Advertisement

Biochemistry (Moscow)

, Volume 83, Issue 5, pp 467–482 | Cite as

Spatial Structure of Glycogen Molecules in Cells

  • N. N. BezborodkinaEmail author
  • A. Yu. Chestnova
  • M. L. Vorobev
  • B. N. Kudryavtsev
Review
  • 95 Downloads

Abstract

Glycogen is a strongly branched polymer of α-D-glucose, with glucose residues in the linear chains linked by 1→4-bonds (~93% of the total number of bonds) and with branching after every 4-8 residues formed by 1→6-glycosidic bonds (~7% of the total number of bonds). It is thought currently that a fully formed glycogen molecule (β-particle) with the self-glycosylating protein glycogenin in the center has a spherical shape with diameter of ~42 nm and contains ~ 55,000 glucose residues. The glycogen molecule also includes numerous proteins involved in its synthesis and degradation, as well as proteins performing a carcass function. However, the type and force of bonds connecting these proteins to the polysaccharide moiety of glycogen are significantly different. This review presents the available data on the spatial structure of the glycogen molecule and its changes under various physiological and pathological conditions.

Keywords

glycogen molecule α-particles β-particles polysaccharide–protein complex glycogen fractions liver skeletal muscles 

Abbreviations

BE

branching enzyme

GDE

glycogen debranching enzyme

GP

glycogen phosphorylase

G-1-P

glu-cose-1-phosphate

G-6-P

glucose-6-phosphate

GPa

active form of glycogen phosphorylase

GS

glycogen synthase

MG

macroglycogen

PG

proglycogen

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schmidt-Nielsen, K. (1982) Animal Physiology. Adaptation and Environment [Russian translation], Mir, Moscow.Google Scholar
  2. 2.
    Danovaro, R., Dell’Anno, A., Pusceddu, A., Gambi, C., Heiner, I., and Kristensen, R. M. (2010) The first meta-zoan living in permanently anoxic conditions, BMC Biol., 8, 30.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Kasting, J. F., and Siefert, J. (2002) Life and the evolution of Earth’s atmosphere, Science, 296, 1066–1068.PubMedCrossRefGoogle Scholar
  4. 4.
    Knoll, A. H. (2003) Life on a Young Planet: The First Tree Billion Years of Evolution on Earth, Princeton, Princeton University Press, Chichester.Google Scholar
  5. 5.
    Holand, H. D. (2006) The oxygenation of the atmosphere and oceans, Phil. Trans. R. Soc. B, 361, 903–915.CrossRefGoogle Scholar
  6. 6.
    Ball, S., Colleoni, C., Cenci, U., Raj, J. N., and Tirtiaux, C. (2011) The evolution of glycogen and starch metabolism in eukaryotes gives molecular clues to understand the estab-lishment of plastid endosymbiosis, J. Exp. Botany, 62, 1775–1801.CrossRefGoogle Scholar
  7. 7.
    Bernard, C. (1857) Nouvelles recherches experimentales sur les phenomenes glycogeniques du foie, Mum. Soc. Biol., 4, 1–7.Google Scholar
  8. 8.
    Harris, R. A. (1992) Textbook of Biochemistry with Clinical Correlations (Davlin, T. M., ed.) Wiley Liss, N. Y., pp. 291–358.Google Scholar
  9. 9.
    Ferrer, J. C., Favre, C., Gomis, R. R., Fernandez-Novell, J. M., Garcia-Rocha, M., de la Iglesia, N., Cid, E., and Guinovart, J. J. (2003) Control of glycogen deposition, FEBS Lett., 546, 27–132.CrossRefGoogle Scholar
  10. 10.
    Greenberg, C. C., Jurczak, M. J., Danos, A. M., and Brady, M. J. (2006) Glycogen branches out: new perspec-tives on the role of glycogen metabolism in the integration of metabolic pathways, Am. J. Physiol. Endocrinol. Metab., 291, E1–E8.Google Scholar
