Biochemistry (Moscow)

, Volume 83, Issue 5, pp 574–585 | Cite as

Agonistic and Antagonistic Effects of Progesterone Derivatives on the Transcriptional Activity of Nuclear Progesterone Receptor B in Yeast Model System

  • A. O. Michurina
  • A. V. Polikarpova
  • I. S. Levina
  • L. E. Kulikova
  • I. V. Zavarzin
  • A. A. Guseva
  • I. A. Morozov
  • P. M. Rubtsov
  • O. V. Smirnova
  • T. A. ShchelkunovaEmail author


Identification of progesterone selective agonists and antagonists that act through one of the nuclear progesterone receptor isoforms is of particular importance for the development of tissue-specific drugs in gynecology and anticancer therapy. Fourteen pregna-D′6- and pregna-D′3-pentarane progesterone derivatives with 16α,17α-cycloalkane groups and two progesterone 3-deoxyderivatives were examined for their ability to regulate transcriptional activity of human nuclear progesterone receptor isoform B (nPR-B) expressed in Saccharomyces cerevisiae yeast. Transcriptional activity of nPR-B was measured from the expression of the β-galactosidase reporter gene with a hormone-responsible element in the promoter. Among the compounds tested, two were full progesterone agonists, four were partial agonists, one compound possessed both agonistic and antagonistic activity, one compound displayed only partial antagonistic activity, and eight compounds did not show any activity. Modifications of the pentarane structure, precisely, introduction of an additional double bound in the A or B rings and/or modification at the 6th position of progesterone, lead to a switch from the complete agonistic activity to partial agonistic or mixed activities. These modifications enable progestins to act as selective modulators of progesterone receptor. Steroids with reduced A-ring and 3-ketogroups lose their ability to regulate PR-B activity. Both 3-deoxycompounds, being selective ligands of progesterone membrane receptors, do not affect PR-B activity.


progesterone receptors steroid pentaranes agonists antagonists reporter gene analysis transcriptional activity Saccharomyces cerevisiae 



