Advertisement

Biochemistry (Moscow)

, Volume 83, Issue 6, pp 738–745 | Cite as

Implication of Integrin α2β1 in Proliferation and Invasion of Human Breast Carcinoma and Melanoma Cells: Noncanonical Function of Akt Protein Kinase

  • N. I. Kozlova
  • G. E. Morozevich
  • N. A. Ushakova
  • A. E. BermanEmail author
Article

Abstract

Blocking the expression of integrin α2β1, which was accomplished by transduction of α2-specific shRNA, resulted in significant inhibition of proliferation and clonal activity in human MCF-7 breast carcinoma and SK-Mel-147 melanoma cells. Along with these changes, deprivation of α2β1 caused a sharp decrease in melanoma cell invasion in vitro. Analysis of integrin-mediating signal pathways that control cell behavior revealed a significant increase in activity of Akt protein kinase in response to depletion of α2β1. The increase in Akt activity that accompanies a suppressive effect on cell invasion contradicts well-known Akt function aimed at stimulation of tumor progression. This contradiction could be explained by the “reversed” (noncanonical) role played by Akt in some cells that consists in suppression rather than promotion of invasive phenotype. To test this suggestion, the effects of Akt inhibitors on invasive activity of SK-Mel-147 cells were investigated. If the above suggestion is true, then inhibition of Akt in cells depleted of α2β1 should result in the restoration of their invasive activity. It appeared that treatment with LY294002, which inhibits all Akt isoforms (Akt1, Akt2, Akt3), not only failed to restore the invasive phenotype of melanoma cells but further attenuated their invasive activity. However, treatment of the cells with an Akt1-specific inhibitor significantly increased their invasion. Thus, the stimulating effect of α2β1 integrin on invasion of melanoma cells is realized through a mechanism based on inhibition of one of the Akt isoforms, which in these cells exhibits a noncanonical function consisting in suppression of invasion.

Keywords

integrins tumor growth proliferation invasion Akt protein kinase signaling 

Abbreviations

ECM

extracellular matrix

EdU

5-ethynyl-2′-deoxyuridine

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Guo, W., and Giancotti, F. G. (2004) Integrin signalling during tumour progression, Nat. Rev. Mol. Cell. Biol., 10, 816–826.CrossRefGoogle Scholar
  2. 2.
    Hehlgans, S., Haase, M., and Cordes, N. (2007) Signalling via integrins: implications for cell survival and anticancer strategies, Biochim. Biophys. Acta, 1775, 163–180.PubMedGoogle Scholar
  3. 3.
    Desgrosellier, J. S., and Cheresh, D. A. (2010) Integrins in cancer: biological implications and therapeutic opportunities, Nat. Rev. Cancer, 10, 9–22.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kuphal, S., Bauer, R., and Bosserhoff, A. K. (2005) Integrin signaling in malignant melanoma, Cancer Metastasis Rev., 24, 195–222.CrossRefPubMedGoogle Scholar
  5. 5.
    Haenssen, K. K., Caldwell, S. A., Shahriari, K. S., Jackson, S. R., Whelan, K. A., Klein-Szanto, A. J., and Reginato, M. J. (2010) ErbB2 requires integrin alpha 5 for anoikis resistance via Src regulation of receptor activity in human mammary epithelial cells, J. Cell Sci., 123, 1373–1382.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bai, J., Zhang, J., Wu, J., Shen, L., Zeng, J., Ding, J., Wu, Y., Gong, Z., Li, A., Xu, S., Zhou, J., and Li, G. (2010) JWA regulates melanoma metastasis by integrin alphaVbeta 3 signaling, Oncogene, 29, 1227–1237.CrossRefPubMedGoogle Scholar
  7. 7.
    Nam, E. H., Lee, Y., Moon, B., Lee, J. W., and Kim, S. (2015) Twist1 and AP-1 cooperatively upregulate integrin α5 expression to induce invasion and the epithelial–mes-enchymal transition, Carcinogenesis, 36, 327–337.CrossRefPubMedGoogle Scholar
  8. 8.
    Tran, T., Barlow, B., O’Rear, L., Jarvis, B., Li, Z., Dickeson, K., Dupont, W., and Zutter, M. (2011) Loss of the α2β1 integrin alters human papilloma virus-induced squamous carcinoma progression in vivo and in vitro, PLoS One, 6, e26858.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Girotti, M. R., Fernandez, M., Lopez, J. A., Camafeita, E., Fernandez, E. A., Albar, J. P., Benedetti, L. G., Valacco, M. P., Brekken, R. A., Podhajcer, O. L., and Llera, A. S. (2011) SPARC promotes cathepsin B-mediat-ed melanoma invasiveness through a collagen I/α2β1 inte-grin axis, J. Invest. Dermatol., 131, 2438–2447.CrossRefPubMedGoogle Scholar
  10. 10.
    Burnier, J. V., Wang, N., Michel, R. P., Hassanain, M., Li, S., Lu, Y., Metrakos, P., Antecka, E., Burnier, M. N., Ponton, A., Gallinger, S., and Brodt, P. (2011) Type IV col-lagen-initiated signals provide survival and growth cues required for liver metastasis, Oncogene, 30, 3766–3783.CrossRefPubMedGoogle Scholar
  11. 11.
    Li, X., Ishihara, S., Yasuda, M., Nishioka, T., Mizutani, T., Ishikawa, M., Kawabata, K., Shirato, H., and Haga, H. (2013) Lung cancer cells that survive ionizing radiation show increased integrin α2β1-and EGFR-dependent inva-siveness, PLoS One, 8, e70905.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ramirez, N. E., Zhang, Z., Madamanchi, A., Boyd, K. L., O’Rear, L. D., Nashabi, A., Li, Z., Dupont, W. D., Zijlstra, A., and Zutter, M. M. (2011) The α2β1 integrin is a metas-tasis suppressor in mouse models and human cancer, J. Clin. Invest., 121, 226–237.CrossRefPubMedGoogle Scholar
  13. 13.
    Ferraro, A., Mourtzoukou, D., Kosmidou, V., Avlonitis, S., Kontogeorgos, G., Zografos, G., and Pintzas, A. (2013) EZH2 is regulated by ERK/AKT and targets integrin alpha2 gene to control epithelial–mesenchymal transition and anoikis in colon cancer cells, Int. J. Biochem. Cell Biol., 45, 243–254.CrossRefPubMedGoogle Scholar
  14. 14.
    Naci, D., Vuori, K., and Aoudjit, F. (2015) Alpha2beta1 integrin in cancer development and chemoresistance, Semin. Cancer Biol., 35, 145–153.CrossRefPubMedGoogle Scholar
  15. 15.
    Guo, Y. S., Zhao, R., Ma, J., Cui, W., Sun, Z., Gao, B., He, S., Han, Y. H., Fan, J., Yang, L., Tang, J., and Luo, Z. J. (2014) βig-h3 promotes human osteosarcoma cells metastasis by interacting with integrin α2β1 and activating PI3K signaling pathway, PLoS One, 9, e90220.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Naci, D., Azreq, M. A., Chetoui, N., Lauden, L., Sigaux, F., Charron, D., Al-Daccak, R., and Aoudjit, F. (2012) α2β1 integrin promotes chemoresistance against doxoru-bicin in cancer cells through extracellular signal-regulated kinase (ERK), J. Biol. Chem., 287, 17065–17076.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Mannava, S., Omilian, A. R., Wawrzyniak, J. A., Fink, E. E., Zhuang, D., Miecznikowski, J. C., Marshall, J. R., Soengas, M. S., Sears, R. C., Morrison, C. D., and Nikiforov, M. A. (2012) PP2A-B56a controls oncogene-induced senescence in normal and tumor human melanocytic cells, Oncogene, 31, 1484–1492.CrossRefPubMedGoogle Scholar
  18. 18.
    Morozevich, G. E., Kozlova, N. I., Ushakova, N. A., Preobrazhenskaya, M. E., and Berman, A. E. (2012) Integrin α5β1 simultaneously controls EGFR-dependent proliferation and Akt-dependent pro-survival signaling in epidermoid carcinoma cells, Aging (Albany NY), 4, 368–374.CrossRefGoogle Scholar
  19. 19.
    Morozevich, G. E., Kozlova, N. I., Cheglakov, I. B., Ushakova, N. A., and Berman, A. E. (2009) Integrin α5β1 controls invasion of human breast carcinoma cells by direct and indirect modulation of MMP-2 collagenase activity, Cell Cycle, 14, 2219–2225.CrossRefGoogle Scholar
  20. 20.
    Morozevich, G. E., Kozlova, N. I., Susova, O. Y., Karalkin, P. A., and Berman, A. E. (2015) Implication of α2β1 integrin in anoikis of MCF-7 breast carcinoma cells, Biochemistry (Moscow), 80, 97–103.CrossRefGoogle Scholar
  21. 21.
    Krueger, J. S., Keshamouni, V. G., Atanaskova, N., and Reddy, K. B. (2001) Temporal and quantitative regulation of mitogen-activated protein kinase (MAPK) modulates cell motility and invasion, Oncogene, 20, 4209–4218.CrossRefPubMedGoogle Scholar
  22. 22.
    Okayama, H. (2012) Cdc6: a trifunctional AAA+ ATPase that plays a central role in controlling the G(1)-S transition and cell survival, J. Biochem., 152, 297–303.CrossRefPubMedGoogle Scholar
  23. 23.
    Benetatos, L., Vartholomatos, G., and Hatzimichael, E. (2014) Polycomb group proteins and MYC: the cancer con-nection, Cell. Mol. Life Sci., 71, 257–269.CrossRefPubMedGoogle Scholar
  24. 24.
    Toulany, M., and Rodemann, H. P. (2016) Phosphatidylinositol 3-kinase/Akt signaling as a key medi-ator of tumor cell responsiveness to radiation, Semin. Cancer Biol., 35, 180–190.CrossRefGoogle Scholar
  25. 25.
    Safdari, Y., Khalili, M., Ebrahimzadeh, M. A., Yazdani, Y., and Farajnia, S. (2015) Natural inhibitors of PI3K/AKT signaling in breast cancer: emphasis on newly-discovered molecular mechanisms of action, Pharmacol. Res., 93, 1–10.CrossRefPubMedGoogle Scholar
  26. 26.
    Toker, A., and Yoeli-Lerner, M. (2006) Akt signaling and cancer: surviving but not moving on, Cancer Res., 66, 3963–3966.CrossRefPubMedGoogle Scholar
  27. 27.
    Irie, H. Y., Pearline, R. V., Grueneberg, D., Hsia, M., Ravichandran, P., Kothari, N., Natesan, S., and Brugge, J. S. (2005) Distinct roles of Akt1 and Akt2 in regulating cell migration and epithelial–mesenchymal transition, J. Cell Biol., 19, 1023–1034.CrossRefGoogle Scholar
  28. 28.
    Dyce, O. H., Ziober, A. F., Weber, R. S., Miyazaki, K., Khariwala, S. S., Feldman, M., and Ziober, B. L. (2002) Integrins in head and neck squamous cell carcinoma inva-sion, Laryngoscope, 112, 2025–2032.CrossRefPubMedGoogle Scholar
  29. 29.
    Sottnik, J. L., Daignault-Newton, S., Zhang, X., Morrissey, C., Hussain, M. H., Keller, E. T., and Hall, C. L. (2013) Integrin alpha2beta1 (α2β1) promotes prostate cancer skeletal metastasis, Clin. Exp. Metastasis, 30, 569–578.CrossRefPubMedGoogle Scholar
  30. 30.
    Yoshimura, K., Meckel, K. F., Laird, L. S., Chia, C. Y., Park, J. J., Olino, K. L., Tsunedomi, R., Harada, T., Iizuka, N., Hazama, S., Kato, Y., Keller, J. W., Thompson, J. M., Chang, F., Romer, L. H., Jain, A., Iacobuzio-Donahue, C., Oka, M., Pardoll, D. M., and Schulick, R. D. (2009) Integrin alpha2 mediates selective metastasis to the liver, Cancer Res., 69, 7320–7328.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Choi, J. A., Jung, Y. S., Kim, J. Y., Kim, H. M., and Lim, I. K. (2016) Inhibition of breast cancer invasion by TIS21/BTG2/Pc3-Akt1-Sp1-Nox4 pathway targeting actin nucleators, mDia genes, Oncogene, 35, 83–93.CrossRefPubMedGoogle Scholar
  32. 32.
    Hutchinson, J. N., Jin, J., Cardiff, R. D., Woodgett, J. R., and Muller, W. J. (2004) Activation of Akt-1 (PKB-alpha) can accelerate ErbB-2-mediated mammary tumorigenesis but suppresses tumor invasion, Cancer Res., 64, 3171–3178.CrossRefPubMedGoogle Scholar
  33. 33.
    Arboleda, M. J., Lyons, J. F., Kabbinavar, F. F., Bray, M. R., Snow, B. E., Ayala, R., Danino, M., Karlan, B. Y., and Slamon, D. J. (2003) Overexpression of Akt2/protein kinase Bbeta leads to up-regulation of beta1 integrins, increased invasion, and metastasis of human breast and ovarian cancer cells, Cancer Res., 63, 196–206.PubMedGoogle Scholar
  34. 34.
    Riggio, M., Perrone, M. C., Polo, M. L., Rodriguez, M. J., May, M., Abba, M., Lanari, C., and Novaro, V. (2017) AKT1 and AKT2 isoforms play distinct roles during breast cancer progression through the regulation of specific down-stream proteins, Sci. Rep., 7; doi: 10.1038/srep44244.Google Scholar
  35. 35.
    Rao, G., Pierobon, M., Kim, I. K., Hsu, W. H., Deng, J., Moon, Y.-W., Petricoin, E. F., Zhang, Y. W., Wang, Y., and Giaccone, G. (2017) Inhibition of AKT1 signaling pro-motes invasion and metastasis of non-small cell lung cancer cells with K-ras or EGFR mutations, Sci. Rep., 7; doi: 10.1038/s41598-017-06128-9.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. I. Kozlova
    • 1
  • G. E. Morozevich
    • 1
  • N. A. Ushakova
    • 1
  • A. E. Berman
    • 1
    Email author
  1. 1.Orekhovich Institute of Biomedical ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations