Biochemistry (Moscow)

, Volume 83, Issue 5, pp 552–561 | Cite as

New Data on Effects of SkQ1 and SkQT1 on Rat Liver Mitochondria and Yeast Cells

  • A. G. Rogov
  • T. N. Goleva
  • T. A. Trendeleva
  • A. P. Ovchenkova
  • D. A. Aliverdieva
  • R. A. ZvyagilskayaEmail author


Mitochondria are involved in many processes in eukaryotic cells. They play a central role in energy conservation and participate in cell metabolism and signaling pathways. Mitochondria are the main source of reactive oxygen species, excessive generation of which provokes numerous pathologies and cell death. One of the most promising approaches to the attenuation of oxidative stress in mitochondria is the use of targeted (i.e., transported exclusively into mitochondria) lipophilic cationic antioxidants. These compounds offer advantages over conventional water-soluble antioxidants because they induce the so-called “mild uncoupling” and can prevent collapse of the membrane potential in low, nontoxic concentrations. A novel mitochondria-targeted antioxidant, SkQT1, was synthesized and tested within the framework of the research project guided by V. P. Skulachev. The results of these experiments were initially reported in 2013; however, one publication was not able to accommodate all the data on the SkQT1 interactions with isolated mitochondria and cells. Here, we examined comparative effects of SkQT1 and SkQ1 on rat liver mitochondria (with broader spectrum of energy parame- ters being studied) and yeast cells. SkQT1 was found to be less effective uncoupler, depolarizing agent, inhibitor of respiration and ATP synthesis, and “opener” of a nonspecific pore compared to SkQ1. At the same time SkQ1 exhibited higher antioxidant activity. Both SkQT1 and SkQ1 prevented oxidative stress and mitochondria fragmentation in yeast cells exposed to t-butyl hydroperoxide and promoted cell survival, with SkQT1 being more efficient than SkQ1. Together with the results presented in 2013, our data suggest that SkQT1 is the most promising mitochondria-targeted antioxidant that can be used for preventing various pathologies associated with the oxidative stress in mitochondria.


rat liver mitochondria yeast C4R1 SkQ1 SkQT1 respiration membrane potential ATP synthesis Ca2+/Pi-dependent pore oxidative stress cell death 





