Biochemistry (Moscow)

, Volume 83, Issue 5, pp 507–526 | Cite as

Blood-Derived RNA- and microRNA-Hydrolyzing IgG Antibodies in Schizophrenia Patients

  • E. A. Ermakov
  • S. A. Ivanova
  • V. N. Buneva
  • G. A. NevinskyEmail author


Abzymes with various catalytic activities are the earliest statistically significant markers of existing and developing autoimmune diseases (AIDs). Currently, schizophrenia (SCZD) is not considered to be a typical AID. It was demonstrated recently that antibodies from SCZD patients efficiently hydrolyze DNA and myelin basic protein. Here, we showed for the first time that autoantibodies from 35 SCZD patients efficiently hydrolyze RNA (cCMP > poly(C) > poly(A) > yeast RNA) and analyzed site-specific hydrolysis of microRNAs involved in the regulation of several genes in SCZD (miR-137, miR-9-5p, miR-219-2-3p, and miR-219a-5p). All four microRNAs were cleaved by IgG preparations (n = 21) from SCZD patients in a site-specific manner. The RNase activity of the abzymes correlated with SCZD clinical parameters. The data obtained showed that SCZD patients might display signs of typical autoimmune processes associated with impaired functioning of microRNAs resulting from their hydrolysis by the abzymes.


abzymes schizophrenia patients polyribonucleotide miRNA hydrolysis 



autoimmune disease


correlation coefficient


myelin basic protein


multiple sclerosis


systemic lupus erythematosus




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Meyer-Lindenberg, A. (2011) Neuroimaging and the ques-tion of neurodegeneration in schizophrenia, Prog. Neurobiol., 95, 514–516.CrossRefPubMedGoogle Scholar
  2. 2.
    Goldner, E. M., Hsu, L., Waraich, P., and Somers, J. M. (2002) Prevalence and incidence studies of schizophrenic disorders: a systematic review of the literature, Can. J. Psychiatry, 47, 833–843.CrossRefPubMedGoogle Scholar
  3. 3.
    Beasley, C. L., Pennington, K., Behan, A., Wait, R., Dunn, M. J., and Cotter, D. (2006) Proteomic analysis of the ante-rior cingulate cortex in the major psychiatric disorders: evi-dence for disease-associated changes, Proteomics, 6, 3414–3425.CrossRefPubMedGoogle Scholar
  4. 4.
    Lewis, D. A., Hashimoto, T., and Volk, D. W. (2005) Cortical inhibitory neurons and schizophrenia, Nat. Rev. Neurosci., 6, 312–324.CrossRefPubMedGoogle Scholar
  5. 5.
    Reynolds, L. M., and Reynolds, G. P. (2011) Differential regional N-acetylaspartate deficits in postmortem brain in schizophrenia, bipolar disorder and major depressive disor-der, J. Psychiatr. Res., 45, 54–59.CrossRefPubMedGoogle Scholar
  6. 6.
    Jenkins, T. A., Harte, M. K., Stenson, G., and Reynolds, G. P. (2009) Neonatal lipopolysaccharide induces patho-logical changes in parvalbumin immunoreactivity in the hippocampus of the rat, Behav. Brain Res., 205, 355–359.CrossRefPubMedGoogle Scholar
  7. 7.
    Mura, G., Petretto, D. R., Bhat, K. M., and Carta, M. G. (2012) Schizophrenia: from epidemiology to rehabilitation, Clin. Pract. Epidemiol. Ment. Health, 8, 52–66.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Strous, R. D., and Shoenfeld, Y. (2006) Schizophrenia, autoimmunity and immune system dysregulation: a com-prehensive model updated and revisited, J. Autoimmun., 27, 71–80.CrossRefPubMedGoogle Scholar
  9. 9.
    Muller, N., Weidinger, E., Leitner, B., and Schwarz, M. J. (2015) The role of inflammation in schizophrenia, Front. Neurosci., 9, 372.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Muller, N., and Schwarz, M. (2006) Schizophrenia as an inflammation-mediated disbalance of glutamatergic neuro-transmission, Neurotox. Res., 10, 131–148.CrossRefPubMedGoogle Scholar
  11. 11.
