Biochemistry (Moscow)

, Volume 83, Issue 6, pp 674–689 | Cite as

Calcineurin and Its Role in Synaptic Transmission

  • E. O. Tarasova
  • A. E. GaydukovEmail author
  • O. P. Balezina


Calcineurin (CaN) is a serine/threonine phosphatase widely expressed in different cell types and structures including neurons and synapses. The most studied role of CaN is its involvement in the functioning of postsynaptic structures of central synapses. The role of CaN in the presynaptic structures of central and peripheral synapses is less understood, although it has generated a considerable interest and is a subject of a growing number of studies. The regulatory role of CaN in synaptic vesicle endocytosis in the synapse terminals is actively studied. In recent years, new targets of CaN have been identified and its role in the regulation of enzymes and neurotransmitter secretion in peripheral neuromuscular junctions has been revealed. CaN is the only phosphatase that requires calcium and calmodulin for activation. In this review, we present details of CaN molecular structure and give a detailed description of possible mechanisms of CaN activation involving calcium, enzymes, and endogenous and exogenous inhibitors. Known and newly discovered CaN targets at pre-and post-synaptic levels are described. CaN activity in synaptic structures is discussed in terms of functional involvement of this phosphatase in synaptic transmission and neurotransmitter release.


calcineurin calcineurin inhibitors endocytosis L-type calcium channels regulation of receptors/channels by phosphatases and kinases 