  11. 11.
    Jurczak, M. J., Danos, A. M., Rehrmann, V. R., and Brady, M. J. (2008) The role of protein translocation in the regu-lation of metabolism, J. Cell Biochem., 104, 435–443.PubMedCrossRefGoogle Scholar
  12. 12.
    Jungermann, K. (1992) Role of intralobular compartmen-tation in hepatic metabolism, Diabete Metab., 18, 81–86.PubMedGoogle Scholar
  13. 13.
    Rajvanshi, P., Liu, D., Ott, M., Gagandeep, S., Schilsky, M. L., and Gupta, S. (1998) Fractionation of rat hepato-cyte subpopulations with varying metabolic potential, pro-liferative capacity, and retroviral gene transfer efficiency, Exp. Cell. Res., 244, 405–419.PubMedCrossRefGoogle Scholar
  14. 14.
    Teutsch, H. F., Schuerfeld, D., and Groezinger, E. (1999) Three-dimensional reconstruction of parenchymal units in the liver of the rat, Hepatology, 29, 494–505.PubMedCrossRefGoogle Scholar
  15. 15.
    Kudryavtseva, M. V., Bezborodkina, N. N., Radchenko, V. G., Okovity, S. V., and Kydryavtsev, B. N. (2001) Metabolic heterogeneity of glycogen in hepatocytes of patients with liver cirrhosis: the glycogen of the liver lobule zones in cir-rhosis, Europ. J. Gastroenterol. Hepatol., 13, 693–697.CrossRefGoogle Scholar
  16. 16.
    Roach, P. J., Depaoli-Roach, A. A., Hurley, T. D., and Tagliabracci, V. S. (2012) Glycogen and its metabolism: some new development and old themes, Biochem. J., 441, 763–787.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Shearer, J., and Graham, T. E. (2004) Novel aspects of skeletal muscle glycogen and its regulation during rest and exercise, Exerc. Sport. Sci. Rev., 32, 120–126.PubMedCrossRefGoogle Scholar
  18. 18.
    Roach, P. J. (2002) Glycogen and its metabolism, Curr. Mol. Med., 2, 101–120.PubMedCrossRefGoogle Scholar
  19. 19.
    Minassian, B. A., Lee, J. R., Herbrick, J. A., Huizenga, J., Soder, S., Mungall, A. J., Dunham, I., Gardner, R., Fong, C. Y., Carpenter, S., Jardim, L., Satishchandra, P., Andermann, E., Snead, O. C., 3rd, Lopes-Cendes, I., Tsui, L. C., Delgado-Escueta, A. V., Rouleau, G. A., and Scherer, S. W. (1998) Mutations in a gene encoding a novel protein tyrosine phosphatase cause progressive myoclonus epilepsy, Nat. Genet., 20, 171–174.PubMedCrossRefGoogle Scholar
  20. 20.
    Ganesh, S., Amano, K., Delgado-Escueta, A. V., and Yamakawa, K. (1999) Isolation and characterization of mouse homologue for the human epilepsy gene, Biochem. Biophys. Res. Commun., 257, 24–28.PubMedCrossRefGoogle Scholar
  21. 21.
    Jiang, S., Heller, B., Tagliabracci, V. S., Zhai, L., Irimia, J. M., Depaoli-Roach, A. A., Wells, C. D., Skurat, A. V., and Roach, P. J. (2010) Starch binding domain-containing pro-tein 1/genethonin 1 is a novel participant in glycogen metabolism, J. Biol. Chem., 285, 34960–34971.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Stapleton, D., Nelson, C., Parsawar, K., McClain, D., Gilbert-Wilson, R., Barker, E., Rudd, B., Brown, K., Hendrix, W., O’Donnell, P., and Parker, G. (2010) Analysis of hepatic glycogen-associated proteins, Proteomics, 10, 2320–2329.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Caudwell, F. B., and Cohen, P. (1980) Purification and subunit structure of glycogen-branching enzyme from rab-bit skeletal muscle, Eur. J. Biochem., 109, 391–394.PubMedCrossRefGoogle Scholar
  24. 24.