half-maximal effective concentration


hormone response element


half-maximal inhibitory concentration


membrane progesterone receptor


nuclear progesterone receptor


optical density


nuclear progesterone receptor gene


progesterone receptor A(B) isoform


relative binding affinity


relative transcriptional activity


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hapgood, J. P., Africander, D., Louw, R., Ray, R. M., and Rohwer, J. M. (2014) Potency of progestogens used in hor-monal therapy: toward understanding differential actions, J. Steroid Biochem. Mol. Biol., 142, 39–47.CrossRefPubMedGoogle Scholar
  2. 2.
    Stanczyk, F. Z., Hapgood, J. P., Winer, S., and Mishell, D. R., Jr. (2013) Progestogens used in postmenopausal hor-mone therapy: differences in their pharmacological proper-ties, intracellular actions, and clinical effects, Endocr. Rev., 34, 171–208.CrossRefPubMedGoogle Scholar
  3. 3.
    Thomas, P., Pang, Y., Dong, J., Groenen, P., Kelder, J., de Vlieg, J., Zhu, Y., and Tubbs, C. (2007) Steroid and G pro-tein binding characteristics of the seatrout and human progestin membrane receptor alpha subtypes and their evo-lutionary origins, Endocrinology, 148, 705–718.CrossRefPubMedGoogle Scholar
  4. 4.
    Jacobsen, B. M., and Horwitz, K. B. (2012) Progesterone receptors, their isoforms and progesterone regulated tran-scription, Mol. Cell. Endocrinol., 357, 18–29.CrossRefPubMedGoogle Scholar
  5. 5.
    Moussatche, P., and Lyons, T. J. (2012) Non-genomic progesterone signalling and its non-canonical receptor, Biochem. Soc. Transact., 40, 200–204.CrossRefGoogle Scholar
  6. 6.
    Pang, Y., Dong, J., and Thomas, P. (2013) Characterization, neurosteroid binding and brain distribu-tion of human membrane progesterone receptors δ and ε (mPRδ and mPRε) and mPRδ involvement in neurosteroid inhibition of apoptosis, Endocrinology, 154, 283–295.CrossRefPubMedGoogle Scholar
  7. 7.
    Shchelkunova, T. A., and Morozov, I. A. (2015) Molecular basis and tissue specificity of the progestins action, Mol. Biol. (Moscow), 49, 649–667.CrossRefGoogle Scholar
  8. 8.
    Valadez-Cosmes, P., Vazquez-Martinez, E. R., Cerbon, M., and Camacho-Arroyo, I. (2016) Membrane proges-terone receptors in reproduction and cancer, Mol. Cell. Endocrinol., 434, 166–175.CrossRefPubMedGoogle Scholar
  9. 9.
    Graham, J. D., and Clarke, C. L. (1997) Physiological action of progesterone in target tissues, Endocr. Rev., 18, 502–519.PubMedGoogle Scholar
  10. 10.
    Obr, A. E., and Edwards, D. P. (2012) The biology of prog-esterone receptor in the normal mammary gland and in breast cancer. Review, Mol. Cell. Endocrinol., 357, 4–17.CrossRefPubMedGoogle Scholar
  11. 11.
    Kim, J. J., Kurita, T., and Bulun, S. E. (2013) Progesterone action in endometrial cancer, endometriosis, uterine fibroids, and breast cancer, Endocr. Rev., 34, 130–162.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Schumacher, M., Mattern, C., Ghoumari, A., Oudinet, J. P., Liere, P., Labombarda, F., Sitruk-Ware, R., De Nicola, A. F., and Guennoun, R. (2014) Revisiting the roles of progesterone and allopregnanolone in the nervous system: resurgence of the progesterone receptors, Prog. Neurobiol., 113, 6–39.CrossRefPubMedGoogle Scholar
  13. 13.
    Melcangi, R. C., Giatti, S., Calabrese, D., Pesaresi, M., Cermenati, G., Mitro, N., Viviani, B., Garcia-Segura, L. M., and Caruso, D. (2014) Levels and actions of proges-terone and its metabolites in the nervous system during physiological and pathological conditions, Prog. Neurobiol., 113, 56–69.CrossRefPubMedGoogle Scholar
  14. 14.
    Guennoun, R., Labombarda, F., Gonzalez Deniselle, M. C., Liere, P., De Nicola, A. F., and Schumacher, M. (2015) Progesterone and allopregnanolone in the central nervous system: response to injury and implication for neuroprotec-tion, J. Steroid Biochem. Mol. Biol., 146, 48–61.CrossRefPubMedGoogle Scholar
  15. 15.
    Richer, J. K., Jacobsen, B. M., Manning, N. G., Abel, M. G., Wolf, D. M., and Horwitz, K. B. (2002) Differential gene regulation by the two progesterone receptor isoforms in human breast cancer cells, J. Biol. Chem., 277, 5209–5218.CrossRefPubMedGoogle Scholar
  16. 16.
    Diep, C. H., Daniel, A. R., Mauro, L. J., Knutson, T. P., and Lange, C. A. (2015) Progesterone action in breast, uter-ine, and ovarian cancers, J. Mol. Endocrinol., 54, R31–53.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Grimm, S. L., Hartig, S. M., and Edwards, D. P. (2016) Progesterone receptor signaling mechanisms, J. Mol. Biol., 428, 3831–3849.CrossRefPubMedGoogle Scholar
  18. 18.
