Biochemistry (Moscow)

, Volume 83, Issue 6, pp 746–754 | Cite as

The Role of p38 and CK2 Protein Kinases in the Response of RAW 264.7 Macrophages to Lipopolysaccharide

  • O. V. GlushkovaEmail author
  • S. B. Parfenyuk
  • T. V. Novoselova
  • M. O. Khrenov
  • S. M. Lunin
  • E. G. Novoselova


The role of protein kinases p38 and CK2 (casein kinase II) in the response of RAW 264.7 macrophages to the lipopolysaccharide (LPS) from gram-negative bacteria was studied. Using specific p38 and CK2 inhibitors (p38 MAP kinase Inhibitor XI and casein kinase II Inhibitor III, respectively), we investigated the effects of these protein kinases on (i) LPS-induced activation of signaling pathways involving nuclear factor κB (NF-κB), stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), p38, and interferon regulatory factor 3 (IRF3); (ii) expression of Toll-like receptor 4 (TLR4) and inducible heat-shock proteins HSP72 and HSP90; and (iii) production of interleukins IL-1α, IL-1β, IL-6, tumor necrosis factor α, and IL-10. Activation of the proapoptotic signaling in the macrophages was evaluated from the ratio between the active and inactive caspase-3 forms and p53 phosphorylation. Six hours after LPS addition (2.5 μg/ml) to RAW 264.7 cells, activation of the TLR4 signaling pathways was observed that was accompanied by a significant increase in phosphorylation of IκB kinase α/β, NF-κB (at both Ser536 and Ser276), p38, JNK, and IRF3. Other effects of macrophage incubation with LPS were an increase in the contents of TLR4, inducible heat-shock proteins (HSPs), and pro- and anti-inflammatory cytokines, as well as slight activation of the pro-apoptotic signaling in the cells. Using inhibitor analysis, we found that during the early response of macrophages to the LPS, both CK2 and p38 modulate activation of MAP kinase and NF-κB signaling pathways and p65 phosphorylation at Ser276/Ser536 and cause accumulation of HSP72, HSP90 and the LPS-recognizing receptor TLR4. Suppression of the p38 MAP kinase and CK2 activities by specific inhibitors (Inhibitor XI and Inhibitor III, respectively) resulted in the impairment of the macrophage effector function manifested as a decrease in the production of the early-response proinflammatory cytokines and disbalance between the pro- and anti-apoptotic signaling pathways leading presumably to apoptosis development. Taken together, our data indicate the inefficiency of therapeutic application of p38 and CK2 inhibitors during the early stages of inflammatory response.


RAW 264.7 lipopolysaccharide p38 casein kinase II NF-κB and SAPK/JNK signaling pathways cytokines heat shock proteins TLR4 