carbonyl cyanide m-chlorophenylhydrazone


cyclosporin A


mitochondrial permeability transition pore


reactive oxygen species




a mixture of SkQT1(p) and SkQT1(m) in a proportion of 1.4: 1






tert-butyl hydroperoxide


transmembrane electric potential difference


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zhang, Y., and Avalos, J. L. (2017) Traditional and novel tools to probe the mitochondrial metabolism in health and disease, Wiley Interdiscip. Rev. Syst. Biol. Med., 9.Google Scholar
  2. 2.
    Dudek, J. (2017) Role of cardiolipin in mitochondrial sig-naling pathways, Front. Cell. Dev. Biol., 5, 90.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Dhingra, R., and Kirshenbaum, L. A. (2014) Regulation of mitochondrial dynamics and cell fate, Circ. J., 78, 803–810.CrossRefPubMedGoogle Scholar
  4. 4.
    Sander, L. E., and Garaude, J. (2017) The mitochondrial respiratory chain: a metabolic rheostat of innate immune cell-mediated antibacterial responses, Mitochondrion, pii: S1567–7249.Google Scholar
  5. 5.
    Georgieva, E., Ivanova, D., Zhelev, Z., Bakalova, R., Gulubova, M., and Aoki, I. (2017) Mitochondrial dysfunc-tion and redox imbalance as a diagnostic marker of “free radical diseases”, Anticancer Res., 37, 5373–5381.PubMedGoogle Scholar
  6. 6.
    Mailloux, R. J. (2016) Application of mitochondria-target-ed pharmaceuticals for the treatment of heart disease, Curr. Pharm. Des., 22, 4763–4779.CrossRefPubMedGoogle Scholar
  7. 7.
    Wang, C. H., Wu, S. B., Wu, Y. T., and Wei, Y. H. (2013) Oxidative stress response elicited by mitochondrial dys-function: implication in the pathophysiology of aging, Exp. Biol. Med. (Maywood), 238, 450–460.CrossRefGoogle Scholar
  8. 8.
    Skulachev, V. P., Anisimov, V. N., Antonenko, Y. N., Bakeeva, L. E., Chernyak, B. V., Erichev, V. P., Filenko, O. F., Kalinina, N. I., Kapelko, V. I., Kolosova, N. G., Kopnin, B. P., Korshunova, G. A., Lichinitser, M. R., Obukhova, L. A., Pasyukova, E. G., Pisarenko, O. I., Roginsky, V. A., Ruuge, E. K., Senin, I. I., Severina, I. I., Skulachev, M. V., Spivak, I. M., Tashlitsky, V. N., Tkachuk, V. A., Vyssokikh, M. Y., Yaguzhinsky, L. S., and Zorov, D. B. (2009) An attempt to prevent senescence: a mitochondr-ial approach, Biochim. Biophys. Acta, 1787, 437–461.CrossRefPubMedGoogle Scholar
  9. 9.
    Murphy, M. P., and Smith, R. A. J. (2007) Targeting antioxidants to mitochondria by conjugation to lipophilic cations, Annu. Rev. Pharmacol. Toxicol., 47, 629–656.CrossRefPubMedGoogle Scholar
  10. 10.
    Skulachev, V. P. (2007) A biochemical approach to the problem of aging: “megaproject” on membrane-penetrat-ing ions. The first results and prospects, Biochemistry (Moscow), 72, 1385–1396.CrossRefGoogle Scholar
  11. 11.
    Green, D. E. (1974) The electromechanochemical model for energy coupling in mitochondria, Biochim. Biophys. Acta, 346, 27–78.CrossRefPubMedGoogle Scholar
  12. 12.
    Severina, I. I., Severin, F. F., Korshunova, G. A., Sumbatyan, N. V., Ilyasova, T. M., Simonyan, R. A., Rogov, A. G., Trendeleva, T. A., Zvyagilskaya, R. A., Dugina, V. B., Domnina, L. V., Fetisova, E. K., Lyamzaev, K. G., Vyssokikh, M. Y., Chernyak, B. V., Skulachev, M. V., Skulachev, V. P., and Sadovnichii, V. A. (2013) In search of novel highly active mitochondria-targeted antioxidants: thymoquinone and its cationic derivatives, FEBS Lett., 587, 2018–2024.CrossRefPubMedGoogle Scholar
  13. 13.
    Institute for Laboratory Animal Research (2011) Guide for the Care and Use of Laboratory Animals, National Academies Press (US), Washington (DC).Google Scholar
  14. 14.
    Rogov, A. G., Trendeleva, T. A., Aliverdieva, D. A., and Zvyagilskaya, R. A. (2016) More about interactions of rho-damine 19 butyl ester with rat liver mitochondria, Biochemistry (Moscow), 81, 432–438.CrossRefGoogle Scholar
  15. 15.
    Chance, B., and Williams, G. R. (1955) A simple and rapid assay of oxidative phosphorylation, Nature, 175, 1120–1121.CrossRefPubMedGoogle Scholar
  16. 16.
    Akerman, K. E., and Wikstrom, M. K. (1976) Safranine as a probe of the mitochondrial membrane potential, FEBS Lett., 68, 191–197.CrossRefPubMedGoogle Scholar
  17. 17.
    Bernardi, P., Krauskof, A., Basso, E., Petronilli, V., Blachly-Dyson, E., Di Lisa, F., and Forte, M. A. (2006) The mitochondrial permeability transition from in vitro artifact to disease target, FEBS J., 273, 2077–2099.CrossRefPubMedGoogle Scholar
  18. 18.
    Zharova, T. V., and Vinogradov, A. D. (2006) Energy-linked binding of Pi is required for continuous steady-state pro-ton-translocating ATP hydrolysis catalyzed by F0F1 ATP synthase, Biochemistry, 45, 14552–14558.CrossRefPubMedGoogle Scholar
  19. 19.
    Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utiliz-ing the principle of protein-dye binding, Anal. Biochem., 72, 248–254.CrossRefPubMedGoogle Scholar
  20. 20.
    Zviagil'skaya, R. A., Zelenshchikova, V. A., Ural'skaya, L. A., and Kotel'nikova, A. V. (1981) Respiratory system of Endomyces magnusii. Properties of mitochondria from cells grown on glycerol, Biochemistry (Moscow), 46, 3–10.Google Scholar
  21. 21.
    Adamikova, L., Griac, P., Tomaska, L., and Nosek, J. (1998) Development of a transformation system for the multinuclear yeast Dipodascus (Endomyces) magnusii, Yeast, 14, 805–812.CrossRefPubMedGoogle Scholar
  22. 22.
    Agnello, M., Morici, G., and Rinaldi, A. M. (2008) A method for measuring mitochondrial mass and activity, Cytotechnology, 56, 145–149.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Puleston, D. (2015) Detection of mitochondrial mass, damage, and reactive oxygen species by flow cytometry, Cold Spring Harb. Protoc., doi:10.1101/pdb.prot086298.Google Scholar
  24. 24.
    Mukhopadhyay, P., Rajesh, M., Hasko, G., Hawkins, B. J., Madesh, M., and Pacher, P. (2007) Simultaneous detection of apoptosis and mitochondrial superoxide production in live cells by flow cytometry and confocal microscopy, Nature Protocols, 2, 2295–2301.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Sukhanova, E. I., Trendeleva, T. A., and Zvyagilskaya, R. A. (2010) Interaction of yeast mitochondria with fatty acids and mitochondria-targeted lipophilic cations, Biochemistry (Moscow), 75, 139–144.CrossRefGoogle Scholar
  26. 26.
    Severin, F. F., Severina, I. I., Antonenko, Y. N., Rokitskaya, T. I., Cherepanov, D. A., Mokhova, E. N., Vyssokikh, M. Y., Pustovidko, A. V., Markova, O. V., Yaguzhinsky, L. S., Korshunova, G. A., Sumbatyan, N. V., Skulachev, M. V., and Skulachev, V. P. (2010) Penetrating cation/fatty acid anion pair as a mitochondria-targeted protonophore, Proc. Natl. Acad. Sci. USA, 107, 663–668.CrossRefPubMedGoogle Scholar
  27. 27.
    Skulachev, V. P. (1996) Role of uncoupled and non-coupled oxidations in maintenance of safely low levels of oxygen and its one-electron reductants, Q. Rev. Biophys., 29, 169–202.CrossRefPubMedGoogle Scholar
  28. 28.
    Starkov, A. A. (1997) “Mild” uncoupling of mitochondria, Biosci. Rep., 17, 273–279.CrossRefPubMedGoogle Scholar
  29. 29.
    Skulachev, V. P. (1998) Uncoupling: new approaches to an old problem of bioenergetics, Biochim. Biophys. Acta, 1363, 100–124.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. G. Rogov
    • 1
  • T. N. Goleva
    • 1
  • T. A. Trendeleva
    • 1
  • A. P. Ovchenkova
    • 1
  • D. A. Aliverdieva
    • 2
  • R. A. Zvyagilskaya
    • 1
    Email author
  1. 1.Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research CenterRussian Academy of SciencesMoscowRussia
  2. 2.Caspian Institute of Biological ResourcesRussian Academy of SciencesMakhachkalaRussia

Personalised recommendations