    Muller, N., Riedel, M., Gruber, R., Ackenheil, M., and Schwarz, M. J. (2000) The immune system and schizo-phrenia: an integrative view, Ann. NY Acad. Sci., 917, 456–467.CrossRefPubMedGoogle Scholar
  12. 12.
    Muller, N., and Schwarz, M. J. (2010) The role of immune system in schizophrenia, Curr. Immunol. Rev., 6, 213–220.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Bergink, V., Gibney, S. M., and Drexhage, H. A. (2014) Autoimmunity, inflammation, and psychosis: a search for peripheral markers, Biol. Psychiatr., 75, 324–331.CrossRefGoogle Scholar
  14. 14.
    Strous, R. D., and Shoenfeld, Y. (2006) Schizophrenia, autoimmunity and immune system dysregulation: a com-prehensive model updated and revisited, J. Autoimmun., 27, 71–80.CrossRefPubMedGoogle Scholar
  15. 15.
    Jones, A. L., Mowry, B. J., Pender, M. P., and Greer, J. M. (2005) Immune dysregulation and self-reactivity in schizo-phrenia: do some cases of schizophrenia have an autoim-mune basis? Immunol. Cell Biol., 83, 9–17.CrossRefPubMedGoogle Scholar
  16. 16.
    Sperner-Unterweger, B., and Fuchs, D. (2015) Schizophrenia and psychoneuroimmunology: an integra-tive view, Curr. Opin. Psychiatr., 28, 201–206.CrossRefGoogle Scholar
  17. 17.
    Ripke, S., O’Dushlaine, C., Chambert, K., Moran, J. L., Kahler, A. K., Akterin, S., Bergen, S., Collins, A. L., Crowley, J. J., Fromer, M., Kim, Y., Lee, S. H., Magnus-son, P. K. E., Sanchez, N., Stahl, E. A., Williams, S., Wray, N. R., Xia, K., Bettella, F., Borglum, A. D., Bulik-Sullivan, B. K., Cormican, P., Craddock, N., de Leeuw, C., Durmishi, N., Gill, M., Golimbet, V., Hamshere, M. L., Holmans, P., Hougaard, D. M., Kendler, K. S., Lin, K., Morris, D. W., Mors, O., Mortensen, P. B., Neale, B. M., O’Neill, F. A., Owen, M. J., Milovancevic, M. P., Posthuma, D., Powell, J., Richards, A. L., Riley, B. P., Ruderfer, D., Rujescu, D., Sigurdsson, E., Silagadze, T., Smit, A. B., Stefansson, H., Steinberg, S., Suvisaari, J., Tosato, S., Verhage, M., Walters, J. T., Multicenter Genetic Studies of Schizophrenia Consortium, Psychosis Endophenotypes Consortium, Wellcome Trust Case-Control Consortium, Bramon, E., Corvin, A. P., O’Donovan, M. C., Stefansson, K., Scolnick, E., Purcell, S., McCarroll, S., Sklar, P., Hultman, C. M., and Sullivan P. F. (2013) Genome-wide association analysis identifies 13 new risk loci for schizophrenia, Nat. Genet., 45, 1150–1159.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium (2011) Genome-wide associa-tion study identifies five new schizophrenia loci, Nat. Genet., 43, 969–976.CrossRefGoogle Scholar
  19. 19.
    Sekar, A., Bialas, A. R., de Rivera, H., Davis, A., Hammond, T. R., Kamitaki, N., Tooley, K., Presumey, J., Baum, M., Van Doren, V., Genovese, G., Rose, S. A., Handsaker, R. E., Schizophrenia Working Group of the Psychiatric Genomics Consortium, Daly, M. J., Carroll, M. C., Stevens, B., and McCarroll, S. A. (2016) Schizophrenia risk from complex variation of complement component 4, Nature, 530, 177–183.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Potvin, S., Stip, E., Sepehry, A. A., Gendron, A., Bah, R., and Kouassi, E. (2008) Inflammatory cytokine alterations in schizophrenia: a systematic quantitative review, Biol. Psychiatr., 63, 801–808.CrossRefGoogle Scholar
  21. 21.
