C., Park, B., Derkow, K., Rosenberger, K., Baumgart, J., Trimbuch, T., Eom, G., Hinz, M., Kaul, D., Habbel, P., Kaelin, R., Franzoni, E., Rybak, A., Nguyen, D., Veh, R., Ninnemann, O., Peters, O., Nitsch, R., Heppner, F. L., Golenbock, D., Schott, E., Ploegh, H. L., Wulczyn, F. G., and Lehnardt, S. (2012) An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration, Nat. Neurosci., 15, 827–835.CrossRefPubMedGoogle Scholar
  34. 34.
    Frost, R. J., and Olson, E. N. (2011) Control of glucose homeostasis and insulin sensitivity by the let-7 family of microRNAs, Proc. Natl. Acad. Sci. USA, 108, 21075–21080.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Toledano, H., D’Alterio, C., Czech, B., Levine, E., and Jones, D. L. (2012) The let-7-Imp axis regulates ageing of the Drosophila testis stem-cell niche, Nature, 485, 605–610.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Zhu, H., Shyh-Chang, N., Segre, A. V., Shinoda, G., Shah, S. P., Einhorn, W. S., Takeuchi, A., Engreitz, J. M., Hagan, J. P., Kharas, M. G., Urbach, A., Thornton, J. E., Triboulet, R., Gregory, R. I., DIAGRAM Consortium, MAGIC Investigators, Altshuler, D., and Daley, G. Q. (2011) The Lin28/let-7 axis regulates glucose metabolism, Cell, 147, 81–94.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Su, J. L., Chen, P. S., Johansson, G., and Kuo, M. L. (2012) Function and regulation of let-7 family microRNAs, MicroRNA, 1, 34–39.CrossRefPubMedGoogle Scholar
  38. 38.
    Mondol, V., and Pasquinelli, A. E. (2012) Let’s make it happen: the role of let-7 microRNA in development, Curr. Top. Dev. Biol., 99, 1–30.CrossRefPubMedGoogle Scholar
  39. 39.
    Wang, X., Cao, L., Wang, Y., Liu, N., and You, Y. (2012) Regulation of let-7 and its target oncogenes (review), Oncol. Lett., 3, 955–960.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Swaminathan, S., Suzuki, K., Seddiki, N., Kaplan, W., Cowley, M. J., Hood, C. L., Clancy, J. L., Murray, D. D., Mendez, C., Gelgor, L., Anderson, B., Roth, N., Cooper, D. A., and Kelleher, A. D. (2012) Differential regulation of the let-7 family of microRNAs in CD4+ T cells alters IL-10 expression, J. Immunol., 188, 6238–6246.CrossRefPubMedGoogle Scholar
  41. 41.
    Lin, L., Gan, H., Zhang, H., Tang, W., Sun, Y., Tang, X., Kong, D., Zhou, J., Wang, Y., and Zhu, Y. (2014) MicroRNA21 inhibits SMAD7 expression through a target sequence in the 3′ untranslated region and inhibits prolifer-ation of renal tubular epithelial cells, Mol. Med. Rep., 10, 707–712.CrossRefPubMedGoogle Scholar
  42. 42.
    Forster, S. C., Tate, M. D., and Hertzog, P. J. (2015) MicroRNA as type I interferon-regulated transcripts and modulators of the innate immune response, Front. Immunol., 6, 334.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Zhou, R., O’Hara, S. P., and Chen, X. M. (2011) MicroRNA regulation of innate immune responses in epithelial cells, Cell. Mol. Immunol., 8, 371–379.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Andreassen, R., and Hoyheim, B. (2017) miRNAs associ-ated with immune response in teleost fish, Dev. Comp. Immunol., 75, 77–85.CrossRefPubMedGoogle Scholar
  45. 45.
    Chen, X., Li, Q., Wang, J., Guo, X., Jiang, X., Ren, Z., Weng, C., Sun, G., Wang, X., Liu, Y., Ma, L., Chen, J. Y., Wang, J., Zen, K., Zhang, J., and Zhang, C. Y. (2009) Identification and characterization of novel amphioxus microRNAs by Solexa sequencing, Genome Biol., 10, R78.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Zhang, B. H., Pan, X. P., Cox, S. B., Cobb, G. P., and Anderson, T. A. (2006) Evidence that miRNAs are different from other RNAs, Cell. Mol. Life Sci., 63, 246–254.CrossRefPubMedGoogle Scholar
  47. 47.
    Huang, L., Yin, Z. J., Feng, Y. F., Zhang, X. D., Wu, T., Ding, Y. Y., Ye, P. F., Fu, K., and Zhang, M. Q. (2016) Identification and differential expression of microRNAs in the ovaries of pigs (Sus scrofa) with high and low litter sizes, Anim. Genet., 47, 543–551.CrossRefPubMedGoogle Scholar
  48. 48.
    Gantier, M. P. (2010) New perspectives in microRNA reg-ulation of innate immunity, J. Interferon Cytokine Res., 30, 283–289.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.College of Animal Science and TechnologyHenan University of Science and TechnologyLuoyangChina
  2. 2.Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research InstituteChinese Academy of Fishery SciencesGuangzhouChina

Personalised recommendations