autoinhibitory domain


protein kinase A anchoring protein


α-amino-3-hydroxy-5-methyl-4-isoxazolpropionic acid




calcium/calmodulin-dependent type II kinase




calcineurin catalytic subunit


calcineurin regulatory subunit


cyclin-dependent kinase 5


cAMP-response element-binding protein


cyclosporine A


end-plate potential




FK506-binding protein


γ-aminobutyric acid




endogenous inhibitor of protein phosphatase 1


long-term depression


long-term potentiation


nuclear factor of activated T cells




protein kinase A


protein kinase C


protein phosphatase 1


calcineurin regulatory protein


transient receptor potential cation channel subfamily V member 1


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Klee, C. B., and Krinks, M. H. (1978) Purification of cyclic 3′,5′-nucleotide phosphodiesterase inhibitory protein by affinity chromatography on activator protein coupled to sepharose, Biochemistry, 17, 120–126.PubMedCrossRefGoogle Scholar
  2. 2.
    Rusnak, F., and Mertz, P. (2000) Calcineurin: form and function, Physiol. Rev., 80, 1483–1521.PubMedCrossRefGoogle Scholar
  3. 3.
    Li, H., Rao, A., and Hogan, P. G. (2011) Interaction of cal-cineurin with substrates and targeting proteins, Trends Cell Biol., 21, 91–103.PubMedCrossRefGoogle Scholar
  4. 4.
    Cottrell, J. R., Li, B., Kyung, J. W., Ashford, C. J., Mann, J. J., Horvath, T. L., Ryan, T. A., Kim, S. H., and Gerber, D. J. (2016) Calcineurin Aγ is a functional phosphatase that modulates synaptic vesicle endocytosis, J. Biol. Chem., 291, 1948–1956.PubMedCrossRefGoogle Scholar
  5. 5.
    Furman, J. L., and Norris, C. M. (2014) Calcineurin and glial signaling: neuroinflammation and beyond, J. Neuroinflamm., 11, 158.CrossRefGoogle Scholar
  6. 6.
    Kim, S. H., and Ryan, T. A. (2013) Balance of calcineurin A and CDK5 activities sets release probability at nerve ter-minals, J. Neurosci., 33, 8937–8950.PubMedCrossRefGoogle Scholar
  7. 7.
    Furman, J. L., Sompol, P., Kraner, S. D., Pleiss, M. M., Putman, E. J., Dunkerson, J., Mohmmad Abdul, H., Roberts, K. N., Scheff, S. W., and Norris, C. M. (2016) Blockade of astrocytic calcineurin/NFAT signaling helps to normalize hippocampal synaptic function and plasticity in a rat model of traumatic brain injury, J. Neurosci., 36, 1502–1515.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Yakel, J. L. (1997) Calcineurin regulation of synaptic func-tion: from ion channels to transmitter release and gene transcription, Trends Pharmacol. Sci., 18, 124–134.PubMedCrossRefGoogle Scholar
  9. 9.
    Marks, B., and McMahon, H. T. (1998) Calcium triggers calcineurin-dependent synaptic vesicle recycling in mam-malian nerve terminals, Curr. Biol., 8, 740–749.PubMedCrossRefGoogle Scholar
  10. 10.
    Herzig, S., and Neumann, J. (2000) Effects of serine/thre-onine protein phosphatases on ion channels in excitable membranes, Physiol. Rev., 80, 173–210.PubMedCrossRefGoogle Scholar
  11. 11.
    Sun, T., Wu, X.-S., Xu, J., McNeil, B. D., Pang, Z. P., Yang, W., Bai, L., Qadri, S., Molkentin, J. D., Yue, D. T., and Wu, L.-G. (2010) The role of calcium/calmodulin-activated calcineurin in rapid and slow endocytosis at cen-tral synapses, J. Neurosci., 30, 11838–11847.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Sanderson, J. L., and Dell’Acqua, M. L. (2011) AKAP sig-naling complexes in regulation of excitatory synaptic plas-ticity, J. Neurosci., 17, 321–336.Google Scholar
  13. 13.
    Shibasaki, F., Hallin, U., and Uchino, H. (2002) Calcineurin as a multifunctional regulator, J. Biochem., 131, 1–15.PubMedCrossRefGoogle Scholar
  14. 14.
    Groth, R. D., Dunbar, R. L., and Mermelstein, P. G. (2003) Calcineurin regulation of neuronal plasticity, Biochem. Biophys. Res. Commun., 311, 1159–1171.PubMedCrossRefGoogle Scholar
  15. 15.
    Jurado, S., Biou, V., and Malenka, R. C. (2010) A cal-cineurin/AKAP complex is required for NMDA receptor-dependent long-term depression, Nat. Neurosci., 13, 1053–1055.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Cousin, M. A., and Robinson, P. J. (2001) The dephos-phins: dephosphorylation by calcineurin triggers synaptic vesicle endocytosis, Trends Neurosci., 24, 659–665.PubMedCrossRefGoogle Scholar
  17. 17.
    Cottrell, J. R., Levenson, J. M., Kim, S. H., Gibson, H. E., Richardson, K. A., Sivula, M., Li, B., Ashford, C. J., Heindl, K. A., Babcock, R. J., Rose, D. M., Hempel, C. M., Wiig, K. A., Laeng, P., Levin, M. E., Ryan, T. A., and Gerber, D. J. (2013) Working memory impairment in cal-cineurin knock-out mice is associated with alterations in synaptic vesicle cycling and disruption of high-frequency synaptic and network activity in prefrontal cortex, J. Neurosci., 33, 10938–10949.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Kuromi, H., Yoshihara, M., and Kidokoro, Y. (1997) An inhibitory role of calcineurin in endocytosis of synaptic vesicles at nerve terminals of Drosophila larvae, Neurosci. Res., 27, 101–113.PubMedCrossRefGoogle Scholar
  19. 19.
    Sim, A. T. R., Baldwin, M. L., Rostas, J. A. P., Holst, J., and Ludowyke, R. I. (2003) The role of serine/threonine protein phosphatases in exocytosis, Biochem. J., 373, 641–659.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Kumashiro, S., Lu, Y.-F., Tomizawa, K., Matsushita, M., Wei, F.-Y., and Matsui, H. (2005) Regulation of synaptic vesicle recycling by calcineurin in different vesicle pools, Neurosci. Res., 51, 435–443.PubMedCrossRefGoogle Scholar
  21. 21.