    McKernan, D. P., Dennison, U., Gaszner, G., Cryan, J. F., and Dinan, T. G. (2011) Enhanced peripheral toll-like receptor responses in psychosis: further evidence of a pro-inflammatory phenotype, Transl. Psychiatr., 1, e36.Google Scholar
  22. 22.
    Pollak, T. A., Beck, K., Irani, S. R., Howes, O. D., David, A. S., and McGuire, P. K. (2016) Autoantibodies to central nervous system neuronal surface antigens: psychiatric symptoms and psychopharmacological implications, Psychopharmacology, 233, 1605–1621.CrossRefPubMedGoogle Scholar
  23. 23.
    Klyushnik, T. P., Dupin, A. M., Siryachenko, T. M., Sarmanova, Z. V., Otman, I. N., and Sokolov, R. E. (2008) Dynamics of neuroantigen-specific antibodies in the blood serum from patients with schizophrenia during therapy, Zh. Nevrol. Psikhiatr. im. S. S. Korsakova, 108, 61–65.Google Scholar
  24. 24.
    Deakin, J., Lennox, B. R., and Zandi, M. S. (2014) Antibodies to the N-methyl-D-aspartate receptor and other synaptic proteins in psychosis, Biol. Psychiatr., 75, 284–291.CrossRefGoogle Scholar
  25. 25.
    Steiner, J., Schiltz, K., Bernstein, H. G., and Bogerts, B. (2015) Antineuronal antibodies against neurotransmitter receptors and synaptic proteins in schizophrenia: current knowledge and clinical implications, CNS Drugs, 29, 197–206.CrossRefPubMedGoogle Scholar
  26. 26.
    Levite, M. J. (2014) Glutamate receptor antibodies in neu-rological diseases, J. Neural. Transom. (Vienna), 121, 1029–1075.CrossRefGoogle Scholar
  27. 27.
    Eaton, W. W., Byrne, M., Ewald, H., Mors, O., Chen, C. Y., Agerbo, E., and Mortensen, P. B. (2006) Association of schizophrenia and autoimmune diseases: linkage of Danish national registers, Am. J. Psychiatry, 163, 521–528.CrossRefPubMedGoogle Scholar
  28. 28.
    Tiosano, S., Farhi, A., Watad, A., Grysman, N., Stryjer, R., Amital, H., Comaneshter, D., Cohen, A. D., and Amital, D. (2017) Schizophrenia among patients with systemic lupus erythematosus: population-based cross-sectional study, Epidemol. Psychiatr. Sci., 26, 424–429.CrossRefGoogle Scholar
  29. 29.
    Mack, A., Pfeiffer, C., Schneider, E. M., and Bechter, K. (2017) Schizophrenia or atypical lupus erythematosus with predominant psychiatric manifestations over 25 years: case analysis and review, Front. Psychiatry, 8, 131.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Arneth, B. M. (2017) Multiple sclerosis and schizophrenia, Int. J. Mol. Sci., 12, 18.Google Scholar
  31. 31.
    Othman, S. S., Kadir, K. A., Hassan, J., Hong, G. K., Singh, B. B., and Raman, N. (1994) High prevalence of thyroid function test abnormalities in chronic schizophre-nia, Aust. NZ J. Psychiatr., 28, 620–624.CrossRefGoogle Scholar
  32. 32.
    Hardoy, M. C., Cadeddu, M., Serra, A., Moro, M. F., Mura, G., Mellino, G., Bhat, K. M., Altoe, G., Usai, P., Piga, M., and Carta, M. G. (2011) A pattern of cerebral perfusion anomalies between major depressive disorder and Hashimoto thyroiditis, BMC Psychiatry, 11, 148.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Endres, D., Dersch, R., Hochstuhl, B., Fiebich, B., Hottenrott, T., Perlov, E., Maier, S., Berger, B., Baumgartner, A., Venhoff, N., Stich, O., and Tebartz van Elst, L. (2017) Intrathecal thyroid autoantibody synthesis in a subgroup of patients with schizophrenia form syn-dromes, J. Neuropsychiatry Clin. Neurosci., 29, 365–374.CrossRefPubMedGoogle Scholar
  34. 34.