    Krisman, C. R., and Barengo, R. A. (1975) A precursor of glycogen biosynthesis: alpha-1,4-glucan-protein, Eur. J. Biochem., 52, 117–123.PubMedCrossRefGoogle Scholar
  25. 25.
    Alonso, M. D., Lomako, J., Lomako, W. M., and Whelan, W. J. (1995) A new look at the biogenesis of glycogen, FASEB J., 9, 1126–1137.PubMedCrossRefGoogle Scholar
  26. 26.
    Cao, Y., Mahrenholz, A. M., DePaoli-Roach, A. A., and Roach, P. J. (1993) Characterization of rabbit skeletal mus-cle glycogenin: tyrosine 194 is essential for function, J. Biol. Chem., 268, 14687–14693.PubMedGoogle Scholar
  27. 27.
    Hurley, T. D., Walls, C., Bennett, J. R., Roach, P. J., and Wang, M. (2006) Direct detection of glycogenin reaction products during glycogen initiation, Biochem. Biophys. Res. Commun., 348, 374–378.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Roach, P. J., and Skurat, A. V. (1997) Self-glucosylating initiator proteins and their role in glycogen biosynthesis, Prog. Nucleic Acid Res. Mol. Biol., 57, 289–316.PubMedCrossRefGoogle Scholar
  29. 29.
    Lomako, J., Lomako, W. M., and Whelan, W. J. (2004) Glycogenin: the primer for mammalian and yeast glycogen synthesis, Biochim. Biophys. Acta, 1673, 45–55.PubMedCrossRefGoogle Scholar
  30. 30.
    Fernandez-Novell, J. M., Lopez-Iglesias, C., Ferrer, J. C., and Guinovart, J. J. (2002) Zonal distribution of glycogen syn-thesis in isolated rat hepatocytes, FEBS Lett., 531, 222–228.PubMedCrossRefGoogle Scholar
  31. 31.
    Larner, J. (1955) Branching enzyme from liver, Methods Enzymol., 1, 222–225.CrossRefGoogle Scholar
  32. 32.
    Krisman, C. R. (1962) α-l,4-Glucan: α-l,4-glucan 6-glyco-syltransferase from liver, Biochim. Biophys. Acta, 65, 307–315.CrossRefGoogle Scholar
  33. 33.
    Brown, B. I., and Brown, D. H. (1966) α-l,4-Glucan 6-glycosyltransferase from mammalian muscle, Methods Enzymol., 8, 395–403.CrossRefGoogle Scholar
  34. 34.
    Melendez, R., Melendez-Hevia, E., and Cascante, M. (1997) How did glycogen structure evolve to satisfy the requirement for rapid mobilization of glucose? A problem of physical constraints in structure building, J. Mol. Evol., 45, 446–455.PubMedCrossRefGoogle Scholar
  35. 35.
    Bezborodkina, N. N., Okovityi, S. V., and Kudryavtsev, B. N. (2008) Carbohydrate Metabolism in Chronic Damages of the Liver [in Russian], Sintez-Buk, St. Petersburg.Google Scholar
  36. 36.
    Biorn, A. C., and Graves, D. J. (2001) The amino-terminal tail of glycogen phosphorylase is a switch for controlling phosphorylase conformation, activation, and response to ligands, Biochemistry, 40, 5181–5189.PubMedCrossRefGoogle Scholar
  37. 37.
    Newsholm, E., and Start, C. (1977) Regulation in Metabolism [Russian translation], Mir, Moscow.Google Scholar
  38. 38.
    Goldsmith, E., Sprang, S., and Fletterick, R. (1982) Structure of maltoheptaose by difference Fourier methods and a model for glycogen, J. Mol. Biol., 156, 411–427.PubMedCrossRefGoogle Scholar
  39. 39.
    Geddes, R., Jeyarathan, P., and Taylor, J. A. (1992) Molecular and metabolic aspects of lysosomal glycogen, Carbohydr. Res., 227, 339–349.PubMedCrossRefGoogle Scholar
  40. 40.
    Geddes, R. (1985) The Polysaccharides, Vol. 3 (Aspinall, G. O., ed.), Academic Press, Orlando, pp. 283–336.Google Scholar
  41. 41.
    Stepanenko, B. N., and Bobrova, L. N. (1974) Modern concepts about micro-and macromolecular structure of glycogen, Usp. Biol. Khim., 15, 195–207.Google Scholar
  42. 42.
    Geddes, R., and Stratton, G. C. (1977) The influence of lysosomes on glycogen metabolism, Biochem. J., 163, 193–200.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Wanson, J. C., and Drochmans, P. (1968) Rabbit skeletal muscle glycogen. A morphological and biochemical study of glycogen β-particles isolated by the precipitation-cen-trifugation method, J. Cell Biol., 38, 130–150.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Devos, P., Baudhuin, P., Van Hoof, F., and Hers, H. G. (1983) The alpha particulate liver glycogen. A morphomet-ric approach to the kinetics of its synthesis and degradation, Biochem. J., 209, 159–165.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Rybicka, K. K. (1996) Glycosomes–the organelles of glycogen metabolism, Tissue Cell, 28, 253–265.PubMedCrossRefGoogle Scholar
  46. 46.
    Sullivan, M. A., Vilaplana, F., Cave, R. A., Stapleton, D., Gray-Weale, A. A., and Gilbert, R. G. (2010) Nature of α-and β-particles in glycogen using molecular size distribu-tions, Biomacromolecules, 11, 1094–1100.PubMedCrossRefGoogle Scholar
  47. 47.
    Besford, Q. A., Sullivan, M. A., Zheng, L., Gilbert, R. G., Stapleton, D., and Gray Weale, A. (2012) The structure of cardiac glycogen in healthy mice, Int. J. Biol. Macromol., 51, 887–891.PubMedCrossRefGoogle Scholar
  48. 48.
    Devos, P., and Hers, H. G. (1979) A molecular order in the synthesis and degradation of glycogen in the liver, Eur. J. Biochem., 99, 161–167.PubMedCrossRefGoogle Scholar
  49. 49.
    Devos, P., and Hers, H. G. (1980) Glycogen in rat adipose tissue: sequential synthesis and random degradation, Biochem. Biophys. Res. Commun., 95, 1031–1036.PubMedCrossRefGoogle Scholar
  50. 50.
    Orrell, S. A., and Bueding, E. (1964) A comparison of products obtained by various procedures used for the extraction of glycogen, J. Biol. Chem., 239, 4021–4026.PubMedGoogle Scholar
  51. 51.
    Nakamura, M. (1977) Handbook of Starch Science, Asakura-Shoten, Tokyo.Google Scholar
  52. 52.
    Hata, K., Hata, M., Hata, M., and Matsuda, K. (1984) A proposed model of glycogen particle, J. Jpn. Soc. Starch. Sci., 31, 146–155.CrossRefGoogle Scholar
  53. 53.
    Sullivan, M. A., Aroney, S. T., Li, S., Warren, F. J., Joo, J. S., Mak, K. S., Stapleton, D. I., Bell-Anderson, K. S., and Gilbert, R. G. (2014) Molecular insights into glycogen α-particle formation, Biomacromolecules, 15, 660–665.PubMedCrossRefGoogle Scholar
  54. 54.
    Stetten, M. R., and Stetten, D., Jr. (1958) Influence of molecular size of glycogen on the phosphorylase reaction, J. Biol. Chem., 232, 489–504.PubMedGoogle Scholar
  55. 55.
    Melendez-Hevia, E., Waddell, T. G., and Shelton, E. D. (1993) Optimization of molecular design in the evolution of metabolism: the glycogen molecule, Biochem. J., 295 (Pt. 2), 477–483.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Meyer, R. H., and Bernfeld, P. (1940) Recherches sur l’amidon V. L’amilopectine, Helv. Chim. Acta, 23, 875–885.CrossRefGoogle Scholar
  57. 57.
    Whelan, W. J. (1971) Enzymic explorations of the struc-tures of starch and glycogen, Biochem. J., 122, 609–622.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Walker, G. J., and Whelan, W. J. (1960) The mechanism of carbohydrase action. 8. Structures of the muscle-phospho-rylase limit dextrins of glycogen and amylopectin, Biochem. J., 76, 264–270.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Shearer, J., and Graham, T. E. (2002) New perspectives on the storage and organization of muscle glycogen, J. Appl. Physiol., 27, 179–203.CrossRefGoogle Scholar
  60. 60.
    Graham, T. E., Yuan, Z., Hill, A. K., and Wilson, R. J. (2010) The regulation of muscle glycogen: the granule and its proteins, Acta Physiol., 199, 489–498.CrossRefGoogle Scholar
  61. 61.
    Madsen, N. B., and Cori, C. F. (1958) The binding of glycogen and phosphorylase, J. Biol. Chem., 233, 1251–1256.PubMedGoogle Scholar
  62. 62.
    Melendez, R., Melendez-Hevia, E., Mas, F., Mach, J., and Cascante, M. (1998) The fractal structure of glycogen: a clever solution to optimize cell metabolism, Biophys. J., 75, 106–114.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Melendez-Hevia, E., Waddel, T. G., Raposo, R. R., and Lupianez, J. A. (1995) Evolution of metabolism: optimiza-tion of glycogen structure, J. Biol. Systems, 3, 177–186.CrossRefGoogle Scholar
  64. 64.
    Geddes, R. (1986) Glycogen: a metabolic viewpoint, Bioscience Rep., 6, 415–428.CrossRefGoogle Scholar
  65. 65.
    Marshall, J. J. (1974) Application of enzymic methods to the structural analysis of polysaccharides, Adv. Carbohydr. Chem. Biochem., 30, 257–370.PubMedCrossRefGoogle Scholar
  66. 66.
    Gunja-Smith, Z., Marshall, J. J., Mercier, C., Smith, E. E., and Whelan, W. J. (1970) A revision of the Meyer–Bernfeld model of glycogen and amylopectin, FEBS Lett., 12, 101–104.PubMedCrossRefGoogle Scholar
  67. 67.
    Gessler, K., Uson, I., Takaha, T., Krauss, N., Smith, S. M., Okada, S., Sheldrick, G. M., and Saenger, W. (1999) V-amylose at atomic resolution: X-ray structure of a cycloamylose with 26 glucose residues (cyclomaltohexa-icosaose), Proc. Natl. Acad. Sci. USA, 96, 4246–4251.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Mercier, C., and Whelan, W. J. (1970) The fine structure of glycogen from type IV glycogen storage disease, Eur. J. Biochem., 16, 579–583.PubMedCrossRefGoogle Scholar
  69. 69.
    Garyaly, P., Segvich, D. M., DePaoli-Roach, A. A., and Roach, P. J. (2014) Protein degradation and quality control in cells from laforin and malin knockout mice, J. Biol. Chem., 289, 20606–20614.CrossRefGoogle Scholar
  70. 70.
    Jiang, S., Wells, C. D., and Roach, P. J. (2011) Starch-binding domain-containing protein 1 (Stbd1) and glycogen metabolism: identification of the Atg8 family interacting motif (AIM) in Stbd1 required for interaction with GABARAPL1, Biochem. Biophys. Res. Commun., 413, 420–425.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Sun, T., Yi, H., Yang, C., Kishnani, P. S., and Sun, B. (2016) Starch binding domain-containing protein 1 plays a dominant role in glycogen transport to lysosomes in liver, J. Biol. Chem., 291, 16479–16484.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Willstatter, R., and Rhodewald, M. (1934) Protein binding of physiologically important substances. The conditions of glycogen in liver, muscle and leucocytes, Z. Physiol. Chem., 225, 103–124.CrossRefGoogle Scholar
  73. 73.
    Bloom, W. L., Lewis, G. T., Schumpert, M. Z., and Tsung-men Shen (1951) Glycogen fractions of liver and muscle, J. Biol. Chem., 188, 631–636.PubMedGoogle Scholar
  74. 74.
    Russel, J. A., and Bloom, W. L. (1955) Extractable and residual glycogen in tissues of the rat, Am. J. Physiol., 183, 345–355.Google Scholar
  75. 75.
    Weisberg, J., and Rodbard, S. (1958) Distribution of glyco-gen in the rat heart, Am. J. Physiol., 193, 466–468.PubMedGoogle Scholar
  76. 76.
    Kugler, J. H., and Wilkinson, W. J. (1959) A relation between total glycogen content of ox myocardium and its histochemical demonstration, J. Histochem. Cytochem., 7, 298–402.CrossRefGoogle Scholar
  77. 77.
    Kugler, J. H., and Wilkinson, W. J. (1960) Glycogen frac-tions and their role in the histochemical detection of glyco-gen, J. Histochem. Cytochem., 8, 195–199.PubMedCrossRefGoogle Scholar
  78. 78.
    Kugler, J. H., and Wilkinson, W. J. (1961) The basis for the histochemical detection of glycogen, J. Histochem. Cytochem., 9, 498–503.PubMedCrossRefGoogle Scholar
  79. 79.
    Kudryavtseva, M. V., Kudryavtsev, B. N., and Rozanov, Y. M. (1974) About two fractions of glycogen in the cells of rat liver (cytofluorimetric study), Tsitologiya, 16, 851–858.Google Scholar
  80. 80.
    Prins, D. A., and Jeanlos, R. W. (1948) Chemistry of the carbohydrates, Annu. Rev. Biochem., 17, 67–96.PubMedCrossRefGoogle Scholar
  81. 81.
    Kits Van Heijningen, A. J., and Kemp, A. (1955) Free and fixed glycogen in rat muscle, Biochem. J., 59, 487–491.CrossRefGoogle Scholar
  82. 82.
    Rozenfeld, E. L., and Popova, I. A. (1979) Glycogen Disease [in Russian], Meditsina, Moscow.Google Scholar
  83. 83.
    Lomako, J., Lomako, W. M., and Whelan, W. J. (1991) Proglycogen: a low-molecular-weight of muscle glycogen, FEBS Lett., 279, 223–228.PubMedCrossRefGoogle Scholar
  84. 84.
    Lomako, J., Lomako, W. M., Whelan, W. J., Dombro, R. S., Neary, J. T., and Norenberg, M. D. (1993) Glycogen synthesis in the astrocyte: from glycogenin to proglycogen to glycogen, FASEB J., 7, 1386–1393.PubMedCrossRefGoogle Scholar
  85. 85.
    Shearer, J., Graham, T. E., Battram, D. S., Robinson, D. L., Richter, E. A., Wilson, R. J., and Bakovic, M. (2005) Glycogenin activity and mRNA expression in response to volitional exhaustion in human skeletal muscle, J. Appl. Physiol., 99, 957–962.PubMedCrossRefGoogle Scholar
  86. 86.
    Kraniou, Y., Cameron-Smith, D., Misso, M., Collier, G., and Hargreaves, M. (2000) Effects of exercise on GLUT-4 and glycogenin gene expression in human skeletal muscle, J. Appl. Physiol., 88, 794–796.PubMedCrossRefGoogle Scholar
  87. 87.
    Arkinstall, M. J., Bruce, C. R., Clark, S. A., Rickards, C. A., Burke, L. M., and Hawley, J. A. (2004) Regulation of fuel metabolism by pre-exercise muscle glycogen content and exercise intensity, J. Appl. Physiol., 97, 2275–2283.PubMedCrossRefGoogle Scholar
  88. 88.
    Marchand, I., Tarnopolsky, M., Adamo, K. B., Bourgeois, J. M., Chorneyko, K., and Graham, T. E. (2007) Quantitative assessment of human muscle glycogen granules size and number in subcellular locations during recovery from prolonged exercise, J. Physiol., 580 (Pt. 2), 617–628.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Adamo, K. B., and Graham, T. E. (1998) Comparison of traditional measurement with macroglycogen and pro-glycogen analysis of muscle glycogen, J. Appl. Physiol., 84, 908–913.PubMedCrossRefGoogle Scholar
  90. 90.
    Battram, D. S., Shearer, J., Robinson, D., and Graham, T. E. (2004) Caffeine ingestion does not impede the resyn-thesis of proglycogen and macroglycogen after prolonged exercise and carbohydrate supplementation in humans, J. Appl. Physiol., 96, 943–950.PubMedCrossRefGoogle Scholar
  91. 91.
    Wilson, R. J. (2009) Relating Glycogenin Protein Levels and Glycogen Content Post-contraction in Human and Rodent Skeletal Muscle, Thesis University Guelph.Google Scholar
  92. 92.
    Granlund, A., Jensen-Waern, M., and Essen-Gustavsson, B. (2011) The influence of the PRKAG3 mutation on glycogen, enzyme activities and fibre types in different skeletal muscles of exercise trained pigs, Acta Vet. Scand., 53, 20.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Graham, T. E., Adamo, K. B., Shearer, J., Marchand, I., and Saltin, B. (2001) Pro-and macroglycogenolysis: rela-tionship with exercise intensity and duration, J. Appl. Physiol., 90, 873–879.PubMedCrossRefGoogle Scholar
  94. 94.
    James, A. P., Barnes, P. D., Palmer, T. N., and Fournier, P. A. (2008) Proglycogen and macroglycogen: artifacts of glycogen extraction? Metabolism, 57, 535–543.PubMedCrossRefGoogle Scholar
  95. 95.
    Kudryavtseva, M. V., and Shalakhmetova, T. M. (1976) Microfluorimetrical study of glycogen fractions in the cells of rat liver under different conditions of liver perfusion and animal nutrition, Tsitologiya, 18, 506–509.Google Scholar
  96. 96.
    Kudryavtseva, M. V., Skorina, A. D., and Kudryavtsev, B. N. (1988) Cytofluorimetrical study of glycogen fractions in cells of the liver from patients with chronic viral and alco-hol hepatitis, Tsitologiya, 30, 705–709.Google Scholar
  97. 97.
    Kudryavtseva, M. V., Emel’yanov, A. V., Sakuta, G. A., Skorina, A. D., Sleptsova, L. A., and Kudryavtsev, B. N. (1992) Cytofluorimetrical study of glycogen content and its fractions in hepatocytes of patients with liver cirrhosis of different etiology, Tsitologiya, 34, 100–107.Google Scholar
  98. 98.
    Kudryavtseva, M. V., Bezborodkina, N. N., Radchenko, V. G., Okovity, S. V., Ivanova, O. V., and Kudryavtsev, B. N. (2000) Metabolic heterogeneity of glycogen in hepato-cytes of patients with liver cirrhosis, Tsitologiya, 42, 550–554.Google Scholar
  99. 99.
    Kudryavtseva, M. V., Bezborodkina, N. N., Okovity, S. V., and Kudryavtsev, B. N. (2002) Study on the influence of bemithyl on the carbohydrate metabolism of the cirrhoti-cally-altered rat liver, Tsitologiya, 44, 166–174.Google Scholar
  100. 100.
    Kudryavtseva, M. V., Bezborodkina, N. N., Okovity, S. V., and Kudryavtsev, B. N. (2003) Effects of the 2-ethyl-thiobenzimidazole hydrobromide (bemithyl) on carbohy-drate metabolism in cirrhotic rat liver, Exp. Toxic. Pathol., 54, 339–347.CrossRefGoogle Scholar
  101. 101.
    Kudryavtseva, M. V., and Shalakhmetova, T. M. (1979) Cytofluorimetric study of glycogen contents and its frac-tions in the cells of rat liver during the 1st week of post-natal ontogenesis, Tsitologiya, 21, 566–571.Google Scholar
  102. 102.
    Kudryavtseva, M. V., and Zavadskaya, E. E. (1982) Cytofluorimetric study of glycogen contents and its frac-tions in the cells of rat liver under conditions of its synthe-sis and degradation, Tsitologiya, 24, 777–783.Google Scholar
  103. 103.
    Kudryavtseva, M. V., Sakuta, G. A., Stein, G. I., and Kudryavtsev, B. N. (1990) Dynamics of glycogen synthesis in hepatocytes from different lobes of the rat liver, Tsitologiya, 32, 1010–1018.Google Scholar
  104. 104.
    Kudryavtseva, M. V., Emel’yanov, A. V., Sakuta, G. A., Bezborodkina, N. N., and Kudryavtsev, B. N. (1998) Rehabilitation of the glycogen-generating function of hepatocytes of the cirrhotic rat liver on the high-carbohy-drate diet, Tsitologiya, 40, 133–142.Google Scholar
  105. 105.
    Chestnova, A. Y. (2016) The Content and Structure of Glycogen in Hepatocytes of Human and Rat Normal and Cirrhotic Liver, Candidates’ dissertation (in Biology) [in Russian], Institute of Cytology, Russian Academy of Sciences, St. Petersburg.Google Scholar
  106. 106.
    Ghosh, P., Heath, A. C., Donahue, M. J., and Masaracchia, R. A. (1989) Glycogen synthesis in the obliquely striated muscle of Ascaris suum, Eur. J. Biochem., 183, 679–685.PubMedCrossRefGoogle Scholar
  107. 107.
    Farkas, I., Hardy, T. A., Goebl, M. G., and Roach, P. J. (1991) Two glycogen synthase isoforms in Saccharomyces cerevisiae are coded by distinct genes that are differential-ly controlled, J. Biol. Chem., 266, 15602–15607.PubMedGoogle Scholar
  108. 108.
    Sjostrom, M., Friden, J., and Ekblom, B. (1982) Fine structural details of human muscle fibres after fibre type specific glycogen depletion, Histochemistry, 76, 425–438.PubMedCrossRefGoogle Scholar
  109. 109.
    Elsner, P., Quistorff, B., Hansen, G. H., and Grunnet, N. (2002) Partly ordered synthesis and degradation of glyco-gen in cultured rat myotubes, J. Biol. Chem., 277, 4831–4838.PubMedCrossRefGoogle Scholar
  110. 110.
    Van der Kleji, B. J. (1951) A rapid determination of glyco-gen in tissues, Biochim. Biophys. Acta, 7, 481–482.CrossRefGoogle Scholar
  111. 111.
    Powell, P. O., Sullivan, M. A., Sheehy, J. J., Schulz, B. L., Warren, F. J., and Gilbert, R. G. (2015) Acid hydrolysis and molecular density of phytoglycogen and liver glycogen helps understand the bonding in glycogen α (composite) particles, PloS One, 10, e0134065.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Stetten, M. R., and Stetten, D., Jr. (1954) A study of the nature of glycogen regeneration in the intact animal, J. Biol. Chem., 207, 331–340.PubMedGoogle Scholar
  113. 113.
    Roach, P. J., Skurat, A. V., and Harris, R. A. (2001) Handbook of Physiology. Section 7: The Endocrine System. Vol. II. The Endocrine Pancreas and Regulation of Metabolism (Jefferson, L. S., and Cherrington, A. D., eds.), Oxford University Press, Oxford, pp. 609–647.Google Scholar
  114. 114.
    Prats, C., Helge, J. W., Nordby, P., Qvortrup, K., Ploug, T., Dela, F., and Wojtaszewski, J. F. (2009) Dual regulation of muscle glycogen synthase during exercise by activation and compartmentalization, J. Biol. Chem., 284, 15692–15700.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    DiNuzzo, M. (2013) Kinetic analysis of glycogen turnover: relevance to human brain 13C-NMR spectroscopy, J. Cereb. Blood Flow Metab., 33, 1540–1548.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Fessenden, J. D. (2009) Forster resonance energy transfer measurements of ryanodine receptor type 1 structure using a novel site-specific labeling method, PloS One, 4, e7338.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Grecco, H. E., and Verveer, P. J. (2011) FRET in cell biol-ogy: still shining in the age of super-resolution? ChemPhysChem, 12, 484–490.PubMedCrossRefGoogle Scholar
  118. 118.
    Miyawaki, A. (2011) Development of probes for cellular functions using fluorescent proteins and fluorescence res-onance energy transfer, Annu. Rev. Biochem., 80, 357–373.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. N. Bezborodkina
    • 1
    Email author
  • A. Yu. Chestnova
    • 1
  • M. L. Vorobev
    • 1
  • B. N. Kudryavtsev
    • 1
  1. 1.Institute of CytologyRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations