Biochemistry (Moscow)

, Volume 83, Issue 4, pp 326–337 | Cite as

Crowding, Entropic Forces, and Confinement: Crucial Factors for Structures and Functions in the Cell Nucleus

Review
  • 12 Downloads

Abstract

The view of the cell nucleus as a crowded system of colloid particles and that chromosomes are giant self-avoiding polymers is stimulating rapid advances in our understanding of its structure and activities, thanks to concepts and experimental methods from colloid, polymer, soft matter, and nano sciences and to increased computational power for simulating macromolecules and polymers. This review summarizes current understanding of some characteristics of the molecular environment in the nucleus, of how intranuclear compartments are formed, and of how the genome is highly but precisely compacted, and underlines the crucial, subtle, and sometimes unintuitive effects on structures and reactions of entropic forces caused by the high concentration of macromolecules in the nucleus.

Keywords

cell nucleus macromolecular crowding confinement entropic forces phase separation chromosomes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Oparin, A. I. (1924) Origin of Life [in Russian], Moskovskii Rabochii, MoscowGoogle Scholar
  2. 1a.
    Oparin, A. I. (2003) Origin of Life (translated by Morgulis, S.), Dover Publications, Mineola, New York.Google Scholar
  3. 2.
    Leckband, D., and Israelachvili, J. (2001) Intermolecular forces in biology, Quart. Rev. Biophys., 34, 105–267.CrossRefGoogle Scholar
  4. 3.
    Asakura, S., and Oosawa, F. (1958) Interaction between particles suspended in solutions of macromolecules, J. Polym. Sci., 33, 126–183.CrossRefGoogle Scholar
  5. 4.
    Walter, H., and Brooks, D. E. (1995) Phase separation in cytoplasm, due to macromolecular crowding, is the basis for microcompartmentation, FEBS Lett., 361, 135–139.PubMedGoogle Scholar
  6. 5.
    Johansson, H. O., Brooks, D. E., and Haynes, C. A. (2000) Macromolecular crowding and its consequences, Int. Rev. Cytol., 192, 155–170.CrossRefPubMedGoogle Scholar
  7. 6.
    Zhou, H.-X. (2009) Crowding effects of membrane proteins, J. Phys. Chem. B, 113, 7995–8005.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 7.
    Srere, P. A. (1980) The infrastructure of the mitochondrial matrix, Trends Biochem. Sci., 5, 120–121.CrossRefGoogle Scholar
  9. 8.
    Kumar, P., Satyam, A., Fan, X., Collin, E., Rochev, Y., Rodriguez, B. J., Gorelov, A., Dillon, S., Joshi, L., Raghunath, M., Pandit, A., and Zeugolisa, D. I. (2015) Macromolecularly crowded in vitro microenvironments accelerate the production of extracellular matrix-rich supramolecular assemblies, Sci. Rep., 5, 8729.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 9.
    Iborra, F. J. (2007) Can visco-elastic phase separation, macromolecular crowding and colloidal physics explain nuclear organisation? Theor. Biol. Med. Model., 4, 15.CrossRefPubMedGoogle Scholar
  11. 10.
    Dinsmore, A. D., Wong, D. T., Nelson, P., and Yodh, A. G. (1998) Hard spheres in vesicles: curvature-induced forces and particle-induced curvature, Phys. Rev. Lett., 80, 409–412.CrossRefGoogle Scholar
  12. 11.
    Snir, Y., and Kamien, R. D. (2005) Entropically driven helix formation, Science, 307, 1067.CrossRefPubMedGoogle Scholar
  13. 12.
    Yodh, A. G., Lin, K., Crocker, J. C., Dinsmore, A. D., Verma, R., and Kaplan, P. D. (2001) Entropically driven self-assembly and interaction in suspension, Phil. Trans. R. Soc. Lond. A, 359, 921–937.CrossRefGoogle Scholar
  14. 13.
    Bounedjah, O., Hamon, L., Savarin, P., Desforges, B., Curmi, P. A., and Pastre, D. (2012) Macromolecular crowding regulates assembly of mRNA stress granules after osmotic stress: new role for compatible osmolytes, J. Biol. Chem., 287, 2446–2458.CrossRefPubMedGoogle Scholar
  15. 14.
    Hancock, R. (2008) Self-association of polynucleosome chains by macromolecular crowding, Europ. Biophys. J., 37, 1059–1064.CrossRefGoogle Scholar
  16. 15.
    Chebotareva, N. A., Kurganov, B. I., and Livanova, N. B. (2004) Biochemical effects of molecular crowding, Biochemistry (Moscow), 69, 1239–1251.CrossRefGoogle Scholar
  17. 16.
    Turoverov, K. K., Kuznetsova, I. M., and Uversky, V. N. (2014) What macromolecular crowding can do to a protein, Int. J. Mol. Sci., 15, 23090–23140.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 17.
    Kuznetsova, I. M., Zaslavsky, B. Y., Breydo, L., Turoverov, K. K., and Uversky, V. N. (2015) Beyond the excluded volume effects: mechanistic complexity of the crowded milieu, Molecules, 20, 1377–1409.CrossRefPubMedGoogle Scholar
  19. 18.
    Rivas, G., and Minton, A. P. (2016) Macromolecular crowding in vitro, in vivo, and in between, Trends Biochem. Sci., 41, 970–981.CrossRefPubMedGoogle Scholar
  20. 19.
    Danielsson, J., Mu, X., Lang, L., Wang, H., Binolfi, A., Theillet, F. X., Bekei, B., Logan, D. T., Selenko, P., Wennerstrom, H., and Oliveberg, M. (2015) Thermodynamics of protein destabilization in live cells, Proc. Natl. Acad. Sci. USA, 112, 12402–12407.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 20.
    Roque, A., Ponte, I., and Suau, P. (2016) Interplay between histone H1 structure and function, Biochim. Biophys. Acta, 1859, 444–454.CrossRefPubMedGoogle Scholar
  22. 21.
    Zhou, J., Tateishi-Karimata, H., Mergny, J. L., Cheng, M., Feng, Z., Miyoshi, D., Sugimoto, N., and Li, C. (2016) Reevaluation of the stability of G-quadruplex structures under crowding conditions, Biochimie, 121, 204–208.CrossRefPubMedGoogle Scholar
  23. 22.
    Gu, X. B., Nakano, S., and Sugimoto, N. (2006) The effect of the structure of cosolutes on the DNA duplex formation, Nucleic Acids Symp. Ser. (Oxf.), 50, 205–206.CrossRefGoogle Scholar
  24. 23.
    Spink, C. H., and Chaires, J. B. (1995) Selective stabilization of triplex DNA by poly(ethylene glycols), J. Am. Chem. Soc., 117, 12887–12888.CrossRefGoogle Scholar
  25. 24.
    Jiang, H. X., Cui, Y., Zhao, T., Fu, H. W., Koirala, D., Punnoose, J. A., Kong, D. M., and Mao, H. (2015) Divalent cations and molecular crowding buffers stabilize G-triplex at physiologically relevant temperatures, Sci. Rep., 5, 9255.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 25.
    Cui, J., Waltman, P., Le, V. H., and Lewis, E. A. (2013) The effect of molecular crowding on the stability of human c-MYC promoter sequence i-motif at neutral pH, Molecules, 18, 12751–12767.CrossRefPubMedGoogle Scholar
  27. 26.
    Kumar, N., and Maiti, S. (2008) Role of molecular crowding in perturbing quadruplex/Watson–Crick duplex equilibrium, Nucleic Acids Symp. Ser. (Oxf.), 52, 157–158.CrossRefGoogle Scholar
  28. 27.
    Denesyuk, N. A., and Thirumalai, D. (2013) Entropic stabilization of the folded states of RNA due to macromolecular crowding, Biophys. Rev., 5, 225–232.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 28.
    Strulson, C. A., Boyer, J. A., Whitman, E. E., and Bevilacqua, P. C. (2014) Molecular crowders and cosolutes promote folding cooperativity of RNA under physiological ionic conditions, RNA, 20, 331–347.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 29.
    Kinoshita, M., and Oguni, T. (2002) Depletion effects on the lock and key steric interactions between macromolecules, Chem. Phys. Lett., 351, 79–84.CrossRefGoogle Scholar
  31. 30.
    Bishop, K. J. M., Wilmer, C. E., Soh, S., and Grzybowski, B. A. (2009) Nanoscale forces and their uses in self-assembly, Small, 5, 1600–1630.CrossRefPubMedGoogle Scholar
  32. 31.
    Sacanna, S., Irvine, W. T., Chaikin, P. M., and Pine, D. J. (2010) Lock and key colloids, Nature, 464, 575–578.CrossRefPubMedGoogle Scholar
  33. 32.
    Rowat, A. C., Foster, L. J., Nielsen, M. M., Weiss, M., and Ipsen, J. H. (2005) Characterization of the elastic properties of the nuclear envelope, J. R. Soc. Interface, 2, 63–69.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 33.
    Hancock, R. (2011) in Genome Organization and Function in the Cell Nucleus (Rippe, K., ed.) WILEY-VCH Verlag Weinheim, pp. 171–182.Google Scholar
  35. 34.
    McGuffee, S. R., and Elcock, A. H. (2010) Diffusion, crowding and protein stability in a dynamic molecular model of the bacterial cytoplasm, PLoS Comput. Biol., e1000694.Google Scholar
  36. 35.
    Hancock, R. (2014) The crowded nucleus, in New Models of the Cell Nucleus: Crowding, Entropic Forces, Phase Separation, and Fractals (Hancock, R., and Jeon, K., eds.) Int. Rev. Cell Mol. Biol., 307, 15–26.Google Scholar
  37. 36.
    Dudnik, O. A., Zatsepina, O. V., and Chentsov, Y. S. (1993) The effect of low ionic strength solutions on the structure and function of the nucleoli in living ESK cells, Tsitologiia, 35, 10–16.PubMedGoogle Scholar
  38. 37.
    Hancock, R. (2004) A role for macromolecular crowding effects in the assembly and function of compartments in the nucleus, J. Struct. Biol., 146, 281–290.CrossRefPubMedGoogle Scholar
  39. 38.
    Chagin, V. O., Rozanov, Iu. M., Solov’eva, L. V., and Tomilin, N. V. (2004) High resolution analysis of replication foci by conventional fluorescent microscopy. I. A study of complexity and DNA content of the foci, Tsitologiia, 46, 229–243.PubMedGoogle Scholar
  40. 39.
    Golov, A. K., Gavrilov, A. A., and Razin, S. V. (2015) The role of crowding forces in juxtaposing β-globin gene domain remote regulatory elements in mouse erythroid cells, PLoS One, 10, e0139855.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 40.
    Cho, E. J., and Kim, J. S. (2012) Crowding effects on the formation and maintenance of nuclear bodies: insights from molecular-dynamics simulations of simple spherical model particles, Biophys. J., 103, 424–433.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 41.
    Oh, I., Choi, S., Jung, Y., and Kim, J. S. (2015) Phase separation of a Lennard–Jones fluid interacting with a long, condensed polymer chain: implications for the nuclear body formation near chromosomes, Soft Matter, 11, 6450–6459.PubMedGoogle Scholar
  43. 42.
    Aumiller, W. M., Davis, B. W., and Keating, C. D. (2014) Phase separation as a possible means of nuclear compart-mentalization, in New Models of the Cell Nucleus: Crowding, Entropic Forces, Phase Separation, and Fractals (Hancock, R., and Jeon, K., eds.) Int. Rev. Cell Mol. Biol., 307, 109–149.Google Scholar
  44. 43.
    Hyman, A. A., Weber, C. A., and Julicher, F. (2014) Liquid–liquid phase separation in biology, Annu. Rev. Cell Dev. Biol., 30, 39–58.CrossRefPubMedGoogle Scholar
  45. 44.
    Frey-Wyssling, A. (1938) Submikroskopische Morphologie des Protoplasmas und seiner Derivate, Gebruder Borntraeger, Berlin.Google Scholar
  46. 45.
    Ehrenberg, L. (1946) Influence of temperature on the nucleolus and its coacervate nature, Hereditas, 32, 407–418.CrossRefPubMedGoogle Scholar
  47. 46.
    Jacobs, W. M., and Frenkel, D. (2017) Phase transitions in biological systems with many components, Biophys. J., 112, 683–691.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 47.
    Shin, Y., and Brangwynne, C. P. (2017) Liquid phase condensation in cell physiology and disease, Science, 357, eaaf4382.CrossRefPubMedGoogle Scholar
  49. 48.
    Iarovaia, O. V., Bystritskiy, A., Ravcheev, D., Hancock, R., and Razin, S. V. (2004) Visualization of individual DNA loops and a map of loop domains in the human dystrophin gene, Nucleic Acids Res., 32, 2079–2086.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 49.
    Zhang, G., Winnik, F. M., and Wu, C. (2003) Structure of a collapsed polymer chain with stickers: a single-or multi-flower? Phys. Rev. Lett., 90, 035506.CrossRefPubMedGoogle Scholar
  51. 50.
    Marenduzzo, D., and Orlandini, E. (2009) Topological and entropic repulsion in biopolymers, J. Stat. Mech., L09002.Google Scholar
  52. 51.
    Bohm, M., and Heermann, D. W. (2010) Diffusion-driven looping provides a consistent framework for chromatin organization, PLoS One, 5, e12218.CrossRefGoogle Scholar
  53. 52.
    Bohm, M., and Heermann, D. W. (2011) Repulsive forces between looping chromosomes induce entropy-driven segregation, PLoS One, 6, e14428.CrossRefGoogle Scholar
  54. 53.
    St-Jean, P., Vaillant, C., Audit, B., and Arneodo, A. (2008) Spontaneous emergence of sequence-dependent rosettelike folding of chromatin fiber, Phys. Rev. E, 77, 061923.CrossRefGoogle Scholar
  55. 54.
    Johnson, J., Brackley, C. A., Cook, P. R., and Marenduzzo, D. (2015) A simple model for DNA bridging proteins and bacterial or human genomes: bridging-induced attraction and genome compaction, J. Phys. Condens. Matter, 27, 064119.CrossRefPubMedGoogle Scholar
  56. 55.
    Gursoy, G., Xu, Y., Kenter, A. L., and Liang, J. (2014) Spatial confinement is a major determinant of the folding landscape of human chromosomes, Nucleic Acids Res., 42, 8223–8230.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 56.
    Gerdes, M. G., Carter, K. C., Moen, P. T., and Lawrence, J. B. (1994) Dynamic changes in the higher-level chromatin organization of specific sequences revealed by in situ hybridization to nuclear halos, J. Cell Biol., 126, 289–304.CrossRefPubMedGoogle Scholar
  58. 57.
    Gibcus, J. H., and Dekker, J. (2013) Connecting the genome: dynamics and stochasticity in a new hierarchy for chromosome conformation, Mol. Cell, 49, 773–782.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 58.
    Vasquez, P. A., Hult, C., Adalsteinsson, D., Lawrimore, J., Forest, M. G., and Bloom, K. (2016) Entropy gives rise to topologically associating domains, Nucleic Acids Res., 44, 5540–5549.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 59.
    Ge, X., Luo, D., and Xu, J. (2011) Cell-free protein expression under macromolecular crowding conditions, PLoS One, 6, e28707.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 60.
    Sokolova, E., Spruijt, E., Hansen, M. M., Dubuc, E., Groen, J., Chokkalingam, V., Piruska, A., Heus, H. A., and Huck, W. T. (2013) Enhanced transcription rates in membrane-free protocells formed by coacervation of cell lysate, Proc. Natl. Acad. Sci. USA, 110, 11692–11697.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 61.
    Blake, W. J., Kaern, M., Cantor, C. R., and Collins, J. J. (2003) Noise in eukaryotic gene expression, Nature, 422, 633–637.CrossRefPubMedGoogle Scholar
  63. 62.
    Van den Berg, A. A., and Depken, M. (2017) Crowding-induced transcriptional bursts dictate polymerase and nucleosome density profiles along genes, Nucleic Acids Res., 45, 7623–7632.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 63.
    Akabayov, B., Akabayov, S. R., Lee, S. J., Wagner, G., and Richardson, C. C. (2013) Impact of macromolecular crowding on DNA replication, Nat. Commun., 4, 1615.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 64.
    Zimmerman, S. B., and Harrison, B. (1987) Macromolecular crowding increases binding of DNA polymerase to DNA: an adaptive effect, Proc. Natl. Acad. Sci. USA, 84, 1871–1875.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 65.
    Baddeley, D., Chagin, V. O., Schermelleh, L., Martin, S., Pombo, A., Carlton, P. M., Gahl, A., Domaing, P., Birk, U., Leonhardt, H., Cremer, C., and Cardoso, M. C. (2010) Measurement of replication structures at the nanometer scale using super-resolution light microscopy, Nucleic Acids Res., 38, e8.CrossRefPubMedGoogle Scholar
  67. 66.
    Politz, J. C., Tuft, R. A., and Pederson, T. (2003) Diffusion-based transport of nascent ribosomes in the nucleus, Mol. Biol. Cell, 14, 4805–4812.CrossRefPubMedGoogle Scholar
  68. 67.
    Guigas, G., Kalla, C., and Weiss, M. (2007) Probing the nanoscale viscoelasticity of intracellular fluids in living cells, Biophys. J., 93, 316–323.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 68.
    Bancaud, A., Huet, S., Daigle, N., Mozziconacci, J., Beaudouin, J., and Ellenberg, J. (2009) Molecular crowding affects diffusion and binding of nuclear proteins in heterochromatin and reveals the fractal organization of chromatin, EMBO J., 28, 3785–3798.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 69.
    Guigas, G., and Weiss, M. (2008) Sampling the cell with anomalous diffusion–the discovery of slowness, Biophys. J., 94, 90–94.CrossRefPubMedGoogle Scholar
  71. 70.
    Aoki, K., Takahashi, K., Kaizu, K., and Matsuda, M. (2013) A quantitative model of ERK MAP kinase phosphorylation in crowded media, Sci. Rep., 3, 1541.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 71.
    Mirny, L., Slutsky, M., Wunderlich, Z., Tafvizi, A., Leith, J., and Kosmrlj, A. (2009) How a protein searches for its site on DNA: the mechanism of facilitated diffusion, J. Phys. A: Math. Theor., 42, 1751–8121.CrossRefGoogle Scholar
  73. 72.
    Li, G., Berg, O. G., and Elf, J. (2009) Effects of macro-molecular crowding and DNA looping on gene regulation kinetics, Nat. Phys., 5, 294–297.CrossRefGoogle Scholar
  74. 73.
    Hancock, R., and Hadj-Sahraoui, Y. (2009) Isolation of cell nuclei using inert macromolecules to mimic the crowded cytoplasm, PLoS One, 4, e7560.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 74.
    Hancock, R. (2012) Structure of metaphase chromosomes: a role for effects of macromolecular crowding, PLoS One, 7, e36045.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 75.
    Maeshima, K., Imai, R., Tamura, S., and Nozaki, T. (2014) Chromatin as dynamic 10-nm fibers, Chromosoma, 123, 225–237.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 76.
    Zimmerman, S. B., and Trach, S. O. (1988) Effects of macromolecular crowding on the association of E. coli ribosomal particles, Nucleic Acids Res., 16, 6309–6326.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 77.
    Cunha, S., Woldringh, C. L., and Odijk, T. (2001) Polymer-mediated compaction and internal dynamics of isolated Escherichia coli nucleoids, J. Struct. Biol., 136, 53–66.CrossRefPubMedGoogle Scholar
  79. 78.
    Lavery, P. E., and Kowalczykowski, S. C. (1992) Enhancement of recA protein-promoted DNA strand exchange activity by volume-occupying agents, J. Biol. Chem., 267, 9307–9314.PubMedGoogle Scholar
  80. 79.
    Spitzer, J. J., and Poolman, B. (2005) Electrochemical structure of the crowded cytoplasm, Trends Biochem. Sci., 30, 536–541.CrossRefPubMedGoogle Scholar
  81. 80.
    Spitzer, J. (2017) Emergence of life on Earth: a physicochemical jigsaw puzzle, J. Mol. Evol., 84, 1–7.CrossRefPubMedGoogle Scholar
  82. 81.
    Jun, S., and Mulder, B. (2006) Entropy-driven spatial organization of highly confined polymers: lessons for the bacterial chromosome, Proc. Natl. Acad. Sci. USA, 103, 12388–12393.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 82.
    Bouligand, Y., Soyer, M. O., and Puiseaux-Dao, S. (1968) La structure fibrillaire et l’orientation des chromosomes chez les Dinoflagellés, Chromosoma, 24, 251–287.CrossRefPubMedGoogle Scholar
  84. 83.
    Kombrabail, M. H., and Krishnamoorthy, G. (2005) Fluorescence dynamics of DNA condensed by the molecular crowding agent poly(ethylene glycol), J. Fluoresc., 15, 741–747.CrossRefPubMedGoogle Scholar
  85. 84.
    Soleimaninejad, H., Chen, M. Z., Lou X., Smith, T. A., and Hong, Y. (2017) Measuring macromolecular crowding in cells through fluorescence anisotropy imaging with an AIE fluorogen, Chem. Commun., 53, 2874–2877.CrossRefGoogle Scholar
  86. 85.
    Machiyama, H., Morikawa, T. J., Okamoto, K., Watanabe, T. M., and Fujita, H. (2017) The use of a genetically encoded molecular crowding sensor in various biological phenomena, Biophys. Physicobiol., 14, 119–125.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 86.
    Currie, M., Leopold, H., Schwarz, J., Boersma, A. J., Sheets, E. D., and Heikal, A. A. (2017) Fluorescence dynamics of a FRET probe designed for crowding studies, J. Phys. Chem. B, 121, 5688–5698.CrossRefPubMedGoogle Scholar
  88. 87.
    Smith, A. E., Zhou, L. Z., Gorensek, A. H., Senske, M., and Pielak, G. J. (2016) In-cell thermodynamics and a new role for protein surfaces, Proc. Natl. Acad. Sci. USA, 113, 1725–1730.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 88.
    Hansel, R., Luh, L. M., Corbeski, I., Trantirek, L., and Dotsch, V. (2014) In-cell NMR and EPR spectroscopy of biomacromolecules, Angew. Chem. Int. Ed. Engl., 53, 10300–10314.CrossRefPubMedGoogle Scholar
  90. 89.
    Shahid, S., Hassan, M. I., Islam, A., and Ahmad, F. (2017) Size-dependent studies of macromolecular crowding on the thermodynamic stability, structure and functional activity of proteins: in vitro and in silico approaches, Biochim. Biophys. Acta, 1861, 178–197.PubMedGoogle Scholar
  91. 90.
    Hansel, R., Lohr, F., Foldynova-Trantirkova, S., Bamberg, E., Trantнrek, L., and Dotsch, V. (2011) The parallel G-quadruplex structure of vertebrate telomeric repeat sequences is not the preferred folding topology under physiological conditions, Nucleic Acids Res., 39, 5768–5775.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 91.
    Tyrrell, J., Weeks, K. M., and Pielak, G. J. (2015) Challenge of mimicking the influences of the cellular environment on RNA structure by PEG-induced macromolecular crowding, Biochemistry, 54, 6447–6453.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 92.
    Smith, S., Cianci, C., and Grima, R. (2017) Macromolecular crowding directs the motion of small molecules inside cells, J. R. Soc. Interface, 14, 20170047.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 93.
    Nozaki, T., Imai, R., Tanbo, M., Nagashima, R., Tamura, S., Tani, T., Joti, Y., Tomita, M., Hibino, K., Kanemaki, M. T., Wendt, K. S., Okada, Y., Nagai, T., and Maeshima, K. (2017) Dynamic organization of chromatin domains revealed by super-resolution live-cell imaging, Mol. Cell, 67, 282–293.CrossRefPubMedGoogle Scholar
  95. 94.
    Vargas, D. Y., Raj, A., Marras, S. A., Kramer, F. R., and Tyagi, S. (2005) Mechanism of mRNA transport in the nucleus, Proc. Natl. Acad. Sci. USA, 102, 17008–17013.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 95.
    Hunter, T. (2012) Why nature chose phosphate to modify proteins, Philos. Trans. R. Soc. Lond. B. Biol. Sci., 367, 2513–2516.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 96.
    Shimooka, Y., Nishikawa, J., and Ohyama, T. (2013) Most methylation-susceptible DNA sequences in human embryonic stem cells undergo a change in conformation or flexibility upon methylation, Biochemistry, 52, 1344–1353.CrossRefPubMedGoogle Scholar
  98. 97.
    Guigas, G., Kalla, C., and Weiss, M. (2007) The degree of macromolecular crowding in the cytoplasm and nucleoplasm of mammalian cells is conserved, FEBS Lett., 581, 5094–5098.CrossRefPubMedGoogle Scholar
  99. 98.
    Van den Berg, J., Boersma, A. J., and Poolman, B. (2017) Microorganisms maintain crowding homeostasis, Nat. Rev. Microbiol., 15, 309–318.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Biosystems Group, Biotechnology Centre, Silesian University of Technology, 44-100 GliwicePoland and Laval University Cancer Research CentreQuébecCanada

Personalised recommendations