    Haider, A. S., Alam, M., Adetutu, E., Thakur, R., Gottlich, C., DeBacker, D. L., and Marks, L. (2016) Autoimmune schizophrenia? Psychiatric manifestations of Hashimoto’s encephalitis, Cureus, 8, e672.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Kridin, K., Zelber-Sagi, S., Comaneshter, D., and Cohen, A. D. (2017) Association between schizophrenia and an autoimmune bullous skin disease-pemphigus: a population-based large-scale study, Epidemiol. Psychiatr. Sci., 25, 1–8.CrossRefGoogle Scholar
  36. 36.
    Regina, P., Pnina, R., Natur, F., and Yair, L. (2017) Anti-phospholipid syndrome associated with schizophrenia description of five patients and review of the literature, Immunol. Res., 65, 438–446.CrossRefPubMedGoogle Scholar
  37. 37.
    Miller, B. H., and Wahlestedt, C. (2010) MicroRNA dys-regulation in psychiatric disease, Brain Res., 1338, 89–99.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Sun, X. Y., Lu, J., Zhang, L., Song, H. T., Zhao, L., Fan, H. M., Zhong, A. F., Niu, W., Guo, Z. M., Dai, Y. H., Chen, C., Ding, Y. F., and Zhang, L. Y. (2015) Aberrant microRNA expression in peripheral plasma and mononu-clear cells as specific blood-based biomarkers in schizo-phrenia patients, J. Clin. Neurosci., 22, 570–574.CrossRefPubMedGoogle Scholar
  39. 39.
    Shi, W., Du, J., Qi, Y., Liang, G., Wang, T., Li, S., Xie, S., Zeshan, B., and Xiao, Z. (2012) Aberrant expression of serum miRNAs in schizophrenia, J. Psychiat. Res., 46, 198–204.CrossRefPubMedGoogle Scholar
  40. 40.
    Lai, C. Y., Yu, S. L., Hsieh, M. H., Chen, C. H., Chen, H. Y., Wen, C. C., Huang, Y. H., Hsiao, P. C., Hsiao, C. K., Liu, C. M., Yang, P. C., Hwu, H. G., and Chen, W. J. (2011) MicroRNA expression aberration as potential peripheral blood biomarkers for schizophrenia, PloS One, 6, e21635.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Lai, C. Y., Lee, S. Y., Scarr, E., Yu, Y. H., Lin, Y. T., Liu, C. M., Hwang, T. J., Hsieh, M. H., Liu, C. C., Chien, Y. L., Udawela, M., Gibbons, A. S., Everall, I. P., Hwu, H. G., Dean, B., and Chen, W. J. (2016) Aberrant expression of microRNAs as biomarker for schizophrenia: from acute state to partial remission, and from peripheral blood to cor-tical tissue, Transl. Psychiat., 6, e717.CrossRefGoogle Scholar
  42. 42.
    Perkins, D. O., Jeffries, C. D., Jarskog, L. F., Thomson, J. M., Woods, K., Newman, M. A., Parker, J. S., Jin, J., and Hammond, S. M. (2007) MicroRNA expression in the pre-frontal cortex of individuals with schizophrenia and schizoaffective disorder, Genome Biol., 8, R27.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Moreau, M. P., Bruse, S. E., David-Rus, R., Buyske, S., and Brzustowicz, L. M. (2011) Altered microRNA expres-sion profiles in postmortem brain samples from individuals with schizophrenia and bipolar disorder, Biol. Psychiat., 69, 188–193.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Hauberg, M. E., Roussos, P., Grove, J., Borglum, A. D., and Mattheisen, M. (2016) Analyzing the role of microRNAs in schizophrenia in the context of common genetic risk variants, JAMA Psychiat., 73, 369–377.CrossRefGoogle Scholar
  45. 45.