    Africander, D., Verhoog, N., and Hapgood, J. P. (2011) Molecular mechanisms of steroid receptor-mediated actions by synthetic progestins used in HRT and contra-ception, Steroids, 76, 636–652.CrossRefPubMedGoogle Scholar
  19. 19.
    Fox, J. E., Burow, M. E., McLachlan, J. A., and Miller, C. A. (2008) Detecting ligands and dissecting nuclear recep-tor-signaling pathways using recombinant strains of the yeast Saccharomyces cerevisiae, Nat. Protoc., 3, 637–645.CrossRefPubMedGoogle Scholar
  20. 20.
    Kamernitskii, A. V., and Levina, I. S. (2005) Pregna-D′-pentaranes, progestins and antiprogestins: I. Differentiation of biological functions of steroid hormones, Bioorg. Khim., 31, 115–129.PubMedGoogle Scholar
  21. 21.
    Kamernitskii, A. V., and Levina, I. S. (2005) Pregna-D′-pentaranes, progestins, and antiprogestins: II. Pathways and realization mechanisms of separate biological func-tions of steroid hormones, Bioorg. Khim., 31, 227–238.PubMedGoogle Scholar
  22. 22.
    Smirnov, A. N., Pokrovskaia, E. V., Shevchenko, V. P., Nagaev, I., Miasoedov, N. F., Levina, I. S., Kulikova, L. E., and Kamernitskii, A. V. (2002) Species and tissue distribution specificity of proteins binding 16alpha,17alpha-cycloalkane derivatives of progesterone, Bioorg. Khim., 28, 251–257.PubMedGoogle Scholar
  23. 23.
    Fediushkina, I. V., Skvortsov, V. S., Romero Reyes, I. V., and Levina, I. S. (2013) Molecular docking and 3D-QSAR on 16alpha,17alpha-cycloalkanoprogesterone analogues as progesterone receptor ligands, Biomed. Khim., 59, 622–635.CrossRefPubMedGoogle Scholar
  24. 24.
    Polikarpova, A. V., Maslakova, A. A., Levina, I. S., Kulikova, L. E., Kuznetsov, Y. V., Guseva, A. A., Shchelkunova, T. A., Zavarzin, I. V., and Smirnova, O. V. (2017) Selection of progesterone derivatives specific to membrane progesterone receptors, Biochemistry (Moscow), 82, 140–148.CrossRefGoogle Scholar
  25. 25.
    Sandoval, A., Rosenkranz, G., and Djerassi, C. (1951) Steroids. XVII. A steroidal cyclopropyl ketone, J. Am. Chem. Soc., 73, 2383–2385.CrossRefGoogle Scholar
  26. 26.
    Akhrem, A. A., Kulikova, L. E., Levina, I. S., and Titov, Y. A. (1972) Synthesis of progesterone pentacyclic analogues with an additional ring in 16,17 position, Bull. Acad. Sci. USSR, 6, 1358–1363.Google Scholar
  27. 27.
    Akhrem, A. A., Kamernitskii, A. V., Levina, I. S., and Titov, Y. A. (1978) Synthesis of Δ6-6-substitued cyclohexano-D′5-pentarano-progesterones, Bull. Acad. Sci. USSR, 2, 444–447.Google Scholar
  28. 28.
    Kamernitskii, A. V., and Levina, I. S. (1997) Synthesis of 6α-methyl-16α,17α-cyclohexanoprogesterone via γ-methylination of 16α,17α-cyclohexanopregn-4-en-3,20-dione, Rus. Chem. Bull., 6, 1234–1235.Google Scholar
  29. 29.
    Kamernitskii, A. V., Levina, I. S., Kulikova, L. E., Galakhova, T. N., Shevchenko, V. P., Nagaev, I. Y., Myasoedov, N. F., Smirnov, A. N., Pokrovskaya, E. V., and Shchelkunova, T. A. (1997) Synthesis of [3H]cycloalkano-progesterones and study of their interaction with a proges-terone receptor, Rus. Chem. Bull., 46, 1468–1471.CrossRefGoogle Scholar
  30. 30.
    Levina, I. S., Nikitina, G. V., Kulikova, L. E., and Kamernitskii, A. V. (1995) Some derivatives of pregna-D6 ′-pentaranes as possible antagonists of progesterone, Rus. Chem. Bull., 44, 547–550.CrossRefGoogle Scholar
  31. 31.
    Semeikin, A. V., Fedotcheva, T. A., Levina, I. S., Kulikova, L. E., Zavarzin, I. V., Tikhonov, D. A., Kareva, E. N., and Shimanovskii, N. L. (2014) Synthesis and cytostatic activi-ty of some pregna-D′-pentaranes on HeLa cell culture, Pharm. Chem. J. PHAC, 48, 363–367.CrossRefGoogle Scholar
  32. 32.
    Kastner, P., Bocquel, M. T., Turcotte, B., Garnier, J. M., Horwitz, K. B., Chambon, P., and Gronemeyer, H. (1990) Transient expression of human and chicken progesterone receptors does not support alternative translational initia-tion from a single mRNA as the mechanism generating two receptor isoforms, J. Biol. Chem., 265, 12163–12167.PubMedGoogle Scholar
  33. 33.
    Miller, C. A., Tan, X., Wilson, M., Bhattacharyya, S., and Ludwig, S. (2010) Single plasmids expressing human steroid hormone receptors and a reporter gene for use in yeast signaling assays, Plasmid, 63, 73–78.CrossRefPubMedGoogle Scholar
  34. 34.
    Eldarov, M. A., Baranov, M. V., Dumina, M. V., Shgun, A. A., Andreeva, N. A., Trilisenko, L. V., Kulakovskaya, T. V., Ryasanova, L. P., and Kulaev, I. S. (2013) Polyphosphates and exopolyphosphatase activities in the yeast Saccharomyces cerevisiae under overexpression of homolo-gous and heterologous PPN1 genes, Biochemistry (Moscow), 78, 946–953.CrossRefGoogle Scholar
  35. 35.
    Matchmaker, T. M. (2007) Library Construction & Screening Kits User Manual, Clontech Laboratories, Inc., A Takara Bio Company, Cat. No. 630445 PT3955 1 (PR792376).Google Scholar