casein kinase II


heat shock protein




inhibitor of NF-κB


IκB kinase




interferon regulatory factor


c-Jun N-terminal kinase




mitogen-activated protein kinase


nuclear factor κB


Toll-like receptor


tumor necrosis factor


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Medzhitov, R. (2010) Inflammation 2010: new adventures of an old flame, Cell, 140, 771–776.CrossRefPubMedGoogle Scholar
  2. 2.
    Morris, M. C., Gilliam, E. A., and Li, L. (2015) Innate immune programming by endotoxin and its pathological consequences, Front. Immunol., 5, 680.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Muralidharan, S., and Mandrekar, P. (2013) Cellular stress response and innate immune signaling: integrating path-ways in host defense and inflammation, J. Leukoc. Biol., 94, 1167–1184.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Takeda, K., and Akira, S. (2005) TLR signaling pathways, Semin. Immunol., 16, 3–9.CrossRefGoogle Scholar
  5. 5.
    Kumar, A., Takada, Y., Boriek, A. M., and Agarwal, B. B. (2004) Nuclear factor κB: its role in health and disease, J. Mol. Med. (Berl.), 82, 434–448.CrossRefGoogle Scholar
  6. 6.
    Glushkova, O. V., Parfenyuk, S. B., Khrenov, M. O., Novoselova, T. V., Lunin, S. M., Fesenko, E. E., and Novoselova, E. G. (2013) Inhibitors of TLR4, NF-κB, and SAPK/JNK signaling reduce the toxic effect of lipopolysaccharide on RAW 264.7 cells, J. Immunotoxicol., 10, 133–140.PubMedGoogle Scholar
  7. 7.
    Litchfield, D. W. (2003) Protein kinase CK2: structure, regulation and role in cellular decisions of life and death, Biochem. J., 369, 1–15.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Montenarh, M. (2014) Protein kinase CK2 and angiogene-sis, Adv. Clin. Exp. Med., 23, 153–158.CrossRefPubMedGoogle Scholar
  9. 9.
    Yu, M., Yeh, J., and Van Waes, C. (2006) Protein kinase casein kinase 2 mediates inhibitor-kappaB kinase and aber-rant nuclear factor-kappaB activation by serum factor(s) in head and neck squamous carcinoma cells, Cancer Res., 66, 6722–6731.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Venerando, A., Ruzzene, M., and Pinna, L. A. (2014) Casein kinase: the triple meaning of a misnomer, Biochem. J., 460, 141–156.CrossRefPubMedGoogle Scholar
  11. 11.
    Romieu-Mourez, R., Landesman-Bollag, E., Seldin, D. C., and Sonenshein, G. E. (2002) Protein kinase CK2 pro-motes aberrant activation of nuclear factor-kappaB, trans-formed phenotype, and survival of breast cancer cells, Cancer Res., 62, 6770–6778.PubMedGoogle Scholar
  12. 12.
    Dominguez, I., Sonenshein, G. E., and Seldin, D. C. (2009) Protein kinase CK2 in health and disease: CK2 and its role in Wnt and NF-kappaB signaling: linking develop-ment and cancer, Cell. Mol. Life Sci., 66, 1850–1857.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Volodina, Y. L., and Shtil, A. A. (2012) Casein kinase 2 is a universal regulator of cell survival, Mol. Biol., 46, 423–433.CrossRefGoogle Scholar
  14. 14.
    Christian, F., Smith, E. L., and Carmody, R. J. (2016) The regulation of NF-кB subunits by phosphorylation, Cells, 5; doi: 10.3390/cells5010012.Google Scholar
  15. 15.
    Bode, J. G., Ehlting, C., and Haussinger, D. (2012) The macrophage response towards LPS and its control through the p38(MAPK)-STAT3 axis, Cell. Signal., 24, 1185–1194.CrossRefPubMedGoogle Scholar
  16. 16.
    Zarubin, T., and Han, J. (2005) Activation and signaling of the p38 MAP kinase pathway, Cell Res., 15, 11–18.CrossRefPubMedGoogle Scholar
  17. 17.