    Clayton, E. L., and Cousin, M. A. (2009) The molecular physiology of activity-dependent bulk endocytosis of synaptic vesicles, J. Neurochem., 111, 901–914.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Xue, L., McNeil, B. D., Wu, X.-S., Luo, F., He, L., and Wu, L.-G. (2012) A membrane pool retrieved via endocy-tosis overshoot at nerve terminals: a study of its retrieval mechanism and role, J. Neurosci., 32, 3398–3404.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Cousin, M. A. (2015) Synaptic vesicle endocytosis and endosomal recycling in central nerve terminals, J. Neurosci., 21, 413–423.Google Scholar
  24. 24.
    Leitz, J., and Kavalali, E. T. (2016) Ca2+ dependence of synaptic vesicle endocytosis, J. Neurosci., 22, 464–476.Google Scholar
  25. 25.
    Parry, R. V., and June, C. H. (2003) Calcium-independent calcineurin regulation, Nat. Immunol., 4, 821–823.PubMedCrossRefGoogle Scholar
  26. 26.
    Silverman-Gavrila, L. B., Praver, M., Mykles, D. L., and Charlton, M. P. (2013) Calcium, calpain, and calcineurin in low-frequency depression of transmitter release, J. Neurosci., 33, 1975–1990.PubMedCrossRefGoogle Scholar
  27. 27.
    Wang, Y.-L., and Zhang, C. X. (2017) Putting a brake on synaptic vesicle endocytosis, Cell. Mol. Life Sci., 74, 2917–2927.PubMedCrossRefGoogle Scholar
  28. 28.
    Reese, L. C., and Taglialatela, G. (2011) A role for cal-cineurin in Alzheimer’s disease, Curr. Neuropharmacol., 9, 685–692.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Kipanyula, M. J., Kimaro, W. H., and Seke Etet, P. F. (2016) The emerging roles of the calcineurin-nuclear factor of activated T-lymphocytes pathway in nervous system functions and diseases, J. Aging Res., 2016, 5081021.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Zemel, B. M., Muqeem, T., Brown, E. V., Goulao, M., Urban, M. W., Tymansky, S. R., Lepore, A. C., and Covarrubias, M. (2017) Calcineurin dysregulation under-lies spinal cord injury-induced K+ channel dysfunction in DRG neurons, J. Neurosci., 37, 8256–8272.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Musson, R. E. A., and Smit, N. P. M. (2011) Regulatory mechanisms of calcineurin phosphatase activity, Curr. Med. Chem., 18, 301–315.PubMedCrossRefGoogle Scholar
  32. 32.
    Baumgartel, K., and Mansuy, I. M. (2012) Neural func-tions of calcineurin in synaptic plasticity and memory, Learn. Mem., 19, 375–384.PubMedCrossRefGoogle Scholar
  33. 33.
    Rumi-Masante, J., Rusinga, F. I., Lester, T. E., Dunlap, T. B., Williams, T. D., Dunker, A. K., Weis, D. D., and Creamer, T. P. (2012) Structural basis for activation of cal-cineurin by calmodulin, J. Mol. Biol., 415, 307–317.PubMedCrossRefGoogle Scholar
  34. 34.
    Bastan, R., Eskandari, N., Sabzghabaee, A. M., and Manian, M. (2014) Serine/threonine phosphatases: classi-fication, roles and pharmacological regulation, Int. J. Immunopathol. Pharmacol., 27, 473–484.PubMedCrossRefGoogle Scholar
  35. 35.
    Muramatsu, T., and Kincaid, R. L. (1992) Molecular cloning and chromosomal mapping of the human gene for the testis-specific catalytic subunit of calmodulin-depend-ent protein phosphatase (calcineurin A), Biochem. Biophys. Res. Commun., 188, 265–271.PubMedCrossRefGoogle Scholar
  36. 36.
    Gerber, D. J., Hall, D., Miyakawa, T., Demars, S., Gogos, J. A., Karayiorgou, M., and Tonegawa, S. (2003) Evidence for association of schizophrenia with genetic variation in the 8p21.3 gene, PPP3CC, encoding the calcineurin gamma subunit, Proc. Natl. Acad. Sci. USA, 100, 8993–8998.PubMedCrossRefGoogle Scholar
  37. 37.
    Aramburu, J., Rao, A., and Klee, C. B. (2000) Calcineurin: from structure to function, Curr. Top. Cell. Regul., 36, 237–295.PubMedCrossRefGoogle Scholar
  38. 38.
    He, Z.-H., Hu, Y., Li, Y.-C., Yvert, T., Santiago, C., Gomez-Gallego, F., Ruiz, J. R., and Lucia, A. (2011) Are calcineurin genes associated with athletic status? A function, replication study, Med. Sci. Sport. Exerc., 43, 1433–1440.CrossRefGoogle Scholar
  39. 39.
    Perrino, B. A., Ng, L. Y., and Soderling, T. R. (1995) Calcium regulation of calcineurin phosphatase activity by its B subunit and calmodulin. Role of the autoinhibitory domain, J. Biol. Chem., 270, 340–346.PubMedCrossRefGoogle Scholar
  40. 40.
    Li, S.-J., Wang, J., Ma, L., Lu, C., Wang, J., Wu, J.-W., and Wang, Z.-X. (2016) Cooperative autoinhibition and multi-level activation mechanisms of calcineurin, Cell Res., 26, 336–349.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Hogan, P. G., and Li, H. (2005) Calcineurin, Curr. Biol., 15, 442–443.CrossRefGoogle Scholar
  42. 42.
    Guasch, A., Aranguren-Ibanez, A., Perez-Luque, R., Aparicio, D., Martinez-Hoyer, S., Mulero, M. C., Serrano-Candelas, E., Perez-Riba, M., and Fita, I. (2015) Calcineurin undergoes a conformational switch evoked via peptidyl-prolyl isomerization, PLoS One, 10, e0134569.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Stemmer, P. M., and Klee, C. B. (1994) Dual calcium ion regulation of calcineurin by calmodulin and calcineurin B, Biochemistry, 33, 6859–6866.PubMedCrossRefGoogle Scholar
  44. 44.
    Klee, C. B., Ren, H., and Wang, X. (1998) Regulation of the calmodulin-stimulated protein phosphatase, cal-cineurin, J. Biol. Chem., 273, 13367–13370.PubMedCrossRefGoogle Scholar
  45. 45.
    Castellani, G. C., Quinlan, E. M., Bersani, F., Cooper, L. N., and Shouval, H. Z. (2005) A model of bidirectional synaptic plasticity: from signaling network to channel con-ductance, Learn. Mem., 12, 423–432.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Fujii, H., Inoue, M., Okuno, H., Sano, Y., Takemoto-Kimura, S., Kitamura, K., Kano, M., and Bito, H. (2013) Nonlinear decoding and asymmetric representation of neu-ronal input information by CaMKIIα and calcineurin, Cell. Rep., 3, 978–987.PubMedCrossRefGoogle Scholar