    Yin, J., Lin, J., Luo, X., Chen, Y., Li, Z., Ma, G., and Li, K. (2014) miR-137: a new player in schizophrenia, Int. J. Mol. Sci., 15, 3262–3271.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Olde Loohuis, N. F., Ba, W., Stoerchel, P. H., Kos, A., Jager, A., Schratt, G., Martens, G. J., van Bokhoven, H., Nadif Kasri, N., and Aschrafi, A. (2015) MicroRNA-137 controls AMPA-receptor-mediated transmission and mGluR-dependent LTD, Cell Rep., 11, 1876–1884.CrossRefPubMedGoogle Scholar
  47. 47.
    Sakamoto, K., and Crowley, J. J. (2018) A comprehensive review of the genetic and biological evidence supports a role for microRNA-137 in the etiology of schizophrenia, Am. J. Med. Genet. B Neuropsychiatr. Genet., 177, 242–256.CrossRefPubMedGoogle Scholar
  48. 48.
    Siegert, S., Seo, J., Kwon, E. J., Rudenko, A., Cho, S., Wang, W., Flood, Z., Martorell, A. J., Ericsson, M., Mungenast, A. E., and Tsai, L. H. (2015) The schizophre-nia risk gene product miR-137 alters presynaptic plasticity, Nat. Neurosci., 18, 1008–1016.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Topol, A., Zhu, S., Hartley, B. J., English, J., Hauberg, M. E., Tran, N., Rittenhouse, C. A., Simone, A., Ruderfer, D. M., Johnson, J., Readhead, B., Hadas, Y., Gochman, P. A., Wang, Y. C., Shah, H., Cagney, G., Rapoport, J., Gage, F. H., Dudley, J. T., Sklar, P., Mattheisen, M., Cotter, D., Fang, G., and Brennand, K. J. (2016) Dysregulation of miRNA-9 in a subset of schizophrenia patient-derived neu-ral progenitor cells, Cell Rep., 15, 1024–1036.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Murai, K., Sun, G., Ye, P., Tian, E., Yang, S., Cui, Q., Sun, G., Trinh, D., Sun, O., Hong, T., Wen, Z., Kalkum, M., Riggs, A. D., Song, H., Ming, G. L., and Shi, Y. (2016) The TLX-miR-219 cascade regulates neural stem cell prolifera-tion in neurodevelopment and schizophrenia iPSC model, Nat. Commun., 7, 10965.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Dugas, J. C., Cuellar, T. L., Scholze, A., Ason, B., Ibrahim, A., Emery, B., Zamanian, J. L., Foo, L. C., McManus, M. T., and Barres, B. A. (2010) Dicer1 and miR-219 are required for normal oligodendrocyte differentiation and myelination, Neuron, 65, 597–611.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Lerner, R. A., and Tramontano, A. (1987) Antibodies as enzymes, Trends Bioch. Sci., 12, 427–438.CrossRefGoogle Scholar
  53. 53.
    Schultz, P. G., and Lerner, R. A. (1995) From molecular diversity to catalysis: lessons from the immune system, Science, 269, 1835–1842.CrossRefPubMedGoogle Scholar
  54. 54.
    Keinan, E. (ed.) (2005) Catalytic Antibodies, Wiley-VCH Verlag GmbH and Co. KgaA, Weinheim, Germany.Google Scholar
  55. 55.
    Nevinsky, G. A., and Buneva, V. N. (2005) Natural catalyt-ic antibodies–abzymes, in Catalytic Antibodies (Keinan, E., ed.), VCH-Wiley Press, Weinheim, Germany, pp. 505-569.Google Scholar
  56. 56.
    Nevinsky, G. A. (2010) Natural catalytic antibodies in norm and in autoimmune diseases, in Autoimmune Diseases: Symptoms, Diagnosis and Treatment (Brenner, K. J., ed.), Nova Science Publishers, Inc., New York, USA.Google Scholar
  57. 57.
    Nevinsky, G. A. (2011) Natural catalytic antibodies in norm and in HIV-infected patients, in Understanding HIV/AIDS Management and Care–Pandemic Approaches in the 21st Century (Kasenga, F. H., ed.), InTech, Rijeka, Croatia, pp. 151–192.Google Scholar
  58. 58.
    Nevinsky, G. A. (2016) Autoimmune processes in multiple sclerosis: production of harmful catalytic antibodies associ-ated with significant changes in the hematopoietic stem cell differentiation and proliferation, in Multiple Sclerosis (Conzalez-Quevedo, A., ed.), InTech, Rijeka, Croatia, pp. 100–147.Google Scholar
  59. 59.
    Andryushkova, A. A., Kuznetsova, I. A., Buneva, V. N., Toporkova, L. B., Sakhno, L. V., Tikhonova, M. A., Chernykh, E. R., Orlovskaya, I. A., and Nevinsky, G. A. (2007) Formation of different abzymes in autoimmune prone MRL lpr/lpr mice is associated with changes in colony formation of hematopoietic progenitors, J. Cell. Mol. Med., 11, 531–551.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Buneva, V. N., Krasnorutskiy, M. A., and Nevinskiy, G. A. (2013) Natural antibodies against nucleic acids, Biochemistry (Moscow), 78, 127–143.CrossRefGoogle Scholar
  61. 61.
    Ermakov, E. A., Smirnova, L. P., Parkhomenko, T. A., Dmitrenok, P. S., Krotenko, N. M., Fattakhov, N. S., Bokhan, N. A., Semke, A. V., Ivanova, S. A., Buneva, V. N., and Nevinsky, G. A. (2015) DNA-hydrolysing activity of IgG antibodies from the sera of patients with schizo-phrenia, Open Biol., 5, 150064.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Parshukova, D. A., Smirnova, L. P., Buneva, V. N., Semke, A. V., and Ivanova, S. A. (2015) Proteolytic hydrolysis of myelin basic protein by IgGs during long-term treatment of schizophrenia, Eur. Neuropsychopharmacol., 25, S272–S273.CrossRefGoogle Scholar
  63. 63.
    Baranovskiy, A. G., Kanyshkova, T. G., Mogil’nitskiy, A. S., Naumov, V. A., Buneva, V. N., Boyko, A. N., Favorova, O. O., and Nevinskiy, G. A. (1998) Polyclonal serum anti-bodies in patients with multiple sclerosis efficiently hydrolyzed RNA and DNA, Biochemistry (Moscow), 63, 1239–1248.Google Scholar
  64. 64.
    Vlasov, A. V., Baranovskiy, A. G., Kanyshkova, T. G., Prints, A. V., Zabara, V. G., Naumov, V. A., Breusov, A. A., Giege, R., Buneva, V. N., and Nevinskiy, G. A. (1998) Substrate specificity of DNA-and RNA-hydrolyzing serum antibodies from patients with polyarthritis and autoimmune thyroiditis, Mol. Biol. (Moscow), 32, 559–569.Google Scholar
  65. 65.
    Vlassov, A., Florentz, C., Helm, M., Naumov, V., Buneva, V., Nevinsky, G., and Giege, R. (1998) Characterization and selectivity of catalytic antibodies from human serum with RNase activity, Nucleic Acids Res., 26, 5243–5250.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Nevinsky, G. A., and Buneva, V. N. (2002) Human catalyt-ic RNA-and DNA-hydrolyzing antibodies, J. Immunol. Methods, 269, 235–249.CrossRefPubMedGoogle Scholar
  67. 67.
    Kay, S. R., Abraham, F., and Lewis, A. O. (1987) The pos-itive and negative syndrome scale (PANSS) for schizophre-nia, Schizophrenia Bull., 13, 261.CrossRefGoogle Scholar
  68. 68.
    Kneisl, C., and Trigoboff, E. (2009) Contemporary Psychiatric-Mental Health Nursing, 2nd Edn., Pearson Prentice Ltd., London.Google Scholar
  69. 69.
    American Psychiatric Association. Task Force on DSM-IV (2000) Diagnostic and Statistical Manual of Mental Disorders (DSM), 4th Edn., American Psychiatric Association, Washington, DC.Google Scholar
  70. 70.
    Carson, V. B. (1995) Mental Health Nursing: The Nurse–Patient Journey, 2nd Edn., W. B. Saunders, Philadelphia.Google Scholar
  71. 71.
    Velligan, D. I., and Alphs, L. D. (2008) Negative symptoms in schizophrenia: the importance of identification and treatment, Psychiat. Times, 25, 12.Google Scholar
  72. 72.
    Polosukhina, D. I., Kanyshkova, T. G., Doronin, B. M., Tyshkevich, O. B., Buneva, V. N., Boiko, A. N., Gusev, E. I., Favorova, O. O., and Nevinsky, G. A. (2004) Hydrolysis of myelin basic protein by polyclonal catalytic IgGs from the sera of patients with multiple sclerosis, J. Cell. Mol. Med., 8, 359–368.CrossRefPubMedGoogle Scholar
  73. 73.
    Polosukhina, D. I., Buneva, V. N., Doronin, B. M., Tyshkevich, O. B., Boiko, A. N., Gusev, E. I., Favorova, O. O., and Nevinsky, G. A. (2006) Metal-dependent hydroly-sis of myelin basic protein by IgGs from the sera of patients with multiple sclerosis, Immunol. Lett., 103, 75–81.CrossRefPubMedGoogle Scholar
  74. 74.
    Bezuglova, A. M., Konenkova, L. P., Doronin, B. M., Buneva, V. N., and Nevinsky, G. A. (2011) Affinity and cat-alytic heterogeneity and metal dependence of polyclonal myelin basic protein hydrolyzing IgGs from sera of patients with systemic lupus erythematosus, J. Mol. Recognit., 24, 960–974.CrossRefPubMedGoogle Scholar
  75. 75.
    Krasnorutskii, M. A., Buneva, V. N., and Nevinsky, G. A. (2008) Antibodies against pancreatic ribonuclease A hydrolyze RNA and DNA, Int. Immunol., 20, 1031–1040.CrossRefPubMedGoogle Scholar
  76. 76.
    Andrievskaya, O. A., Buneva, V. N., Baranovskii, A. G., Gal’vita, A. V., Benzo, E. S., Naumov, V. A., and Nevinsky, G. A. (2002) Catalytic diversity of polyclonal RNA-hydrolyzing IgG antibodies from the sera of patients with systemic lupus erythematosus, Immunol. Lett., 81, 191–198.CrossRefPubMedGoogle Scholar
  77. 77.
    Fisher, B. M., Juneko, E. G., and Ronald, T. R. (1998) A new remote subsite in ribonuclease A, J. Biol. Chem., 273, 34134–34138.CrossRefPubMedGoogle Scholar
  78. 78.
    Irie, M., Mikami, F., Monma, K., Ohgi, K., Watanabe, H., Yamaguchi, R., and Nagase, H. (1984) Kinetic studies on the cleavage of oligouridylic acids and poly U by bovine pancreatic ribonuclease A, J. Biochem., 96, 89–96.CrossRefPubMedGoogle Scholar
  79. 79.
    Crook, E. M., Mathias, A. P., and Rabin, B. R. (1960) Spectrophotometric assay of bovine pancreatic ribonucle-ase by the use of cytidine 2′:3′-phosphate, Biochem. J., 74, 234–238.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Fersht, A. (1985) Enzyme Structure and Mechanism, 2nd Edn., W. H. Freeman, Co., New York.Google Scholar
  81. 81.
    Akagi, K., Murai. K., Hirao, N., and Yamanaka, M. (1976) Purification and properties of alkaline ribonucleases from human serum, Biochim. Biophys. Acta, 442, 368–378.CrossRefPubMedGoogle Scholar
  82. 82.
    Tolmacheva, A. S., Blinova, E. A., Ermakov, E. A., Buneva, V. N., Vasilenko, N. L., and Nevinsky, G. A. (2015) IgG abzymes with peroxidase and oxidoreductase activities from the sera of healthy humans, J. Mol. Recognit., 28, 565–580.CrossRefPubMedGoogle Scholar
  83. 83.
    Andreev, S. L., Buneva, V. N., and Nevinsky, G. A. (2016) How human IgGs against DNA recognize oligonucleotides and DNA, J. Mol. Recognit., 29, 596–610.CrossRefPubMedGoogle Scholar
  84. 84.
    Andrievskaya, O. A., Buneva, V. N., Naumov, V. A., and Nevinsky, G. A. (2000) Catalytic heterogeneity of poly-clonal RNA-hydrolyzing IgM from sera of patients with lupus erythematosus, Med. Sci. Monit., 6, 460–470.PubMedGoogle Scholar
  85. 85.
    Pollak, T. A., Beck, K., Irani, S. R., Howes, O. D., David, A. S., and McGuire, P. K. (2016) Autoantibodies to central nervous system neuronal surface antigens: psychiatric symptoms and psychopharmacological implications, Psychopharmacology (Berl.), 233, 1605–1621.CrossRefGoogle Scholar
  86. 86.
    Andryushkova, A. S., Kuznetsova, I. A., Orlovskaya, I. A., Buneva, V. N., and Nevinsky, G. A. (2006) Antibodies with amylase activity from the sera of autoimmune-prone MRL/MpJ-lpr mice, FEBS Lett., 580, 5089–5095.CrossRefPubMedGoogle Scholar
  87. 87.
    Andryushkova, A. A., Kuznetsova, I. A., Orlovskaya, I. A., Buneva, V. N., and Nevinsky, G. A. (2009) Nucleotide-hydrolyzing antibodies from the sera of autoimmune-prone MRL-lpr/lpr mice, Int. Immunol., 21, 935–945.CrossRefPubMedGoogle Scholar
  88. 88.
    Doronin, V. B., Parkhomenko, T. A., Korablev, A., Toporkova, L. B., Lopatnikova, J. A., Alshevskaja, A. A., Sennikov, S. V., Buneva, V. N., Budde, T., Meuth, S. G., Orlovskaya, I. A., Popova, N. A., and Nevinsky, G. A. (2016) Changes in different parameters, lymphocyte prolif-eration and hematopoietic progenitor colony formation in EAE mice treated with myelin oligodendrocyte glycopro-tein, J. Cell. Mol. Med., 20, 81–94.CrossRefPubMedGoogle Scholar
  89. 89.
    Aulova, K. S., Toporkova, L. B., Lopatnikova, J. A., Alshevskaya, A. A., Sennikov, S. V., Buneva, V. N., Budde, T., Meuth, S. G., Popova, N. A., Orlovskaya, I. A., and Nevinsky, G. A. (2017) Changes in hematopoietic progen-itor colony differentiation and proliferation and the pro-duction of different abzymes in EAE mice treated with DNA, J. Cell. Mol. Med., 21, 3795–3809.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Parkhomenko, T. A., Doronin, V. B., Castellazzi, M., Padroni, M., Pastore, M., Buneva, V. N., Granieri, E., and Nevinsky, G. A. (2014) Comparison of DNA-hydrolyzing antibodies from the cerebrospinal fluid and serum of patients with multiple sclerosis, PLoS One, 9, e93001.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Doronin, V. B., Parkhomenko, T. A., Castellazzi, M., Padroni, M., Pastore, M., Buneva, V. N., Granieri, E., and Nevinsky, G. A. (2014) Comparison of antibodies hydrolyzing myelin basic protein from the cerebrospinal fluid and serum of patients with multiple sclerosis, PLoS One, 9, e107807.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Doronin, V. B., Parkhomenko, T. A., Castellazzi, M., Cesnik, E., Buneva, V. N., Granieri, E., and Nevinsky, G. A. (2016) Comparison of antibodies with amylase activity from cerebrospinal fluid and serum of patients with multi-ple sclerosis, PLoS One, 11, e0154688.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. A. Ermakov
    • 1
    • 2
  • S. A. Ivanova
    • 3
  • V. N. Buneva
    • 1
    • 2
  • G. A. Nevinsky
    • 1
    • 2
    Email author
  1. 1.Institute of Chemical Biology and Fundamental MedicineSiberian Branch of the Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Mental Health Research Institute, Tomsk National Research Medical CenterRussian Academy of SciencesTomskRussia

Personalised recommendations