    Cuadrado, A., and Nebreda, A. R. (2010) Mechanisms and functions of p38 MAPK signaling, Biochem. J., 429, 403–417.CrossRefPubMedGoogle Scholar
  18. 18.
    Glushkova, O. V., Khrenov, M. O., Novoselova, T. V., Lunin, S. M., Fesenko, E. E., and Novoselova, E. G. (2015) The role of CK2 protein kinase in stress response of RAW 264.7 macrophages, Dokl. Biol. Sci., 464, 260–262.CrossRefPubMedGoogle Scholar
  19. 19.
    Allende, J. E., and Allende, C. C. (1995) Protein kinase CK2: an enzyme with multiple substrates and a puzzling regulation, FASEB J., 9, 313–323.CrossRefPubMedGoogle Scholar
  20. 20.
    Kato, T., Jr., Delhase, M., Hoffmann, A., and Karin, M. (2003) CK2 is a C-terminal IkappaB kinase responsible for NF-kappaB activation during the UV response, Mol. Cell, 12, 829–839.CrossRefPubMedGoogle Scholar
  21. 21.
    Scaglioni, P. P., Yung, T. M., Cai, L. F., Erdjument-Bromage, H., Kaufman, A. J., Singh, B., Teruya-Feldstein, J., Tempst, P., and Pandolfi, P. P. (2006) A CK2-dependent mechanism for degradation of the PML tumor suppressor, Cell, 126, 269–283.CrossRefPubMedGoogle Scholar
  22. 22.
    Tsuchiya, Y., Asano, T., Nakayama, K., Kato, T., Jr., Karin, M., and Kamata, H. (2010) Nuclear IKKbeta is an adaptorprotein for IkappaBalpha ubiquitination and degradation in UV-induced NF-kappaB activation, Mol. Cell, 39, 570–582.CrossRefPubMedGoogle Scholar
  23. 23.
    Terazawa, S., Mori, S., Nakajima, H., Yasuda, M., and Imokawa, G. (2015) The UVB-stimulated expression of transglutaminase 1 is mediated predominantly via the NFκB signaling pathway: new evidence of its significant attenuation through the specific interruption of the p38/MSK1/NFкBp65 Ser276 axis, PLoS One, 10, e0136311.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kumar, S., Boehm, J., and Lee, J. C. (2003) p38 MAP kinases: key signaling molecules as therapeutic targets for inflammatory diseases, Nat. Rev. Drug Discov., 2, 717–726.CrossRefPubMedGoogle Scholar
  25. 25.
    Singh, N. N., and Ramji, D. P. (2008) Protein kinase CK2, an important regulator of the inflammatory response, J. Mol. Med. (Berl.), 86, 887–897.CrossRefGoogle Scholar
  26. 26.
    Huang, J., Chen, Z., Li, J., Chen, Q., Li, J., Gong, W., Huang, J., Liu, P., and Huang, H. (2017) Protein kinase CK2α catalytic subunit ameliorates diabetic renal inflam-matory fibrosis via NF-κB signaling pathway, Biochem. Pharmacol., 132, 102–117.CrossRefPubMedGoogle Scholar
  27. 27.
    Yang, X.-D., Huang, B., Li, M., Lamb, A., Kelleher, N. L., and Chen, L.-F. (2009) Negative regulation of NF-κB action by Set9-mediated lysine methylation of the RelA subunit, EMBO J., 28, 1055–1066.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Zhong, H., Voll, R. E., and Ghosh, S. (1998) Phosphorylation of NF-kappa B p65 by PKA stimulates transcriptional activity by promoting a novel bivalent inter-action with the coactivator CBP/p300, Mol. Cell, 1, 661–671.CrossRefPubMedGoogle Scholar
  29. 29.
    Vermeulen, L., De Wilde, G., Van Damme, P., Vanden Berghe, W., and Haegeman, G. (2003) Transcriptional acti-vation of the NF-κB p65 subunit by mitogen-and stress-activated protein kinase-1 (MSK1), EMBO J., 22, 1313–1324.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Brasier, A. R., Tian, B., Jamaluddin, M., Kalita, M. K., Garofalo, R. P., and Lu, M. (2011) RelA Ser276 phospho-rylation-coupled Lys310 acetylation controls transcription-al elongation of inflammatory cytokines in respiratory syn-cytial virus infection, J. Virol., 85, 11752–11769.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Nowak, D. E., Tian, B., Jamaluddin, M., Boldogh, I., Vergara, L. A., Choudhary, S., and Brasier, A. R. (2008) RelA Ser276 phosphorylation is required for activation of a subset of NF-κB-dependent genes by recruiting cyclin-dependent kinase 9/cyclin T1 complexes, Mol. Cell. Biol., 28, 3623–3638.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Nihira, K., Ando, Y., Yamaguchi, T., Kagami, Y., Miki, Y., and Yoshida, K. (2010) Pim-1 controls NF-kappaB sig-nalling by stabilizing RelA/p65, Cell Death Differ., 17, 689–698.CrossRefPubMedGoogle Scholar