  47. 47.
    Quintana, A. R., Wang, D., Forbes, J. E., and Waxham, M. N. (2005) Kinetics of calmodulin binding to calcineurin, Biochem. Biophys. Res. Commun., 334, 674–680.PubMedCrossRefGoogle Scholar
  48. 48.
    Mukerjee, N., McGinnis, K. M., Gnegy, M. E., and Wang, K. K. W. (2001) Caspase-mediated calcineurin activation contributes to IL-2 release during T-cell activation, Biochem. Biophys. Res. Commun., 285, 1192–1199.PubMedCrossRefGoogle Scholar
  49. 49.
    Mukerjee, N., McGinnis, K. M., Park, Y. H., Gnegy, M. E., and Wang, K. K. W. (2000) Caspase-mediated prote-olytic activation of calcineurin in thapsigargin-mediated apoptosis in SH-SY5Y neuroblastoma cells, Arch. Biochem. Biophys., 379, 337–343.PubMedCrossRefGoogle Scholar
  50. 50.
    Goll, D. E., Thompson, V. F., Li, H., Wei, W., and Cong, J. (2003) The calpain system, Physiol. Rev., 83, 731–801.PubMedCrossRefGoogle Scholar
  51. 51.
    Wu, H.-Y., and Lynch, D. R. (2006) Calpain and synaptic function, Mol. Neurobiol., 33, 215–236.PubMedCrossRefGoogle Scholar
  52. 52.
    Manalan, A. S., and Klee, C. B. (1983) Activation of cal-cineurin by limited proteolysis, Proc. Natl. Acad. Sci. USA, 80, 4291–4295.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Mukherjee, A., and Soto, C. (2011) Role of calcineurin in neurodegeneration produced by misfolded proteins and endoplasmic reticulum stress, Curr. Opin. Cell Biol., 23, 223–230.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Wu, H.-Y., Tomizawa, K., Oda, Y., Wei, F.-Y., Lu, Y.-F., Matsushita, M., Li, S.-T., Moriwaki, A., and Matsui, H. (2004) Critical role of calpain-mediated cleavage of cal-cineurin in excitotoxic neurodegeneration, J. Biol. Chem., 279, 4929–4940.PubMedCrossRefGoogle Scholar
  55. 55.
    Liu, H., Tu, L., Wang, Q., Sun, Y., Ma, Y., Cen, J., Wei, Q., and Luo, J. (2013) Modulation of calcineurin activity in mouse brain by chronic oral administration of cyclosporine A, IUBMB Life, 65, 445–453.PubMedCrossRefGoogle Scholar
  56. 56.
    Liu, J., Farmer, J. D., Lane, W. S., Friedman, J., Weissman, I., and Schreiber, S. L. (1991) Calcineurin is a common target of cyclophilin–cyclosporin A and FKBP–FK506 complexes, Cell, 66, 807–815.PubMedCrossRefGoogle Scholar
  57. 57.
    Ho, S., Clipstone, N., Timmermann, L., Northrop, J., Graef, I., Fiorentino, D., Nourse, J., and Crabtree, G. R. (1996) The mechanism of action of cyclosporin A and FK506, Clin. Immunopathol., 80, 540–545.CrossRefGoogle Scholar
  58. 58.
    Hemenway, C. S., and Heitman, J. (1999) Calcineurin. Structure, function, and inhibition, Cell Biochem. Biophys., 30, 115–151.PubMedCrossRefGoogle Scholar
  59. 59.
    Pirsch, J. D., Miller, J., Deierhoi, M. H., Vincenti, F., and Filo, R. S. (1997) A comparison of tacrolimus (FK506) and cyclosporine for immunosuppression after cadaveric renal transplantation. FK506 kidney transplant study group, Transplantation, 63, 977–983.PubMedCrossRefGoogle Scholar
  60. 60.
    Tandan, S., Wang, Y., Wang, T. T., Jiang, N., Hall, D. D., Hell, J. W., Luo, X., Rothermel, B. A., and Hill, J. A. (2009) Physical and functional interaction between cal-cineurin and the cardiac L-type Ca2+ channel, Circ. Res., 105, 51–60.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    De Bruyne, R., Bogaert, D., De Ruyck, N., Lambrecht, B. N., Van Winckel, M., Gevaert, P., and Dullaers, M. (2015) Calcineurin inhibitors dampen humoral immunity by act-ing directly on naive B cells, Clin. Exp. Immunol., 180, 542–550.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Kung, L., Batiuk, T. D., Palomo-Pinon, S., Noujaim, J., Helms, L. M., and Halloran, P. F. (2001) Tissue distribu-tion of calcineurin and its sensitivity to inhibition by cyclosporine, Am. J. Transplant., 1, 325–333.PubMedCrossRefGoogle Scholar
  63. 63.
    Swanson, S. K., Born, T., Zydowsky, L. D., Cho, H., Chang, H. Y., Walsh, C. T., and Rusnak, F. (1992) Cyclosporin-mediated inhibition of bovine calcineurin by cyclophilins A and B, Proc. Natl. Acad. Sci. USA, 89, 3741–3745.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Sagoo, J. K., Fruman, D. A., Wesselborg, S., Walsh, C. T., and Bierer, B. E. (1996) Competitive inhibition of cal-cineurin phosphatase activity by its autoinhibitory domain, Biochem. J., 320, 879–884.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Gaydukov, A. E., Tarasova, E. O., and Balezina, O. P. (2013) Calcium-dependent phosphatase calcineurin down-regulates evoked neurotransmitter release in neuromuscu-lar junctions of mice, Neurochem. J., 7, 29–33.CrossRefGoogle Scholar
  66. 66.
    Wu, H.-Y., Tomizawa, K., and Matsui, H. (2007) Calpain-calcineurin signaling in the pathogenesis of calcium-dependent disorder, Acta Med. Okayama, 61, 123–137.PubMedGoogle Scholar
  67. 67.
    Yi, X., Li, X., and Jiang, X. (2016) Carabin: endogenous calcineurin inhibitor, a potential diagnostic and therapeutic target for cardiac hypertrophy in heart failure, Int. J. Cardiol., 212, 57–58.PubMedCrossRefGoogle Scholar
  68. 68.
    Sun, L., Youn, H. D., Loh, C., Stolow, M., He, W., and Liu, J. O. (1998) Cabin 1, a negative regulator for cal-cineurin signaling in T lymphocyte, Immunity, 8, 703–711.PubMedCrossRefGoogle Scholar
  69. 69.
    Lai, M. M., Burnett, P. E., Wolosker, H., Blackshaw, S., and Snyder, S. H. (1998) Cain, a novel physiologic protein inhibitor of calcineurin, J. Biol. Chem., 273, 18325–18331.PubMedCrossRefGoogle Scholar
