Biochemistry (Moscow)

, Volume 83, Issue 5, pp 527–533 | Cite as

The Effect of Experimental Hyperthyroidism on Characteristics of Actin–Myosin Interaction in Fast and Slow Skeletal Muscles

  • G. V. KopylovaEmail author
  • D. V. Shchepkin
  • S. Y. Bershitsky


The molecular mechanism of the failure of contractile function of skeletal muscles caused by oxidative damage to myosin in hyperthyroidism is not fully understood. Using an in vitro motility assay, we studied the effect of myosin damage caused by oxidative stress in experimental hyperthyroidism on the actin–myosin interaction and its regulation by calcium. We found that hyperthyroidism-induced oxidation of myosin is accompanied by a decrease in the sliding velocity of the regulated thin filaments in the in vitro motility assay, and this effect is increased with the duration of the pathological process.


actin–myosin interaction calcium regulation myosin carbonylation in vitro motility assay 



free triiodothyronine


free thyroxine


Hill cooperativity coefficient


myosin heavy chains


myosin light chains


negative decimal logarithm of the calcium concentration


calcium concentration at which half-maximal sliding velocity of thin filaments is achieved (the calcium sensitivity)


the maximal sliding velocity of thin filaments


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pette, D., and Staron, R. S. (2000) Myosin isoforms, muscle fiber types, and transitions, Microsc. Res. Tech., 50, 500–509.CrossRefPubMedGoogle Scholar
  2. 2.
    Schiaffino, S., and Reggiani, C. (2011) Fiber types in mammalian skeletal muscles, Physiol. Rev., 91, 1447–1531.CrossRefPubMedGoogle Scholar
  3. 3.
    Galler, S., Schmitt, T. L., and Pette, D. (1994) Stretch acti-vation, unloaded shortening velocity, and myosin heavy chain isoforms of rat skeletal muscle fibres, J. Physiol., 478, 513–521.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Nwoye, L., Mommaerts, W. F., Simpson, D. R., Seraydarian, K., and Marusich, M. (1982) Evidence for a direct action of thyroid hormone in specifying muscle properties, Am. J. Physiol., 242, 401–408.Google Scholar
  5. 5.
    Diffee, G. M., Haddad, F., Herrick, R. E., and Baldwin, K. M. (1991) Control of myosin heavy chain expression: inter-action of hypothyroidism and hindlimb suspension, Am. J. Physiol., 261, 1099–1106.CrossRefGoogle Scholar
  6. 6.
    Larsson, L., Li, X., Teresi, A., and Salviati, G. (1994) Effects of thyroid hormone on fast-and slow-twitch skele-tal muscles in young and old rats, J. Physiol., 481, 149–161.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Caiozzo, V. J., Herrick, R. E., and Baldwin, K. M. (1991) Influence of hyperthyroidism on maximal shortening velocity and myosin isoform distribution in skeletal mus-cles, Am. J. Physiol., 261, 285–295.CrossRefGoogle Scholar
  8. 8.
    Caiozzo, V. J., Herrick, R. E., and Baldwin, K. M. (1992) Response of slow and fast muscle to hypothyroidism: max-imal shortening velocity and myosin isoforms, Am. J. Physiol., 263, 86–94.CrossRefGoogle Scholar
  9. 9.
    Ramsay, I. D. (1966) Muscle dysfunction in hyperthy-roidism, Lancet, 2, 931–934.CrossRefPubMedGoogle Scholar
  10. 10.
    Nшrrelund, H., Hove, K. Y., Brems-Dalgaard, E., Jurik, A. G., Nielsen, L. P., Nielsen, S., Jorgensen, J. O., Weeke, J., and Moller, N. (1999) Muscle mass and function in thyro-toxic patients before and during medical treatment, Clin. Endocrinol. (Oxf.), 51, 693–699.CrossRefGoogle Scholar
  11. 11.
    Yamada, T., and Wada, M. (2004) Effects of thyroid hor-mone on sarcoplasmic reticulum Ca2+ uptake and contrac-tile properties in rat soleus muscle, Jpn. J. Phys. Fitness Sports Med., 53, 509–518.CrossRefGoogle Scholar
  12. 12.
    Yamada, T., Mishima, T., Sakamoto, M., Sugiyama, M., Matsunaga, S., and Wada, M. (2006) Oxidation of myosin heavy chain in force production in hyperthyroid rat soleus, J. Appl. Physiol., 100, 1520–1526.CrossRefPubMedGoogle Scholar
  13. 13.
    Yamada, T., Mishima, T., Sakamoto, M., Sugiyama, M., Matsunga, S., and Wada, M. (2007) Myofibrillar oxidation and contractile dysfunction in hyperthyroid rat diaphragm, J. Appl. Physiol., 102, 1850–1855.CrossRefPubMedGoogle Scholar
  14. 14.
    Venditti, P., and Di Meo, S. (2006) Thyroid hormone-induced oxidative stress, Cell. Mol. Life Sci., 63, 414–434.CrossRefPubMedGoogle Scholar
  15. 15.
    Reid, M. B. (2001) Redox modulation of skeletal muscle contraction: what we know and what we don’t, J. Appl. Physiol., 90, 724–731.CrossRefPubMedGoogle Scholar
  16. 16.
    Asayama, K., and Kato, K. (1990) Oxidative muscular injury and its relevance to hyperthyroidism, Free Radic. Biol. Med., 8, 293–303.CrossRefPubMedGoogle Scholar
  17. 17.
    Andrade, F. H., Reid, M. B., Allen, D. G., and Westerblad, H. (1998) Effect of hydrogen peroxide and dithiothreitol on contractile function of single skeletal muscle fibres from the mouse, J. Physiol., 509, 565–575.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Plant, D. R., Lynch, G. S., and Williams, D. A. (2000) Hydrogen peroxide modulates Ca2+-activation of single permeabilized fibres from fast-and slow-twitch skeletal muscles of rats, J. Muscle Res. Cell Motil., 21, 747–752.CrossRefPubMedGoogle Scholar
  19. 19.
    Murphy, R. M., Dutka, T. L., and Lamb, G. D. (2008) Hydroxyl radical and glutathione interactions alter calci-um sensitivity and maximum force of the contractile appa-ratus in rat skeletal muscle fibres, J. Physiol., 586, 2203–2216.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Prochniewicz, E., Lowe, D. A., Spakowicz, D. J., Higgins, L., O’Conor, K., Thompson, L. V., Ferrington, D. A., and Thomas, D. D. (2008) Functional, structural, and chemi-cal changes in myosin associated with hydrogen peroxide treatment of skeletal muscle fibers, Am. J. Physiol. Cell Physiol., 294, 613–626.CrossRefGoogle Scholar
  21. 21.
    Lamb, G. D., and Westerblad, H. (2011) Acute effects of reactive oxygen and nitrogen species on the contractile function of skeletal muscle, J. Physiol., 589, 2119–2127.CrossRefPubMedGoogle Scholar
  22. 22.
    Dutka, T. L., Verburg, E., Larkins, N., Hortemo, K. H., Lunde, P. K., Sejersted, O. M., and Lamb, G. D. (2012) ROS-mediated decline in maximum Ca2+-activated force in rat skeletal muscle fibers following in vitro and in vivo stimulation, PLoS One, 7, e35226.Google Scholar
  23. 23.
    Zergeroglu, M. A., McKenzie, M. J., Shanely, R. A., Van Gammeren, D., DeRuisseau, K. C., and Powers, S. K. (2003) Mechanical ventilation-induced oxidative stress in the diaphragm, J. Appl. Physiol., 95, 1116–1124.CrossRefPubMedGoogle Scholar
  24. 24.
    Dalle-Donne, I., Rossi, R., Giustarini, D., Milzani, A., and Colombo, R. (2003) Protein carbonyl groups as bio-markers of oxidative stress, Clin. Chim. Acta, 329, 23–38.CrossRefPubMedGoogle Scholar
  25. 25.
    Stadtman, E. R., and Levine, R. L. (2003) Free radical-mediated oxidation of free amino acids and amino acid residues in proteins, Amino Acids, 25, 207–218.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Noguchi, T., Camp, P., Jr., Alix, S. L., Gorga, J. A., Begin, K. J., Leavitt, B. J., Ittleman, F. P., Alpert, N. R., LeWinter, M. M., and Van’Buren, P. (2003) Myosin from failing and non-failing human ventricles exhibit similar contractile properties, J. Mol. Cell. Cardiol., 35, 91–97.CrossRefPubMedGoogle Scholar
  27. 27.
    Harrison, A. R., Lee, M. S., and McLoon, L. K. (2010) Effects of elevated thyroid hormone on adult rabbit extraocular muscles, Invest. Ophthalmol. Vis. Sci., 51, 183–191.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Margossian, S. S., and Lowey, S. (1982) Preparation of myosin and its subfragments from rabbit skeletal muscle, Methods Enzymol., 85, 55–71.CrossRefPubMedGoogle Scholar
  29. 29.
    Talmadge, R. J., and Roy, R. R. (1993) Electrophoretic separation of rat skeletal muscle myosin heavy chain iso-forms, J. Appl. Physiol., 75, 2337–2340.CrossRefPubMedGoogle Scholar
  30. 30.
    Laemmli, U. K. (1970) Cleavage of structural proteins dur-ing the assembly of the head of bacteriophage T4, Nature, 227, 680–685.CrossRefPubMedGoogle Scholar
  31. 31.
    Pardee, J. D., and Spudich, J. A. (1982) Purification of muscle actin, Methods Enzymol., 85, 164–179.CrossRefPubMedGoogle Scholar
  32. 32.
    Potter, J. D. (1982) Preparation of troponin and its sub-units, Methods Enzymol., 85, 241–263.CrossRefPubMedGoogle Scholar
  33. 33.
    Smillie, L. B. (1982) Preparation and identification of alpha-and beta-tropomyosins, Methods Enzymol., 85, 234–241.CrossRefPubMedGoogle Scholar
  34. 34.
    Araujo, A. S., Ribeiro, M. F., Enzveiler, A., Schenkel, P., Fernandes, T. R., Partata, W. A., Irigoyen, M. C., Llesuy, S., and Bello-Klein, A. (2006) Myocardial antioxidant enzyme activities and concentration and glutathione metabolism in experimental hyperthyroidism, Mol. Cell. Endocrinol., 249, 133–139.CrossRefPubMedGoogle Scholar
  35. 35.
    Araujo, A. S., Schenkel, P., Enzveiler, A. T., Fernandes, T. R., Partata, W. A., Llesuy, S., Ribeiro, M. F., Khaper, N., Singal, P. K., and Bello-Klein, A. (2008) The role of redox signaling in cardiac hypertrophy induced by experimental hyperthyroidism, J. Mol. Endocrinol., 41, 423–430.CrossRefPubMedGoogle Scholar
  36. 36.
    Reznick, A. Z., and Packer, L. (1994) Carbonyl assay for determination of oxidatively modified proteins, Meth. Enzymol., 233, 357–363.CrossRefPubMedGoogle Scholar
  37. 37.
    Matyushenko, A. M., Shchepkin, D. V., Kopylova, G. V., Popruga, K. E., Artemova, N. V., Pivovarova, A. V., Bershitsky, S. Y., and Levitsky, D. I. (2017) Structural and functional effects of cardiomyopathy-causing mutations in the troponin T-binding region of cardiac tropomyosin, Biochemistry, 56, 250–259.CrossRefPubMedGoogle Scholar
  38. 38.
    Mashanov, G. I., and Molloy, J. E. (2007) Automatic detec-tion of single fluorophores in live cells, Biophys. J., 92, 2199–2211.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Penheiter, A. R., Bogoger, M., Ellison, P. A., Oswald, B., Perkins, W. J., Jones, K. A., and Cremo, C. R. (2007) H2O2-induced kinetic and chemical modifications of smooth muscle myosin: correlation to effects of H2O2 on airway smooth muscle, J. Biol. Chem., 282, 4336–4344.CrossRefPubMedGoogle Scholar
  40. 40.
    Tiago, T., Simao, S., Aureliano, M., Martнn-Romero, F. J., and Gutierrez-Merino, C. (2006) Inhibition of skeletal muscle S1-myosin ATPase by peroxynitrite, Biochemistry, 45, 3794–3804.CrossRefPubMedGoogle Scholar
  41. 41.
    Klein, J. C., Moen, R. J., Smith, E. A., Titus, M. A., and Thomas, D. D. (2011) Structural and functional impact of site-directed methionine oxidation in myosin, Biochemistry, 50, 10318–10327.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Moen, R. J., Cornea, S., Oseid, D. E., Binder, B. P., Klein, J. C., and Thomas, D. D. (2014) Redox-sensitive residue in the actin-binding interface of myosin, Biochem. Biophys. Res. Commun., 453, 345–349.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Gordon, A. M., Homsher, E., and Regnier, M. (2000) Regulation of contraction in striated muscle, Physiol. Rev., 80, 853–924.CrossRefPubMedGoogle Scholar
  44. 44.
    Andrade, F. H., Reid, M. B., and Westerblad, H. (2001) Contractile response of skeletal muscle to low peroxide concentrations: myofibrillar calcium sensitivity as a likely target for redox-modulation, FASEB J., 15, 309–311.CrossRefPubMedGoogle Scholar
  45. 45.
    Bruton, J. D., Place, N., Yamada, T., Silva, J. P., Andrade, F. H., Dahlstedt, A. J., Zhang, S. J., Katz, A., Larsson, N. G., and Westerblad, H. (2008) Reactive oxygen species and fatigue-induced prolonged low-frequency force depression in skeletal muscle fibres of rats, mice and SOD2 overex-pressing mice, J. Physiol., 586, 175–184.CrossRefPubMedGoogle Scholar
  46. 46.
    Lamb, G. D., and Posterino, G. S. (2003) Effects of oxida-tion and reduction on contractile function in skeletal mus-cle fibres of the rat, J. Physiol., 546, 149–163.CrossRefPubMedGoogle Scholar
  47. 47.
    Snook, J. H., Li, J., Helmke, B. P., and Guilford, W. H. (2008) Peroxynitrite inhibits myofibrillar protein function in an in vitro assay of motility, Free Radic. Biol. Med., 44, 14–23.CrossRefPubMedGoogle Scholar
  48. 48.
    Gross, S. M., and Lehman, S. L. (2013) Accessibility of myofilament cysteines and effects on ATPase depend on the activation state during exposure to oxidants, PLoS One, 8, e69110.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • G. V. Kopylova
    • 1
    Email author
  • D. V. Shchepkin
    • 1
  • S. Y. Bershitsky
    • 1
  1. 1.Institute of Immunology and PhysiologyUral Branch of the Russian Academy of SciencesYekaterinburgRussia

Personalised recommendations