  33. 33.
    Lawrence, T., Bebien, M., Liu, G. Y., Nizet, V., and Karin, M. (2005) IKKalpha limits macrophage NF-kappaB acti-vation and contributes to the resolution of inflammation, Nature, 434, 1138–1143.CrossRefPubMedGoogle Scholar
  34. 34.
    Arun, P., Brown, M., Ehsanian, R., Chen, Z., and Van Waes, C. (2009) Nuclear NF-κB p65 phosphorylation at serine 276 by protein kinase A contributes to the malignant phenotype of head and neck cancer, Clin. Cancer Res., 15, 5974–5984.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Bu, Y., Li, X., He, Y., Huang, C., Shen, Y., Cao, Y., Huang, D., Cai, C., Wang, Y., Wang, Z., Liao, D. F., and Cao, D. (2016) A phosphomimetic mutant of RelA/p65 at Ser536 induces apoptosis and senescence: an implication for tumor-suppressive role of Ser536 phosphorylation, Int. J. Cancer, 138, 1186–1198.CrossRefPubMedGoogle Scholar
  36. 36.
    Bu, Y., Cai, G., Shen, Y., Huang, C., Zeng, X., Cao, Y., Cai, C., Wang, Y., Huang, D., Liao, D. F., and Cao, D. (2016) Targeting NF-κB RelA/p65 phosphorylation over-comes RITA resistance, Cancer Lett., 383, 261–271.CrossRefPubMedGoogle Scholar
  37. 37.
    Cui, Y., and Guo, G. (2016) Immunomodulatory function of the tumor suppressor p53 in host immune response and the tumor microenvironment, Int. J. Mol. Sci., 17, E1942.CrossRefPubMedGoogle Scholar
  38. 38.
    Pal, S., Bhattacharjee, A., Ali, A., Mandal, N. C., Mandal, S. C., and Pal, M. (2014) Chronic inflammation and can-cer: potential chemoprevention through nuclear factor kappa B and p53 mutual antagonism, J. Inflam. (Lond.), 11, 23.CrossRefGoogle Scholar
  39. 39.
    Martinez, F. O., and Gordon, S. (2014) The M1 and M2 paradigm of macrophage activation: time for reassessment, F1000Prime Rep., 6, 13.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Bzowska, M., Nogiec, A., Bania, K., Zygmunt, M., Zarebski, M., Dobrucki, J., and Guzik, K. (2017) Involvement of cell surface 90 kDa heat shock protein (HSP90) in pattern recognition by human monocyte-derived macrophages, J. Leukoc. Biol., 102, 763–774.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Glushkova, O. V., Novoselova, T. V., Khrenov, M. O., Parfenyuk, S. B., Lunin, S. M., Fesenko, E. E., and Novoselova, E. G. (2010) Role of heat shock protein hsp90 in formation of protective reactions in acute toxic stress, Biochemistry (Moscow), 75, 702–707.CrossRefGoogle Scholar
  42. 42.
    Moss, J. E., Aliprantis, A. O., and Zychlinsky, A. (1999) The regulation of apoptosis by microbial pathogens, Int. Rev. Cytol., 187, 203–259.CrossRefPubMedGoogle Scholar
  43. 43.
    Rosadini, C. V., and Kagan, J. C. (2016) Early innate immune responses to bacterial LPS, Curr. Opin. Immunol., 44, 14–19.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • O. V. Glushkova
    • 1
    Email author
  • S. B. Parfenyuk
    • 1
  • T. V. Novoselova
    • 1
  • M. O. Khrenov
    • 1
  • S. M. Lunin
    • 1
  • E. G. Novoselova
    • 1
  1. 1.Institute of Cell BiophysicsRussian Academy of SciencesPushchinoRussia

Personalised recommendations