  70. 70.
    Lai, M. M., Luo, H. R., Burnett, P. E., Hong, J. J., and Snyder, S. H. (2000) The calcineurin-binding protein cain is a negative regulator of synaptic vesicle endocytosis, J. Biol. Chem., 275, 34017–34020.PubMedCrossRefGoogle Scholar
  71. 71.
    Rothermel, B., Vega, R. B., Yang, J., Wu, H., Bassel-Duby, R., and Williams, R. S. (2000) A protein encoded within the Down syndrome critical region is enriched in striated muscles and inhibits calcineurin signaling, J. Biol. Chem., 275, 8719–8725.PubMedCrossRefGoogle Scholar
  72. 72.
    Porta, S., Marti, E., de la Luna, S., and Arbones, M. L. (2007) Differential expression of members of the RCAN family of calcineurin regulators suggests selective functions for these proteins in the brain, Eur. J. Neurosci., 26, 1213–1226.PubMedCrossRefGoogle Scholar
  73. 73.
    Mitchell, A. N., Jayakumar, L., Koleilat, I., Qian, J., Sheehan, C., Bhoiwala, D., Hushmendy, S. F., Heuring, J. M., and Crawford, D. R. (2007) Brain expression of the calcineurin inhibitor RCAN1 (Adapt78), Arch. Biochem. Biophys., 467, 185–192.PubMedCrossRefGoogle Scholar
  74. 74.
    Lloret, A., Badia, M.-C., Giraldo, E., Ermak, G., Alonso, M.-D., Pallardo, F. V., Davies, K. J. A., and Vina, J. (2011) Amyloid-β toxicity and tau hyperphosphorylation are linked via RCAN1 in Alzheimer’s disease, J. Alzheimer’s Dis., 27, 701–709.CrossRefGoogle Scholar
  75. 75.
    Lin, X., Sikkink, R. A., Rusnak, F., and Barber, D. L. (1999) Inhibition of calcineurin phosphatase activity by a calcineurin B homologous protein, J. Biol. Chem., 274, 36125–36131.PubMedCrossRefGoogle Scholar
  76. 76.
    Coghlan, V. M., Perrino, B. A., Howard, M., Langeberg, L. K., Hicks, J. B., Gallatin, W. M., and Scott, J. D. (1995) Association of protein kinase A and protein phosphatase 2B with a common anchoring protein, Science, 267, 108–111.PubMedCrossRefGoogle Scholar
  77. 77.
    Silverman-Gavrila, L. B., and Charlton, M. P. (2009) Calcineurin and cytoskeleton in low-frequency depression, J. Neurochem., 109, 716–732.PubMedCrossRefGoogle Scholar
  78. 78.
    Klauck, T. M., Faux, M. C., Labudda, K., Langeberg, L. K., Jaken, S., and Scott, J. D. (1996) Coordination of three signaling enzymes by AKAP79, a mammalian scaffold pro-tein, Science, 271, 1589–1592.PubMedCrossRefGoogle Scholar
  79. 79.
    Dittmer, P. J., Dell’Acqua, M. L., and Sather, W. A. (2014) Ca2+/calcineurin-dependent inactivation of neuronal L-type Ca2+ channels requires priming by AKAP-anchored protein kinase A, Cell. Rep., 7, 1410–1416.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Murphy, J. G., Sanderson, J. L., Gorski, J. A., Scott, J. D., Catterall, W. A., Sather, W. A., and Dell’Acqua, M. L. (2014) AKAP-anchored PKA maintains neuronal L-type calcium channel activity and NFAT transcriptional signal-ing, Cell. Rep., 7, 1577–1588.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Oliveria, S. F., Dell’Acqua, M. L., and Sather, W. A. (2007) AKAP79/150 anchoring of calcineurin controls neuronal L-type Ca2+ channel activity and nuclear signaling, Neuron, 55, 261–275.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Oliveria, S. F., Dittmer, P. J., Youn, D., Dell’Acqua, M. L., and Sather, W. A. (2012) Localized calcineurin confers Ca2+-dependent inactivation on neuronal L-type Ca2+ channels, J. Neurosci., 32, 15328–15337.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    D’Amelio, M., Cavallucci, V., Middei, S., Marchetti, C., Pacioni, S., Ferri, A., Diamantini, A., De Zio, D., Carrara, P., Battistini, L., Moreno, S., Bacci, A., Ammassari-Teule, M., Marie, H., and Cecconi, F. (2011) Caspase-3 triggers early synaptic dysfunction in a mouse model of Alzheimer’s disease, Nat. Neurosci., 14, 69–76.PubMedCrossRefGoogle Scholar
  84. 84.
    Olson, E. N., and Williams, R. S. (2000) Calcineurin sig-naling and muscle remodeling, Cell, 101, 689–692.PubMedCrossRefGoogle Scholar
  85. 85.
    Rao, A., Luo, C., and Hogan, P. G. (1997) Transcription factors of the NFAT family: regulation and function, Annu. Rev. Immunol., 15, 707–747.PubMedCrossRefGoogle Scholar
  86. 86.
    Park, S., Uesugi, M., and Verdine, G. L. (2000) A second calcineurin binding site on the NFAT regulatory domain, Proc. Natl. Acad. Sci. USA, 97, 7130–7135.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Vihma, H., Luhakooder, M., Pruunsild, P., and Timmusk, T. (2016) Regulation of different human NFAT isoforms by neuronal activity, J. Neurochem., 137, 394–408.PubMedCrossRefGoogle Scholar
  88. 88.
    Zhang, J., and Shapiro, M. S. (2012) Activity-dependent transcriptional regulation of M-type (Kv7) K(+) channels by AKAP79/150-mediated NFAT actions, Neuron, 76, 1133–1146.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Norris, C. M., Blalock, E. M., Chen, K.-C., Porter, N. M., and Landfield, P. W. (2002) Calcineurin enhances L-type Ca2+ channel activity in hippocampal neurons: increased effect with age in culture, Neuroscience, 110, 213–225.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Wu, H., Naya, F. J., McKinsey, T. A., Mercer, B., Shelton, J. M., Chin, E. R., Simard, A. R., Michel, R. N., Bassel-Duby, R., Olson, E. N., and Williams, R. S. (2000) MEF2 responds to multiple calcium-regulated signals in the con-trol of skeletal muscle fiber type, EMBO J., 19, 1963–1973.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Li, Z., Ni, C., Xia, C., Jaw, J., Wang, Y., Cao, Y., Xu, M., and Guo, X. (2017) Calcineurin/nuclear factor-κB signal-ing mediates isoflurane-induced hippocampal neuroin-flammation and subsequent cognitive impairment in aged rats, Mol. Med. Rep., 15, 201–209.PubMedCrossRefGoogle Scholar
  92. 92.
    He, K., Song, L., Cummings, L. W., Goldman, J., Huganir, R. L., and Lee, H.-K. (2009) Stabilization of Ca2+-permeable AMPA receptors at perisynaptic sites by GluR1-S845 phosphorylation, Proc. Natl. Acad. Sci. USA, 106, 20033–20038.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Lee, H. K., Barbarosie, M., Kameyama, K., Bear, M. F., and Huganir, R. L. (2000) Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity, Nature, 405, 955–959.PubMedCrossRefGoogle Scholar
  94. 94.
    Lin, J. W., Ju, W., Foster, K., Lee, S. H., Ahmadian, G., Wyszynski, M., Wang, Y. T., and Sheng, M. (2000) Distinct molecular mechanisms and divergent endocytotic pathways of AMPA receptor internalization, Nat. Neurosci., 3, 1282–1290.PubMedCrossRefGoogle Scholar
  95. 95.
    Dacher, M., Gouty, S., Dash, S., Cox, B. M., and Nugent, F. S. (2013) A-kinase anchoring protein-calcineurin signal-ing in long-term depression of GABAergic synapses, J. Neurosci., 33, 2650–2660.PubMedCrossRefGoogle Scholar
  96. 96.
    Eckel, R., Szulc, B., Walker, M. C., and Kittler, J. T. (2015) Activation of calcineurin underlies altered trafficking of α2 subunit containing GABAA receptors during prolonged epileptiform activity, Neuropharmacology, 88, 82–90.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Weisenhaus, M., Allen, M. L., Yang, L., Lu, Y., Nichols, C. B., Su, T., Hell, J. W., and McKnight, G. S. (2010) Mutations in AKAP5 disrupt dendritic signaling complexes and lead to electrophysiological and behavioral phenotypes in mice, PLoS One, 5, e10325.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Lin, L., Sun, W., Kung, F., Dell’Acqua, M. L., and Hoffman, D. A. (2011) AKAP79/150 impacts intrinsic excitability of hippocampal neurons through phospho-reg-ulation of A-type K+ channel trafficking, J. Neurosci., 31, 1323–1332.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Por, E. D., Samelson, B. K., Belugin, S., Akopian, A. N., Scott, J. D., and Jeske, N. A. (2010) PP2B/calcineurin-mediated desensitization of TRPV1 does not require AKAP150, Biochem. J., 432, 549–556.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Seo, S. R., Kim, S. S., and Chung, K. C. (2009) Activation of adenylate cyclase by forskolin increases the protein sta-bility of RCAN1 (DSCR1 or Adapt78), FEBS Lett., 583, 3140–3144.PubMedCrossRefGoogle Scholar
  101. 101.
    Kim, S. S., Lee, E. H., Lee, K., Jo, S.-H., and Seo, S. R. (2015) PKA regulates calcineurin function through the phosphorylation of RCAN1: identification of a novel phosphorylation site, Biochem. Biophys. Res. Commun., 459, 604–609.PubMedCrossRefGoogle Scholar
  102. 102.
    Kim, S., and Ziff, E. B. (2014) Calcineurin mediates synaptic scaling via synaptic trafficking of Ca2+-permeable AMPA receptors, PLoS Biol., 12, e1001900.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Bredt, D. S., Ferris, C. D., and Snyder, S. H. (1992) Nitric oxide synthase regulatory sites. Phosphorylation by cyclic AMP-dependent protein kinase, protein kinase C, and cal-cium/calmodulin protein kinase; identification of flavin and calmodulin binding sites, J. Biol. Chem., 267, 10976–10981.PubMedGoogle Scholar
  104. 104.
    Dawson, T. M., Steiner, J. P., Dawson, V. L., Dinerman, J. L., Uhl, G. R., and Snyder, S. H. (1993) Immunosup-pressant FK506 enhances phosphorylation of nitric oxide synthase and protects against glutamate neurotoxicity, Proc. Natl. Acad. Sci. USA, 90, 9808–9812.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Bon, C. L. M., and Garthwaite, J. (2003) On the role of nitric oxide in hippocampal long-term potentiation, J. Neurosci., 23, 1941–1948.PubMedCrossRefGoogle Scholar
  106. 106.
    Yang, L., Liu, G., Zakharov, S. I., Morrow, J. P., Rybin, V. O., Steinberg, S. F., and Marx, S. O. (2005) Ser1928 is a common site for Cav1.2 phosphorylation by protein kinase C isoforms, J. Biol. Chem., 280, 207–214.PubMedCrossRefGoogle Scholar
  107. 107.
    Dai, S., Hall, D. D., and Hell, J. W. (2009) Supramolecular assemblies and localized regulation of voltage-gated ion channels, Physiol. Rev., 89, 411–452.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Xia, Z., and Storm, D. R. (2005) The role of calmodulin as a signal integrator for synaptic plasticity, Nat. Rev. Neurosci., 6, 267–276.PubMedCrossRefGoogle Scholar
  109. 109.
    Makhinson, M., Chotiner, J. K., Watson, J. B., and O’Dell, T. J. (1999) Adenylyl cyclase activation modulates activity-dependent changes in synaptic strength and Ca2+/calmodulin-dependent kinase II autophosphoryla-tion, J. Neurosci., 19, 2500–2510.PubMedCrossRefGoogle Scholar
  110. 110.
    Winder, D. G., and Sweatt, J. D. (2001) Roles of serine/threonine phosphatases in hippocampal synaptic plasticity, Nat. Rev. Neurosci., 2, 461–474.PubMedCrossRefGoogle Scholar
  111. 111.
    Rodrнguez-Moreno, A., Gonzalez-Rueda, A., Banerjee, A., Upton, A. L., Craig, M. T., and Paulsen, O. (2013) Presynaptic self-depression at developing neocortical synapses, Neuron, 77, 35–42.CrossRefGoogle Scholar
  112. 112.
    Kim, S. H., and Ryan, T. A. (2010) CDK5 serves as a major control point in neurotransmitter release, Neuron, 67, 797–809.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Cesca, F., Baldelli, P., Valtorta, F., and Benfenati, F. (2010) The synapsins: key actors of synapse function and plasticity, Prog. Neurobiol., 91, 313–348.PubMedCrossRefGoogle Scholar
  114. 114.
    Jovanovic, J. N., Sihra, T. S., Nairn, A. C., Hemmings, H. C., Greengard, P., and Czernik, A. J. (2001) Opposing changes in phosphorylation of specific sites in synapsin I during Ca2+-dependent glutamate release in isolated nerve terminals, J. Neurosci., 21, 7944–7953.PubMedCrossRefGoogle Scholar
  115. 115.
    Chi, P., Greengard, P., and Ryan, T. A. (2003) Synaptic vesicle mobilization is regulated by distinct synapsin I phosphorylation pathways at different frequencies, Neuron, 38, 69–78.PubMedCrossRefGoogle Scholar
  116. 116.
    Baldwin, M. L., Rostas, J. A. P., and Sim, A. T. R. (2003) Two modes of exocytosis from synaptosomes are differen-tially regulated by protein phosphatase types 2A and 2B, J. Neurochem., 85, 1190–1199.PubMedCrossRefGoogle Scholar
  117. 117.
    Liang, K., Wei, L., and Chen, L. (2017) Exocytosis, endo-cytosis, and their coupling in excitable cells, Front. Mol. Neurosci., 10, 109.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Wu, X.-S., Zhang, Z., Zhao, W.-D., Wang, D., Luo, F., and Wu, L.-G. (2014) Calcineurin is universally involved in vesicle endocytosis at neuronal and non-neuronal secre-tory cells, Cell Rep., 7, 982–982.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Cousin, M. A. (2017) Integration of synaptic vesicle cargo retrieval with endocytosis at central nerve terminals, Front. Cell. Neurosci., 11, 234.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Watanabe, S., and Boucrot, E. (2017) Fast and ultrafast endocytosis, Curr. Opin. Cell Biol., 47, 64–71.PubMedCrossRefGoogle Scholar
  121. 121.
    Wu, L.-G., Hamid, E., Shin, W., and Chiang, H.-C. (2014) Exocytosis and endocytosis: modes, functions, and coupling mechanisms, Annu. Rev. Physiol., 76, 301–331.PubMedCrossRefGoogle Scholar
  122. 122.
    Yamashita, T. (2012) Ca2+-dependent regulation of synap-tic vesicle endocytosis, Neurosci. Res., 73, 1–7.PubMedCrossRefGoogle Scholar
  123. 123.
    Wu, X.-S., and Wu, L.-G. (2014) The yin and yang of cal-cium effects on synaptic vesicle endocytosis, J. Neurosci., 34, 2652–2659.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Fassio, A., Fadda, M., and Benfenati, F. (2016) Molecular machines determining the fate of endocytosed synaptic vesicles in nerve terminals, Front. Synaptic Neurosci., 8, 10.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Samasilp, P., Chan, S.-A., and Smith, C. (2012) Activity-dependent fusion pore expansion regulated by a cal-cineurin-dependent dynamin-syndapin pathway in mouse adrenal chromaffin cells, J. Neurosci., 32, 10438–10447.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Alabi, A. A., and Tsien, R. W. (2013) Perspectives on kiss-and-run: role in exocytosis, endocytosis, and neurotrans-mission, Annu. Rev. Physiol., 75, 393–422.PubMedCrossRefGoogle Scholar
  127. 127.
    He, Q., Dent, E. W., and Meiri, K. F. (1997) Modulation of actin filament behavior by GAP-43 (neuromodulin) is dependent on the phosphorylation status of serine 41, the protein kinase C site, J. Neurosci., 17, 3515–3524.PubMedCrossRefGoogle Scholar
  128. 128.
    Lautermilch, N. J., and Spitzer, N. C. (2000) Regulation of calcineurin by growth cone calcium waves controls neu-rite extension, J. Neurosci., 20, 315–325.PubMedCrossRefGoogle Scholar
  129. 129.
    Etherington, S. J., and Everett, A. W. (2004) Postsynaptic production of nitric oxide implicated in long-term depres-sion at the mature amphibian (Bufo marinus ) neuromus-cular junction, J. Physiol., 559, 507–517.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Petrov, A. M., Yakovleva, A. A., and Zefirov, A. L. (2014) Role of membrane cholesterol in spontaneous exocytosis at frog neuromuscular synapses: reactive oxygen species-calcium interplay, J. Physiol., 592, 4995–5009.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Chin, E. R. (2010) Intracellular Ca2+ signaling in skeletal muscle: decoding a complex message, Exerc. Sport Sci. Rev., 38, 76–85.PubMedCrossRefGoogle Scholar
  132. 132.
    Frey, N., Frank, D., Lippl, S., Kuhn, C., Kogler, H., Barrientos, T., Rohr, C., Will, R., Muller, O. J., Weiler, H., Bassel-Duby, R., Katus, H. A., and Olson, E. N. (2008) Calsarcin-2 deficiency increases exercise capacity in mice through calcineurin/NFAT activation, J. Clin. Invest., 118, 3598–3608.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Shenkman, B. S. (2016) From slow to fast: hypogravity-induced remodeling of muscle fiber myosin phenotype, Acta Naturae, 8, 47–59.PubMedPubMedCentralGoogle Scholar
  134. 134.
    Hardwick, J. C., and Parsons, R. L. (1996) Activation of the protein phosphatase calcineurin during carbachol exposure decreases the extent of recovery from end-plate desensitization, J. Neurophysiol., 76, 3609–3616.PubMedCrossRefGoogle Scholar
  135. 135.
    Salanova, M., Bortoloso, E., Schiffl, G., Gutsmann, M., Belavy, D. L., Felsenberg, D., Furlan, S., Volpe, P., and Blottner, D. (2011) Expression and regulation of homer in human skeletal muscle during neuromuscular junction adaptation to disuse and exercise, FASEB J., 25, 4312–4325.PubMedCrossRefGoogle Scholar
  136. 136.
    Tarasova, E. O., Gaydukov, A. E., and Balezina, O. P. (2015) Methods of activation and the role of calcium/calmodulin-dependent protein kinase II in the regulation of acetylcholine secretion in the motor synaps-es of mice, Neurochem. J., 9, 101–107.CrossRefGoogle Scholar
  137. 137.
    Pagani, R., Song, M., McEnery, M., Qin, N., Tsien, R. W., Toro, L., Stefani, E., and Uchitel, O. D. (2004) Differential expression of alpha 1 and beta subunits of volt-age dependent Ca2+ channel at the neuromuscular junc-tion of normal and P/Q Ca2+ channel knockout mouse, Neuroscience, 123, 75–85.PubMedCrossRefGoogle Scholar
  138. 138.
    Urbano, F. J., Depetris, R. S., and Uchitel, O. D. (2001) Coupling of L-type calcium channels to neurotransmitter release at mouse motor nerve terminals, Pflugers Arch., 441, 824–831.PubMedCrossRefGoogle Scholar
  139. 139.
    Flink, M. T., and Atchison, W. D. (2003) Iberiotoxin-induced block of Ca2+-activated K+ channels induces dihydropyridine sensitivity of ACh release from mam-malian motor nerve terminals, J. Pharmacol. Exp. Ther., 305, 646–652.PubMedCrossRefGoogle Scholar
  140. 140.
    Gaydukov, A. E., Melnikova, S. N., and Balezina, O. P. (2009) Facilitation of acetylcholine secretion in mouse motor synapses caused by calcium release from depots upon activation of L-type calcium channels, Bull. Exp. Biol. Med., 148, 163–166.PubMedCrossRefGoogle Scholar
  141. 141.
    Gaydukov, A. E., Marchenkova, A. A., and Balezina, O. P. (2012) Involvement of basal and calcium-activated protein kinase C in neurotransmitter secretion in mouse motor synapses, Bull. Exp. Biol. Med., 153, 820–823.PubMedGoogle Scholar
  142. 142.
    Gaydukov, A. E., Marchenkova, A. A., and Balezina, O. P. (2012) Facilitation of neurotransmitter release in mouse motor synapses in different modes of protein kinase C acti-vation, Bull. Exp. Biol. Med., 153, 415–418.PubMedCrossRefGoogle Scholar
  143. 143.
    De Jong, A. P., and Verhage, M. (2009) Presynaptic signal transduction pathways that modulate synaptic transmis-sion, Curr. Opin. Neurobiol., 19, 245–253.PubMedCrossRefGoogle Scholar
  144. 144.
    Leenders, A. G. M., and Sheng, Z.-H. (2005) Modulation of neurotransmitter release by the second messenger-acti-vated protein kinases: implications for presynaptic plastic-ity, Pharmacol. Ther., 105, 69–84.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Lanuza, M. A., Santafe, M. M., Garcia, N., Besalduch, N., Tomas, M., Obis, T., Priego, M., Nelson, P. G., and Tomas, J. (2014) Protein kinase C isoforms at the neuro-muscular junction: localization and specific roles in neurotransmission and development, J. Anat., 224, 61–73.PubMedCrossRefGoogle Scholar
  146. 146.
    Tomas, J., Garcia, N., Lanuza, M. A., Santafe, M. M., Tomas, M., Nadal, L., Hurtado, E., Simo, A., and Cilleros, V. (2017) Presynaptic membrane receptors mod-ulate ACh release, axonal competition and synapse elimi-nation during neuromuscular junction development, Front. Mol. Neurosci., 10, 132.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Wang, Z.-W. (2008) Regulation of synaptic transmission by presynaptic CaMKII and BK channels, Mol. Neurobiol., 38, 153–166.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Song, S.-H., and Augustine, G. J. (2015) Synapsin isoforms and synaptic vesicle trafficking, Mol. Cells, 38, 936–940.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Tarasova, E. O., Miteva, A. S., Gaidukov, A. E., and Balezina, O. P. (2015) The role of adenosine receptors and L-type calcium channels in the regulation of the neuro-transmitter secretion in mouse motor synapses, Biochem. Suppl. Ser. A Membr. Cell Biol., 9, 318–328.Google Scholar
  150. 150.
    Abdul, H. M., Sama, M. A., Furman, J. L., Mathis, D. M., Beckett, T. L., Weidner, A. M., Patel, E. S., Baig, I., Murphy, M. P., LeVine, H., Kraner, S. D., and Norris, C. M. (2009) Cognitive decline in Alzheimer’s disease is asso-ciated with selective changes in calcineurin/NFAT signal-ing, J. Neurosci., 29, 12957–12969.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Pleiss, M. M., Sompol, P., Kraner, S. D., Abdul, H. M., Furman, J. L., Guttmann, R. P., Wilcock, D. M., Nelson, P. T., and Norris, C. M. (2016) Calcineurin proteolysis in astrocytes: implications for impaired synaptic function, Biochim. Biophys. Acta–Mol. Basis Dis., 1862, 1521–1532.CrossRefGoogle Scholar
  152. 152.
    Asai, M., Kinjo, A., Kimura, S., Mori, R., Kawakubo, T., Shirotani, K., Yagishita, S., Maruyama, K., and Iwata, N. (2016) Perturbed calcineurin-NFAT signaling is associated with the development of Alzheimer’s disease, Biol. Pharm. Bull., 39, 1646–1652.PubMedCrossRefGoogle Scholar
  153. 153.
    Shah, S. Z. A., Hussain, T., Zhao, D., and Yang, L. (2017) A central role for calcineurin in protein misfolding neu-rodegenerative diseases, Cell. Mol. Life Sci., 74, 1061–1074.PubMedCrossRefGoogle Scholar
  154. 154.
    Popugaeva, E., Pchitskaya, E., and Bezprozvanny, I. (2017) Dysregulation of neuronal calcium homeostasis in Alzheimer’s disease–a therapeutic opportunity? Biochem. Biophys. Res. Commun., 483, 998–1004.PubMedCrossRefGoogle Scholar
  155. 155.
    Sompol, P., Furman, J. L., Pleiss, M. M., Kraner, S. D., Artiushin, I. A., Batten, S. R., Quintero, J. E., Simmerman, L. A., Beckett, T. L., Lovell, M. A., Murphy, M. P., Gerhardt, G. A., and Norris, C. M. (2017) Calcineurin/NFAT signaling in activated astrocytes drives network hyperexcitability in Aβ-bearing mice, J. Neurosci., 37, 6132–6148.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Fernandez, A. M., Fernandez, S., Carrero, P., Garcia-Garcia, M., and Torres-Aleman, I. (2007) Calcineurin in reactive astrocytes plays a key role in the interplay between proinflammatory and anti-inflammatory signals, J. Neurosci., 27, 8745–8756.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. O. Tarasova
    • 1
  • A. E. Gaydukov
    • 1
    • 2
    Email author
  • O. P. Balezina
    • 1
  1. 1.Lomonosov Moscow State UniversityFaculty of BiologyMoscowRussia
  2. 2.Pirogov Russian National Research Medical UniversityMoscowRussia

Personalised recommendations