  36. 36.
    Lisanova, O. V., Shchelkunova, T. A., Smirnov, A. N., Morozov, I. A., Rubtsov, P. M., Levina, I. S., and Kulikova, L. E. (2013) Approaches to the design of selective ligands for membrane progesterone receptor alpha, Biochemistry (Moscow), 78, 236–243.CrossRefGoogle Scholar
  37. 37.
    Shchelkunova, T. A., Morozov, I. A., Rubtsov, P. M., Samokhodskaya, L. M., Kireev, R. A., Andrianova, I. V., Orekhov, A. N., and Smirnov, A. N. (2008) Comparative contents of mRNAs of sex steroid receptors and enzymes of their metabolism in arterial walls of men, Biochemistry (Moscow), 73, 920–928.CrossRefGoogle Scholar
  38. 38.
    Smirnova, O. V. (2015) Competitive agonists and antago-nists of steroid nuclear receptors: evolution of the concept or its reversal, Biochemistry (Moscow), 80, 1227–1234.CrossRefGoogle Scholar
  39. 39.
    Simons, S. S., Jr., and Chow, C. C. (2012) The road less trav-eled: new views of steroid receptor action from the path of dose–response curves, Mol. Cell. Endocrinol., 348, 373–382.CrossRefPubMedGoogle Scholar
  40. 40.
    Lusher, S. J., Raaijmakers, H. C., Vu-Pham, D., Dechering, K., Lam, T. W., Brown, A. R., Hamilton, N. M., Nimz, O., Bosch, R., McGuire, R., Oubrie, A., and de Vlieg, J. (2011) Structural basis for agonism and antago-nism for a set of chemically related progesterone receptor modulators, J. Biol. Chem., 286, 35079–35086.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Chlebowski, R. T., Anderson, G. L., Gass, M., Lane, D. S., Aragaki, A. K., Kuller, L. H., Manson, J. E., Stefanick, M. L., Ockene, J., Sarto, G. E., Johnson, K. C., Wactawski-Wende, J., Ravdin, P. M., Schenken, R., Hendrix, S. L., Rajkovic, A., Rohan, T. E., Yasmeen, S., Prentice, R. L., and Investigators, W. H. I. (2010) Estrogen plus progestin and breast cancer incidence and mortality in post-menopausal women, JAMA, 304, 1684–1692.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Lange, C. A. (2008) Challenges to defining a role for prog-esterone in breast cancer, Steroids, 73, 914–921.CrossRefPubMedGoogle Scholar
  43. 43.
    Ho, S. M. (2003) Estrogen, progesterone and epithelial ovarian cancer, Reprod. Biol. Endocrinol., 1, 73.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Nguyen, H., and Syed, V. (2011) Progesterone inhibits growth and induces apoptosis in cancer cells through mod-ulation of reactive oxygen species, Gynecol. Endocrinol., 27, 830–836.CrossRefPubMedGoogle Scholar
  45. 45.
    Shchelkunova, T. A., and Morozov, I. A. (2016) Progestins and carcinogenesis, Mol. Biol. (Moscow), 50, 7–21.CrossRefGoogle Scholar
  46. 46.
    Leo, J. C., and Lin, V. C. (2008) The activities of proges-terone receptor isoform A and B are differentially modulat-ed by their ligands in a gene-selective manner, Int. J. Cancer, 122, 230–243.CrossRefPubMedGoogle Scholar
  47. 47.
    Wilson, V. S., Bobseine, K., Lambright, C. R., and Gray, L. E., Jr. (2002) A novel cell line, MDA-kb2, that stably expresses an androgen-and glucocorticoid-responsive reporter for the detection of hormone receptor agonists and antagonists, Toxicol. Sci., 66, 69–81.PubMedGoogle Scholar
  48. 48.
    Shchelkunova, T. A., Rubtsov, P. M., Levina, I. S., Kamernitskii, A. V., and Smirnov, A. N. (2002) Pregna-D′-pentarane structure influences progesterone receptor affin-ity for DNA, Steroids, 67, 323–332.CrossRefPubMedGoogle Scholar
  49. 49.
    Ong, K. M., Blackford, J. A., Jr., Kagan, B. L., Simons, S. S., Jr., and Chow, C. C. (2010) A theoretical framework for gene induction and experimental comparisons, Proc. Natl. Acad. Sci. USA, 107, 7107–7112.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Dougherty, E. J., Guo, C., Simons, S. S., Jr., and Chow, C. C. (2012) Deducing the temporal order of cofactor func-tion in ligand-regulated gene transcription: theory and experimental verification, PloS One, 7, e30225.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Hagan, C. R., Daniel, A. R., Dressing, G. E., and Lange, C. A. (2012) Role of phosphorylation in progesterone receptor signaling and specificity, Mol. Cell. Endocrinol., 357, 43–49.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. O. Michurina
    • 1
  • A. V. Polikarpova
    • 1
  • I. S. Levina
    • 2
  • L. E. Kulikova
    • 2
  • I. V. Zavarzin
    • 2
  • A. A. Guseva
    • 1
  • I. A. Morozov
    • 3
  • P. M. Rubtsov
    • 3
  • O. V. Smirnova
    • 1
  • T. A. Shchelkunova
    • 1
    Email author
  1. 1.Lomonosov Moscow State UniversityFaculty of BiologyMoscowRussia
  2. 2.Zelinsky Institute of Organic ChemistryRussian Academy of SciencesMoscowRussia
  3. 3.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations