Advertisement

Biochemistry (Moscow)

, Volume 83, Issue 4, pp 313–325 | Cite as

The 4D Nucleome: Genome Compartmentalization in an Evolutionary Context

  • T. Cremer
  • M. Cremer
  • C. Cremer
Review

Abstract

4D nucleome research aims to understand the impact of nuclear organization in space and time on nuclear functions, such as gene expression patterns, chromatin replication, and the maintenance of genome integrity. In this review we describe evidence that the origin of 4D genome compartmentalization can be traced back to the prokaryotic world. In cell nuclei of animals and plants chromosomes occupy distinct territories, built up from ~1 Mb chromatin domains, which in turn are composed of smaller chromatin subdomains and also form larger chromatin domain clusters. Microscopic evidence for this higher order chromatin landscape was strengthened by chromosome conformation capture studies, in particular Hi-C. This approach demonstrated ~1 Mb sized, topologically associating domains in mammalian cell nuclei separated by boundaries. Mutations, which destroy boundaries, can result in developmental disorders and cancer. Nucleosomes appeared first as tetramers in the Archaea kingdom and later evolved to octamers built up each from two H2A, two H2B, two H3, and two H4 proteins. Notably, nucleosomes were lost during the evolution of the Dinoflagellata phylum. Dinoflagellate chromosomes remain condensed during the entire cell cycle, but their chromosome architecture differs radically from the architecture of other eukaryotes. In summary, the conservation of fundamental features of higher order chromatin arrangements throughout the evolution of metazoan animals suggests the existence of conserved, but still unknown mechanism(s) controlling this architecture. Notwithstanding this conservation, a comparison of metazoans and protists also demonstrates species-specific structural and functional features of nuclear organization.

Keywords

4D nucleome nuclear architecture evolution chromatin domains topologically associating domains (TADs) genome compartmentalization 

Abbreviations

ANC-INC

active nuclear compartment/inactive nuclear compartment

CD

chromatin domain

CDC

chromatin domain cluster

CT

chromosome territory

DAPI

4′,6-diamidino-2-phenylindole

IC

interchromatin compartment

PR

perichromatin region

SIM

structured illumination microscopy

TAD

topologically associating domain

TF

transcription factor

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tashiro, S., and Lanctot, C. (2015) The International Nucleome Consortium, Nucleus, 6, 89–92.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Cremer, T., and Cremer, M. (2010) Chromosome territories, Cold Spring Harb. Perspect. Biol., 2, a003889.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Cremer, T., Kreth, G., Koester, H., Fink, R. H., Heintzmann, R., Cremer, M., Solovei, I., Zink, D., and Cremer, C. (2000) Chromosome territories, interchromatin domain compartment, and nuclear matrix: an integrated view of the functional nuclear architecture, Crit. Rev. Eukaryot. Gene Expr., 10, 179–212.PubMedCrossRefGoogle Scholar
  4. 4.
    Cremer, T., and Cremer, C. (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells, Nat. Rev. Genet., 2, 292–301.PubMedCrossRefGoogle Scholar
  5. 5.
    Smeets, D., Markaki, Y., Schmid, V. J., Kraus, F., Tattermusch, A., Cerase, A., Sterr, M., Fiedler, S., Demmerle, J., Popken, J., Leonhardt, H., Brockdorff, N., Cremer, T., Schermelleh, L., and Cremer, M. (2014) Three-dimensional super-resolution microscopy of the inactive X chromosome territory reveals a collapse of its active nuclear compartment harboring distinct Xist RNA foci, Epigenetics Chromatin, 7, 8.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Cremer, T., Cremer, M., Hubner, B., Strickfaden, H., Smeets, D., Popken, J., Sterr, M., Markaki, Y., Rippe, K., and Cremer, C. (2015) The 4D nucleome: evidence for a dynamic nuclear landscape based on co-aligned active and inactive nuclear compartments, FEBS Lett., 589, 2931–2943.PubMedCrossRefGoogle Scholar
  7. 7.
    Schmid, V. J., Cremer, M., and Cremer, T. (2017) Quantitative analyses of the 3D nuclear landscape recorded with super-resolved fluorescence microscopy, Methods, 123, 33–46.PubMedCrossRefGoogle Scholar
  8. 8.
    Hubner, B., Lomiento, M., Mammoli, F., Illner, D., Markaki, Y., Ferrari, S., Cremer, M., and Cremer, T. (2015) Remodeling of nuclear landscapes during human myelopoietic cell differentiation maintains co-aligned active and inactive nuclear compartments, Epigenetics Chromatin, 8, 47.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Borsos, M., and Torres-Padilla, M. E. (2016) Building up the nucleus: nuclear organization in the establishment of totipotency and pluripotency during mammalian development, Genes Dev., 30, 611–621.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Brero, A., Easwaran, H. P., Nowak, D., Grunewald, I., Cremer, T., Leonhardt, H., and Cardoso, M. C. (2005) Methyl CpG-binding proteins induce large-scale chromatin reorganization during terminal differentiation, J. Cell Biol., 169, 733–743.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Mayer, R., Brero, A., von Hase, J., Schroeder, T., Cremer, T., and Dietzel, S. (2005) Common themes and cell type specific variations of higher order chromatin arrangements in the mouse, BMC Cell Biol., 6, 44.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Solovei, I., Grandi, N., Knoth, R., Volk, B., and Cremer, T. (2004) Positional changes of pericentromeric heterochromatin and nucleoli in postmitotic Purkinje cells during murine cerebellum development, Cytogenet. Genome Res., 105, 302–310.CrossRefGoogle Scholar
  13. 13.
    Solovei, I., Kreysing, M., Lanctot, C., Kosem, S., Peichl, L., Cremer, T., Guck, J., and Joffe, B. (2009) Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution, Cell, 137, 356–368.PubMedCrossRefGoogle Scholar
  14. 14.
    Cremer, T., and Cremer, C. (2006) Rise, fall and resurrection of chromosome territories: a historical perspective. Part I. The rise of chromosome territories, Eur. J. Histochem., 50, 161–176.PubMedGoogle Scholar
  15. 15.
    Razin, S. V., and Vassetzky, Y. S. (2017) 3D genomics imposes evolution of the domain model of eukaryotic genome organization, Chromosoma, 126, 59–69.PubMedCrossRefGoogle Scholar
  16. 16.
    Bodnar, J. W. (1988) A domain model for eukaryotic DNA organization: a molecular basis for cell differentiation and chromosome evolution, J. Theor. Biol., 132, 479–507.PubMedCrossRefGoogle Scholar
  17. 17.
    Goldman, M. A. (1988) The chromatin domain as a unit of gene regulation, Bioessays, 9, 50–55.PubMedCrossRefGoogle Scholar
  18. 18.
    Monneron, A., and Bernhard, W. (1969) Fine structural organization of the interphase nucleus in some mammalian cells, J. Ultrastruct. Res., 27, 266–288.PubMedCrossRefGoogle Scholar
  19. 19.
    Fakan, S. (2004) The functional architecture of the nucleus as analysed by ultrastructural cytochemistry, Histochem. Cell Biol., 122, 83–93.PubMedCrossRefGoogle Scholar
  20. 20.
    Fakan, S., and van Driel, R. (2007) The perichromatin region: a functional compartment in the nucleus that determines large-scale chromatin folding, Semin. Cell Dev. Biol., 18, 676–681.PubMedCrossRefGoogle Scholar
  21. 21.
    Rouquette, J., Cremer, C., Cremer, T., and Fakan, S. (2010) Functional nuclear architecture studied by microscopy: present and future, Int. Rev. Cell Mol. Biol., 282, 1–90.PubMedCrossRefGoogle Scholar
  22. 22.
    Cmarko, D., Verschure, P. J., Martin, T. E., Dahmus, M. E., Krause, S., Fu, X. D., van Driel, R., and Fakan, S. (1999) Ultrastructural analysis of transcription and splicing in the cell nucleus after bromo-UTP microinjection, Mol. Biol. Cell, 10, 211–223.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Jaunin, F., Visser, A. E., Cmarko, D., Aten, J. A., and Fakan, S. (2000) Fine structural in situ analysis of nascent DNA movement following DNA replication, Exp. Cell Res., 260, 313–323.PubMedCrossRefGoogle Scholar
  24. 24.
    Bornfleth, H., Edelmann, P., Zink, D., Cremer, T., and Cremer, C. (1999) Quantitative motion analysis of subchromosomal foci in living cells using four-dimensional microscopy, Biophys. J., 77, 2871–2886.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Strickfaden, H., Zunhammer, A., van Koningsbruggen, S., Kohler, D., and Cremer, T. (2010) 4D chromatin dynamics in cycling cells: Theodor Boveri’s hypotheses revisited, Nucleus, 1, 284–297.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Cremer, M., Schmid, V. J., Kraus, F., Markaki, Y., Hellmann, I., Maiser, A., Leonhardt, H., John, S., Stamatoyannopoulos, J., and Cremer, T. (2017) Initial high-resolution microscopic mapping of active and inactive regulatory sequences proves non-random 3D arrangements in chromatin domain clusters, Epigenetics Chromatin, 10, 39.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Popken, J., Brero, A., Koehler, D., Schmid, V. J., Strauss, A., Wuensch, A., Guengoer, T., Graf, A., Krebs, S., Blum, H., Zakhartchenko, V., Wolf, E., and Cremer, T. (2014) Reprogramming of fibroblast nuclei in cloned bovine embryos involves major structural remodeling with both striking similarities and differences to nuclear phenotypes of in vitro fertilized embryos, Nucleus, 5, 555–589.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Popken, J., Graf, A., Krebs, S., Blum, H., Schmid, V. J., Strauss, A., Guengoer, T., Zakhartchenko, V., Wolf, E., and Cremer, T. (2015) Remodeling of the nuclear envelope and lamina during bovine preimplantation development and its functional implications, PLoS One, 10, e0124619.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Chow, K. H., Factor, R. E., and Ullman, K. S. (2012) The nuclear envelope environment and its cancer connections, Nat. Rev. Cancer, 12, 196–209.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Zink, D., Fischer, A. H., and Nickerson, J. A. (2004) Nuclear structure in cancer cells, Nat. Rev. Cancer, 4, 677–687.PubMedCrossRefGoogle Scholar
  31. 31.
    Razin, S. V., and Ulianov, S. V. (2017) Gene functioning and storage within a folded genome, Cell. Mol. Biol. Lett., 22, 18.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Ulianov, S. V., Gavrilov, A. A., and Razin, S. V. (2015) Nuclear compartments, genome folding, and enhancer–promoter communication, Int. Rev. Cell Mol. Biol., 315, 183–244.PubMedCrossRefGoogle Scholar
  33. 33.
    Dekker, J., Rippe, K., Dekker, M., and Kleckner, N. (2002) Capturing chromosome conformation, Science, 295, 1306–1311.PubMedCrossRefGoogle Scholar
  34. 34.
    Lieberman-Aiden, E., van Berkum, N. L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B. R., Sabo, P. J., Dorschner, M. O., Sandstrom, R., Bernstein, B., Bender, M. A., Groudine, M., Gnirke, A., Stamatoyannopoulos, J., Mirny, L. A., Lander, E. S., and Dekker, J. (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome, Science, 326, 289–293.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Le Dily, F., Serra, F., and Marti-Renom, M. A. (2017) 3D modeling of chromatin structure: is there a way to integrate and reconcile single cell and population experimental data? WIREs Comput. Mol. Sci., 7, e1308.CrossRefGoogle Scholar
  36. 36.
    Dixon, J. R., Gorkin, D. U., and Ren, B. (2016) Chromatin domains: the unit of chromosome organization, Mol. Cell, 62, 668–680.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Dixon, J. R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J. S., and Ren, B. (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions, Nature, 485, 376–380.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Fraser, J., Ferrai, C., Chiariello, A. M., Schueler, M., Rito, T., Laudanno, G., Barbieri, M., Moore, B. L., Kraemer, D. C., Aitken, S., Xie, S. Q., Morris, K. J., Itoh, M., Kawaji, H., Jaeger, I., Hayashizaki, Y., Carninci, P., Forrest, A. R., FANTOM Consortium, Semple, C. A., Dostie, J., Pombo, A., and Nicodemi, M. (2015) Hierarchical folding and reorganization of chromosomes are linked to transcriptional changes in cellular differentiation, Mol. Syst. Biol., 11, 852.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Rao, S. S., Huntley, M. H., Durand, N. C., Stamenova, E. K., Bochkov, I. D., Robinson, J. T., Sanborn, A. L., Machol, I., Omer, A. D., Lander, E. S., and Aiden, E. L. (2014) A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping, Cell, 159, 1665–1680.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Furlan-Magaril, M., Varnai, C., Nagano, T., and Fraser, P. (2015) 3D genome architecture from populations to single cells, Curr. Opin. Genet. Dev., 31, 36–41.PubMedCrossRefGoogle Scholar
  41. 41.
    Nagano, T., Lubling, Y., Stevens, T. J., Schoenfelder, S., Yaffe, E., Dean, W., Laue, E. D., Tanay, A., and Fraser, P. (2013) Single-cell Hi-C reveals cell-to-cell variability in chromosome structure, Nature, 502, 59–64.PubMedCrossRefGoogle Scholar
  42. 42.
    Nagano, T., Lubling, Y., Yaffe, E., Wingett, S. W., Dean, W., Tanay, A., and Fraser, P. (2015) Single-cell Hi-C for genome-wide detection of chromatin interactions that occur simultaneously in a single cell, Nat. Protoc., 10, 1986–2003.PubMedCrossRefGoogle Scholar
  43. 43.
    Stevens, T. J., Lando, D., Basu, S., Atkinson, L. P., Cao, Y., Lee, S. F., Leeb, M., Wohlfahrt, K. J., Boucher, W., O’Shaughnessy-Kirwan, A., Cramard, J., Faure, A. J., Ralser, M., Blanco, E., Morey, L., Sanso, M., Palayret, M. G. S., Lehner, B., Di Croce, L., Wutz, A., Hendrich, B., Klenerman, D., and Laue, E. D. (2017) 3D structures of individual mammalian genomes studied by single-cell Hi-C, Nature, 544, 59–64.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Ulianov, S. V., Tachibana-Konwalski, K., and Razin, S. V. (2017) Single-cell Hi-C bridges microscopy and genome-wide sequencing approaches to study 3D chromatin organization, Bioessays, 39, No. 10; doi: 10.1002/bies.201700104; Epub 2017 Aug 9.Google Scholar
  45. 45.
    Fullwood, M. J., and Ruan, Y. (2009) ChIP-based methods for the identification of long-range chromatin interactions, J. Cell. Biochem., 107, 30–39.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Ji, X., Dadon, D. B., Powell, B. E., Fan, Z. P., Borges-Rivera, D., Shachar, S., Weintraub, A. S., Hnisz, D., Pegoraro, G., Lee, T. I., Misteli, T., Jaenisch, R., and Young, R. A. (2016) 3D chromosome regulatory landscape of human pluripotent cells, Cell Stem Cell, 18, 262–275.PubMedCrossRefGoogle Scholar
  47. 47.
    Ong, C. T., and Corces, V. G. (2014) CTCF: an architectural protein bridging genome topology and function, Nat. Rev. Genet., 15, 234–246.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Sanborn, A. L., Rao, S. S., Huang, S. C., Durand, N. C., Huntley, M. H., Jewett, A. I., Bochkov, I. D., Chinnappan, D., Cutkosky, A., Li, J., Geeting, K. P., Gnirke, A., Melnikov, A., McKenna, D., Stamenova, E. K., Lander, E. S., and Aiden, E. L. (2015) Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes, Proc. Natl. Acad. Sci. USA, 112, e6456-6465.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Rao, S. S. P., Huang, S. C., Glenn St Hilaire, B., Engreitz, J. M., Perez, E. M., Kieffer-Kwon, K. R., Sanborn, A. L., Johnstone, S. E., Bascom, G. D., Bochkov, I. D., Huang, X., Shamim, M. S., Shin, J., Turner, D., Ye, Z., Omer, A. D., Robinson, J. T., Schlick, T., Bernstein, B. E., Casellas, R., Lander, E. S., and Aiden, E. L. (2017) Cohesin loss eliminates all loop domains, Cell, 171, 305–320.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Franke, M., Ibrahim, D. M., Andrey, G., Schwarzer, W., Heinrich, V., Schopflin, R., Kraft, K., Kempfer, R., Jerkovic, I., Chan, W. L., Spielmann, M., Timmermann, B., Wittler, L., Kurth, I., Cambiaso, P., Zuffardi, O., Houge, G., Lambie, L., Brancati, F., Pombo, A., Vingron, M., Spitz, F., and Mundlos, S. (2016) Formation of new chromatin domains determines pathogenicity of genomic duplications, Nature, 538, 265–269.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Lupianez, D. G., Spielmann, M., and Mundlos, S. (2016) Breaking TADs: how alterations of chromatin domains result in disease, Trends Genet., 32, 225–237.PubMedCrossRefGoogle Scholar
  52. 52.
    Achinger-Kawecka, J., and Clark, S. J. (2017) Disruption of the 3D cancer genome blueprint, Epigenomics, 9, 47–55.PubMedCrossRefGoogle Scholar
  53. 53.
    Flavahan, W. A., Drier, Y., Liau, B. B., Gillespie, S. M., Venteicher, A. S., Stemmer-Rachamimov, A. O., Suva, M. L., and Bernstein, B. E. (2016) Insulator dysfunction and oncogene activation in IDH mutant gliomas, Nature, 529, 110–114.PubMedCrossRefGoogle Scholar
  54. 54.
    Harmston, N., Ing-Simmons, E., Tan, G., Perry, M., Merkenschlager, M., and Lenhard, B. (2017) Topologically associating domains are ancient features that coincide with metazoan clusters of extreme noncoding conservation, Nat. Commun., 8, 441.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Acemel, R. D., Maeso, I., and Gomez-Skarmeta, J. L. (2017) Topologically associated domains: a successful scaffold for the evolution of gene regulation in animals, Wiley Interdiscip. Rev. Dev. Biol., 6, No. 3; doi: 10.1002/wdev.265; Epub 2017 Mar 2.Google Scholar
  56. 56.
    Rowley, M. J., Nichols, M. H., Lyu, X., Ando-Kuri, M., Rivera, I. S. M., Hermetz, K., Wang, P., Ruan, Y., and Corces, V. G. (2017) Evolutionarily conserved principles predict 3D chromatin organization, Mol. Cell., 67, 837–852.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Liu, C., Cheng, Y. J., Wang, J. W., and Weigel, D. (2017) Prominent topologically associated domains differentiate global chromatin packing in rice from Arabidopsis, Nat. Plants, 3, 742–748.PubMedCrossRefGoogle Scholar
  58. 58.
    Feng, S., Cokus, S. J., Schubert, V., Zhai, J., Pellegrini, M., and Jacobsen, S. E. (2014) Genome-wide Hi-C analy-ses in wild-type and mutants reveal high-resolution chromatin interactions in Arabidopsis, Mol. Cell., 55, 694–707.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Bickmore, W. A. (2013) The spatial organization of the human genome, Annu. Rev. Genom. Hum. Genet., 14, 67–84.CrossRefGoogle Scholar
  60. 60.
    Bolzer, A., Kreth, G., Solovei, I., Koehler, D., Saracoglu, K., Fauth, C., Muller, S., Eils, R., Cremer, C., Speicher, M. R., and Cremer, T. (2005) Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes, PLoS Biol., 3, e157.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Boyle, S., Gilchrist, S., Bridger, J. M., Mahy, N. L., Ellis, J. A., and Bickmore, W. A. (2001) The spatial organization of human chromosomes within the nuclei of normal and emerin-mutant cells, Hum. Mol. Genet., 10, 211–219.PubMedCrossRefGoogle Scholar
  62. 62.
    Cremer, M., von Hase, J., Volm, T., Brero, A., Kreth, G., Walter, J., Fischer, C., Solovei, I., Cremer, C., and Cremer, T. (2001) Non-random radial higher-order chromatin arrangements in nuclei of diploid human cells, Chromosome Res., 9, 541–567.PubMedCrossRefGoogle Scholar
  63. 63.
    Croft, J. A., Bridger, J. M., Boyle, S., Perry, P., Teague, P., and Bickmore, W. A. (1999) Differences in the localization and morphology of chromosomes in the human nucleus, J. Cell Biol., 145, 1119–1131.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Tanabe, H., Muller, S., Neusser, M., von Hase, J., Calcagno, E., Cremer, M., Solovei, I., Cremer, C., and Cremer, T. (2002) Evolutionary conservation of chromosome territory arrangements in cell nuclei from higher primates, Proc. Natl. Acad. Sci. USA, 99, 4424–4429.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Habermann, F. A., Cremer, M., Walter, J., Kreth, G., von Hase, J., Bauer, K., Wienberg, J., Cremer, C., Cremer, T., and Solovei, I. (2001) Arrangements of macro-and microchromosomes in chicken cells, Chromosome Res., 9, 569–584.PubMedCrossRefGoogle Scholar
  66. 66.
    Alexandrova, O., Solovei, I., Cremer, T., and David, C. N. (2003) Replication labeling patterns and chromosome territories typical of mammalian nuclei are conserved in the early metazoan Hydra, Chromosoma, 112, 190–200.PubMedCrossRefGoogle Scholar
  67. 67.
    Baroux, C., Pecinka, A., Fuchs, J., Kreth, G., Schubert, I., and Grossniklaus, U. (2017) Non-random chromosome arrangement in triploid endosperm nuclei, Chromosoma, 126, 115–124.PubMedCrossRefGoogle Scholar
  68. 68.
    Fransz, P., and de Jong, H. (2011) From nucleosome to chromosome: a dynamic organization of genetic information, Plant J., 66, 4–17.PubMedCrossRefGoogle Scholar
  69. 69.
    Grob, S., and Grossniklaus, U. (2017) Chromosome conformation capture-based studies reveal novel features of plant nuclear architecture, Curr. Opin. Plant Biol., 36, 149–157.PubMedCrossRefGoogle Scholar
  70. 70.
    Heslop-Harrison, J. S., and Schwarzacher, T. (2011) Organisation of the plant genome in chromosomes, Plant J., 66, 18–33.PubMedCrossRefGoogle Scholar
  71. 71.
    Liu, C., and Weigel, D. (2015) Chromatin in 3D: progress and prospects for plants, Genome Biol., 16, 170.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Pawlowski, W. P. (2010) Chromosome organization and dynamics in plants, Curr. Opin. Plant Biol., 13, 640–645.PubMedCrossRefGoogle Scholar
  73. 73.
    Schubert, I., and Shaw, P. (2011) Organization and dynamics of plant interphase chromosomes, Trends Plant. Sci., 16, 273–281.PubMedCrossRefGoogle Scholar
  74. 74.
    Schubert, V., Meister, A., Tsujimoto, H., Endo, T. R., and Houben, A. (2011) Similar rye A and B chromosome organization in meristematic and differentiated interphase nuclei, Chromosome Res., 19, 645–655.PubMedCrossRefGoogle Scholar
  75. 75.
    Vergara, Z., and Gutierrez, C. (2017) Emerging roles of chromatin in the maintenance of genome organization and function in plants, Genome Biol., 18, 96.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Wang, C., Liu, C., Roqueiro, D., Grimm, D., Schwab, R., Becker, C., Lanz, C., and Weigel, D. (2015) Genome-wide analysis of local chromatin packing in Arabidopsis thaliana, Genome Res., 25, 246–256.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Perrella, G., and Kaiserli, E. (2016) Light behind the curtain: photoregulation of nuclear architecture and chromatin dynamics in plants, New Phytol., 212, 908–919.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Joffe, B., Peichl, P., Hendrickson, A., Leonhardt, H., and Solovei, I. (2014) Diurnality and nocturnality in primates: an analysis from the rod photoreceptor nuclei perspective, Evol. Biol., 41, 1–11.CrossRefGoogle Scholar
  79. 79.
    Kizilyaprak, C., Spehner, D., Devys, D., and Schultz, P. (2010) In vivo chromatin organization of mouse rod photoreceptors correlates with histone modifications, PLoS One, 5, e11039.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Solovei, I., Wang, A. S., Thanisch, K., Schmidt, C. S., Krebs, S., Zwerger, M., Cohen, T. V., Devys, D., Foisner, R., Peichl, L., Herrmann, H., Blum, H., Engelkamp, D., Stewart, C. L., Leonhardt, H., and Joffe, B. (2013) LBR and lamin A/C sequentially tether peripheral heterochromatin and inversely regulate differentiation, Cell, 152, 584–598.PubMedCrossRefGoogle Scholar
  81. 81.
    Blaszczak, Z., Kreysing, M., and Guck, J. (2014) Direct observation of light focusing by single photoreceptor cell nuclei, Opt. Express, 22, 11043–11060.PubMedCrossRefGoogle Scholar
  82. 82.
    Kreysing, M., Boyde, L., Guck, J., and Chalut, K. J. (2010) Physical insight into light scattering by photoreceptor cell nuclei, Opt. Lett., 35, 2639–2641.PubMedCrossRefGoogle Scholar
  83. 83.
    Ma, Y., and Buttitta, L. (2017) Chromatin organization changes during the establishment and maintenance of the postmitotic state, Epigenetics Chromatin, 10, 53.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Bickmore, W. A., and van Steensel, B. (2013) Genome architecture: domain organization of interphase chromosomes, Cell, 152, 1270–1284.PubMedCrossRefGoogle Scholar
  85. 85.
    Van Steensel, B., and Belmont, A. S. (2017) Lamina-associated domains: links with chromosome architecture, heterochromatin, and gene repression, Cell, 169, 780–791.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Bi, X., Cheng, Y. J., Hu, B., Ma, X., Wu, R., Wang, J. W., and Liu, C. (2017) Nonrandom domain organization of the Arabidopsis genome at the nuclear periphery, Genome Res., 27, 1162–1173.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Hsu, T. C. (1975) A possible function of constitutive heterochromatin: the bodyguard hypothesis, Genetics, 79 (Suppl.), 137–150.PubMedGoogle Scholar
  88. 88.
    Gazave, E., Gautier, P., Gilchrist, S., and Bickmore, W. A. (2005) Does radial nuclear organisation influence DNA damage? Chromosome Res., 13, 377–388.PubMedCrossRefGoogle Scholar
  89. 89.
    Smith, K. S., Liu, L. L., Ganesan, S., Michor, F., and De, S. (2017) Nuclear topology modulates the mutational landscapes of cancer genomes, Nat. Struct. Mol. Biol., 24, 1000–1006.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Qiu, G. H. (2015) Protection of the genome and central protein-coding sequences by non-coding DNA against DNA damage from radiation, Mutat. Res. Rev. Mutat. Res., 764, 108–117.PubMedCrossRefGoogle Scholar
  91. 91.
    Belousov, V. V., Enikolopov, G. N., and Mishina, N. M. (2013) Compartmentalization of ROS-mediated signal transduction, Bioorg. Khim., 39, 383–399.PubMedGoogle Scholar
  92. 92.
    Yakes, F. M., and Van Houten, B. (1997) Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress, Proc. Natl. Acad. Sci. USA, 94, 514–519.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Obe, G., Pfeiffer, P., Savage, J. R., Johannes, C., Goedecke, W., Jeppesen, P., Natarajan, A. T., Martinez-Lopez, W., Folle, G. A., and Drets, M. E. (2002) Chromosomal aberrations: formation, identification and distribution, Mutat. Res., 504, 17–36.Google Scholar
  94. 94.
    Martin, W., Baross, J., Kelley, D., and Russell, M. J. (2008) Hydrothermal vents and the origin of life, Nat. Rev. Microbiol., 6, 805–814.PubMedCrossRefGoogle Scholar
  95. 95.
    Mulkidjanian, A. Y., Bychkov, A. Y., Dibrova, D. V., Galperin, M. Y., and Koonin, E. V. (2012) Origin of first cells at terrestrial, anoxic geothermal fields, Proc. Natl. Acad. Sci. USA, 109, e821–830.PubMedCrossRefGoogle Scholar
  96. 96.
    Speijer, D. (2015) Birth of the eukaryotes by a set of reactive innovations: new insights force us to relinquish gradual models, Bioessays, 37, 1268–1276.PubMedCrossRefGoogle Scholar
  97. 97.
    Postberg, J., Lipps, H. J., and Cremer, T. (2010) Evolutionary origin of the cell nucleus and its functional architecture, Essays Biochem., 48, 1–24.PubMedCrossRefGoogle Scholar
  98. 98.
    Pereira, S. L., Grayling, R. A., Lurz, R., and Reeve, J. N. (1997) Archaeal nucleosomes, Proc. Natl. Acad. Sci. USA, 94, 12633–12637.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Mattiroli, F., Bhattacharyya, S., Dyer, P. N., White, A. E., Sandman, K., Burkhart, B. W., Byrne, K. R., Lee, T., Ahn, N. G., Santangelo, T. J., Reeve, J. N., and Luger, K. (2017) Structure of histone-based chromatin in Archaea, Science, 357, 609–612.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F., and Richmond, T. J. (1997) Crystal structure of the nucleosome core particle at 2.8 Å resolution, Nature, 389, 251–260.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Tanizawa, H., Kim, K. D., Iwasaki, O., and Noma, K. I. (2017) Architectural alterations of the fission yeast genome during the cell cycle, Nat. Struct. Mol. Biol., 24, 965–976.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Gursoy, G., Xu, Y., and Liang, J. (2017) Spatial organization of the budding yeast genome in the cell nucleus and identification of specific chromatin interactions from multi-chromosome constrained chromatin model, PLoS Comput. Biol., 13, e1005658.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Iwasaki, O., Corcoran, C. J., and Noma, K. (2016) Involvement of condensin-directed gene associations in the organization and regulation of chromosome territories during the cell cycle, Nucleic Acids Res., 44, 3618–3628.PubMedCrossRefGoogle Scholar
  104. 104.
    Gasser, S. M. (2002) Visualizing chromatin dynamics in interphase nuclei, Science, 296, 1412–1416.PubMedCrossRefGoogle Scholar
  105. 105.
    Taddei, A., and Gasser, S. M. (2012) Structure and function in the budding yeast nucleus, Genetics, 192, 107–129.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Chubb, J. R., and Bickmore, W. A. (2003) Considering nuclear compartmentalization in the light of nuclear dynamics, Cell, 112, 403–406.PubMedCrossRefGoogle Scholar
  107. 107.
    Selig, S., Okumura, K., Ward, D. C., and Cedar, H. (1992) Delineation of DNA replication time zones by fluorescence in situ hybridization, EMBO J., 11, 1217–1225.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Yalon, M., Gal, S., Segev, Y., Selig, S., and Skorecki, K. L. (2004) Sister chromatid separation at human telomeric regions, J. Cell Sci., 117, 1961–1970.PubMedCrossRefGoogle Scholar
  109. 109.
    Amitai, A., Seeber, A., Gasser, S. M., and Holcman, D. (2017) Visualization of chromatin decompaction and break site extrusion as predicted by statistical polymer modeling of single-locus trajectories, Cell Rep., 18, 1200–1214.PubMedCrossRefGoogle Scholar
  110. 110.
    Seeber, A., and Gasser, S. M. (2017) Chromatin organization and dynamics in double-strand break repair, Curr. Opin. Genet. Dev., 43, 9–16.PubMedCrossRefGoogle Scholar
  111. 111.
    Shen, Y., Buick, R., and Canfield, D. E. (2001) Isotopic evidence for microbial sulphate reduction in the early archaean era, Nature, 410, 77–81.PubMedCrossRefGoogle Scholar
  112. 112.
    Knoll, A. H. (1999) A new molecular window on early life, Science, 285, 1025–1026.PubMedCrossRefGoogle Scholar
  113. 113.
    Levi-Setti, R., Gavrilov, K. L., and Rizzo, P. J. (2008) Divalent cation distribution in dinoflagellate chromosomes imaged by high-resolution ion probe mass spectrometry, Eur. J. Cell Biol., 87, 963–976.PubMedCrossRefGoogle Scholar
  114. 114.
    Chan, Y. H., and Wong, J. T. (2007) Concentration-dependent organization of DNA by the dinoflagellate histone-like protein HCc3, Nucleic Acids Res., 35, 2573–2583.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Marbouty, M., Le Gall, A., Cattoni, D. I., Cournac, A., Koh, A., Fiche, J. B., Mozziconacci, J., Murray, H., Koszul, R., and Nollmann, M. (2015) Condensin-and replication-mediated bacterial chromosome folding and origin condensation revealed by Hi-C and super-resolution imaging, Mol. Cell, 59, 588–602.PubMedCrossRefGoogle Scholar
  116. 116.
    Gornik, S. G., Ford, K. L., Mulhern, T. D., Bacic, A., McFadden, G. I., and Waller, R. F. (2012) Loss of nucleosomal DNA condensation coincides with appearance of a novel nuclear protein in dinoflagellates, Curr. Biol., 22, 2303–2312.PubMedCrossRefGoogle Scholar
  117. 117.
    Wong, J. T., New, D. C., Wong, J. C., and Hung, V. K. (2003) Histonelike proteins of the dinoflagellate Crypthecodinium cohnii have homologies to bacterial DNA-binding proteins, Eukaryot. Cell, 2, 646–650.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Eltsov, M., and Zuber, B. (2006) Transmission electron microscopy of the bacterial nucleoid, J. Struct. Biol., 156, 246–254.PubMedCrossRefGoogle Scholar
  119. 119.
    Feijoo-Siota, L., Rama, J. L. R., Sanchez-Perez, A., and Villa, T. G. (2017) Considerations on bacterial nucleoids, Appl. Microbiol. Biotechnol., 101, 5591–5602.PubMedCrossRefGoogle Scholar
  120. 120.
    Fisher, J. K., Bourniquel, A., Witz, G., Weiner, B., Prentiss, M., and Kleckner, N. (2013) Four-dimensional imaging of E. coli nucleoid organization and dynamics in living cells, Cell, 153, 882–895.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Macvanin, M., and Adhya, S. (2012) Architectural organization in E. coli nucleoid, Biochim. Biophys. Acta, 1819, 830–835.PubMedCrossRefGoogle Scholar
  122. 122.
    Peeters, E., Driessen, R. P., Werner, F., and Dame, R. T. (2015) The interplay between nucleoid organization and transcription in archaeal genomes, Nat. Rev. Microbiol., 13, 333–341.PubMedCrossRefGoogle Scholar
  123. 123.
    Smits, W. K., Goranov, A. I., and Grossman, A. D. (2010) Ordered association of helicase loader proteins with the Bacillus subtilis origin of replication in vivo, Mol. Microbiol., 75, 452–461.PubMedCrossRefGoogle Scholar
  124. 124.
    Archibald, J. M. (2011) Origin of eukaryotic cells: 40 years on, Symbiosis, 54, 69–86.CrossRefGoogle Scholar
  125. 125.
    Takata, H., Hanafusa, T., Mori, T., Shimura, M., Iida, Y., Ishikawa, K., Yoshikawa, K., Yoshikawa, Y., and Maeshima, K. (2013) Chromatin compaction protects genomic DNA from radiation damage, PLoS One, 8, e75622.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Biocenter, Department of Biology IILudwig Maximilian University (LMU)MunichGermany
  2. 2.Institute of Molecular Biology (IMB) MainzMainzGermany

Personalised recommendations