Biochemistry (Moscow)

, Volume 83, Issue 3, pp 270–280 | Cite as

Possible Role of Escherichia coli Protein YbgI

  • O. V. SergeevaEmail author
  • D. O. Bredikhin
  • M. V. Nesterchuk
  • M. V. Serebryakova
  • P. V. Sergiev
  • O. A. Dontsova


Proteins containing the NIF3 domain are highly conserved and are found in bacteria, eukaryotes, and archaea. YbgI is an Escherichia coli protein whose gene is conserved among bacteria. The structure of YbgI is known; however, the function of this protein in cells remains obscure. Our studies of E. coli cells with deleted ybgI gene suggest that YbgI is involved in formation of the bacterial cell wall.


Escherichia coli cell stress bacterial cell wall 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10541_2018_587_MOESM1_ESM.pdf (2.9 mb)
Supplementary material, approximately 2964 KB.


  1. 1.
    Jiang, D., Hatahet, Z., Blaisdell, J. O., Melamede, R. J., and Wallace, S. S. (1997) Escherichia coli endonuclease VIII: cloning, sequencing, and overexpression of the nei structural gene and characterization of nei and nei nth mutants, J. Bacteriol., 179, 3773–3782.PubMedGoogle Scholar
  2. 2.
    Jiang, D., Hatahet, Z., Melamede, R. J., Kow, Y. W., and Wallace, S. S. (1997) Characterization of Escherichia coli endonuclease VIII, J. Biol. Chem., 272, 32230–32239.CrossRefPubMedGoogle Scholar
  3. 3.
    Pfam: Protein families database of alignments and HMMs, Scholar
  4. 4.
    Galperin, M. Y., and Koonin, E. V. (2004) Conserved hypothetical proteins: prioritization of targets for experimental study, Nucleic Acids Res., 32, 5452–5463.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ladner, J. E., Obmolova, G., Teplyakov, A., Howard, A. J., Khil, P. P., Camerini–Otero, R. D., and Gilliland, G. L. (2003) Crystal structure of Escherichia coli protein ybgI, a toroidal structure with a dinuclear metal site, BMC Struct. Biol., 3,7.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Martens, J. A., Genereaux, J., Saleh, A., and Brandl, C. J. (1996) Transcriptional activation by yeast PDR1p is inhibited by its association with NGG1p/ADA3p, J. Biol. Chem., 271, 15884–15890.CrossRefPubMedGoogle Scholar
  7. 7.
    Tascou, S., Uedelhoven, J., Dixkens, C., Nayernia, K., Engel, W., and Burfeind, P. (2000) Isolation and characterization of a novel human gene, NIF3L1, and its mouse ortholog, Nif3l1, highly conserved from bacteria to mammals, Cytogen. Genome Res., 90, 330–336.Google Scholar
  8. 8.
    Khil, P. P., and Camerini–Otero, R. D. (2002) Over 1000 genes are involved in the DNA damage response of Escherichia coli, Mol. Microbiol., 44, 89–105.CrossRefPubMedGoogle Scholar
  9. 9.
    Byrne, R. T., Chen, S. H., Wood, E. A., Cabot, E. L., and Cox, M. M. (2014) Escherichia coli genes and pathways involved in surviving extreme exposure to ionizing radiation, J. Bacteriol., 196, 3534–3545.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Baker, N. A., Sept, D., Simpson, J., Holst, M. J., and McCammon, A. J. (2001) Electrostatics of nanosystems: application to microtubules and the ribosome, Proc. Natl. Acad. Sci. USA, 98, 10037–10041.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    DeLano, W. L. (2002) The PyMOL Molecular Graphics System, DeLano Scientific, San Carlos, USA.Google Scholar
  12. 12.
    Kitagawa, M., Ara, T., Arifuzzaman, M., Ioka–Nakamichi, T., Inamoto, E., Toyonaga, H., and Mori, H. (2005) Complete set of ORF clones of Escherichia coli ASKA library (a complete set of E. coli K–12 ORF archive): unique resources for biological research, DNA Res., 12, 291–299.CrossRefPubMedGoogle Scholar
  13. 13.
    Baba, T., Ara, T., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M., Datsenko, K. A., Tomita, M., Wanner, B. L., and Mori, H. (2006) Construction of Escherichia coli K–12 inframe, single-gene knockout mutants: the Keio collection, Mol. Syst. Biol., 2, 2006.0008; Epub 2006 Feb21.CrossRefGoogle Scholar
  14. 14.
    Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding, Anal. Biochem., 72, 248–254.CrossRefPubMedGoogle Scholar
  15. 15.
    Ghosh, A., and Bansal, M. (2003) A glossary of DNA structures from A to Z, Acta Crystallogr. D Biol. Crystallogr., 59, 620–626.CrossRefPubMedGoogle Scholar
  16. 16.
    Gascon, J., Oubina, A., Perez–Lezaun, A., and Urmeneta, J. (1995) Sensitivity of selected bacterial species to UV radiation, Curr. Microbiol., 30, 177–182.CrossRefPubMedGoogle Scholar
  17. 17.
    Iida, A., Teshiba, S., and Mizobuchi, K. (1993) Identification and characterization of the tktB gene encoding a second transketolase in Escherichia coli K–12, J. Bacteriol., 175, 5375–5783.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Gardner, S. G., Johns, K. D., Tanner, R., and McCleary, W. R. (2012) The PhoU protein from Escherichia coli interacts with PhoR, PstB, and metals to form a phosphate–signaling complex at the membrane, J. Bacteriol., 196, 1741–1752.CrossRefGoogle Scholar
  19. 19.
    Brooks, K. M., and Hampel, K. J. (2011) Rapid steps in the glmS ribozyme catalytic pathway: cation and ligand requirements, Biochemistry, 50, 2424–2433.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Dutka–Malen, S., Mazodier, P., and Badet, B. (1988) Molecular cloning and overexpression of the glucosamine synthetase gene from Escherichia coli, Biochimie, 70, 287–290.CrossRefPubMedGoogle Scholar
  21. 21.
    Watanabe, T., and Snell, E. E. (1977) The interaction of Escherichia coli tryptophanase with various amino and their analogs. Active site mapping, J. Biochem., 82, 733–745.CrossRefPubMedGoogle Scholar
  22. 22.
    Lee, J., Hiibel, S. R., Reardon, K. F., and Wood, T. K. (2010) Identification of stress–related proteins in Escherichia coli using the pollutant cisdichloroethylene, J. Appl. Microbiol., 108, 2088–2102.CrossRefPubMedGoogle Scholar
  23. 23.
    Ashraf, K. U., Josts, I., Mosbahi, K., Kelly, S. M., Byron, O., Smith, B. O., and Walker, D. (2016) The potassium binding protein Kbp is a cytoplasmic potassium sensor, Structure, 24, 741–749.CrossRefPubMedGoogle Scholar
  24. 24.
    Almiron, M., Link, A. J., Furlong, D., and Kolter, R. (1992) A novel DNA–binding protein with regulatory and protective roles in starved Escherichia coli, Genes Dev., 6, 2646–2654.CrossRefPubMedGoogle Scholar
  25. 25.
    Yim, H. H., and Villarejo, M. (1992) OsmY, a new hyper–osmotically inducible gene, encodes a periplasmic protein in Escherichia coli, J. Bacteriol., 174, 3637–3644.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Thaller, M. C., Schippa, S., Bonci, A., Cresti, S., and Rossolini, G. M. (1997) Identification of the gene (aphA) encoding the class B acid phosphatase/phosphotransferase of Escherichia coli MG1655 and characterization of its product, FEMS Microbiol. Lett., 146, 191–198.CrossRefPubMedGoogle Scholar
  27. 27.
    Osterman, I. A., Prokhorova, I. V., Sysoev, V. O., Boykova, Y. V., Efremenkova, O. V., Svetlov, M. S., Kolb, V. A., Bogdanov, A. A., Sergiev, P. V., and Dontsova, O. A. (2012) Attenuation–based dual–fluorescent–protein reporter for screening translation inhibitors, Antimicrob. Agents Chemother., 56, 1774–1783.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Li, G., and Young, K. D. (2015) A new suite of tnaA mutants suggests that Escherichia coli tryptophanase is regulated by intracellular sequestration and by occlusion of its active site, BMC Microbiol., 15,14.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Moreau, P. L. (2007) The lysine decarboxylase CadA protects Escherichia coli starved of phosphate against fermentation acids, J. Bacteriol., 189, 2249–2261.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Vitreschak, A. G., Lyubetskaya, E. V., Shirshin, M. A., Gelfand, M. S., and Lyubetsky, V. A. (2004) Attenuation regulation of amino acid biosynthetic operons in proteobacteria: comparative genomics analysis, FEMS Microbiol. Lett., 234, 357–370.CrossRefPubMedGoogle Scholar
  31. 31.
    Laskowska, E., Wawrzynow, A., and Taylor, A. (1996) IbpA and IbpB, the new heat–shock proteins, bind to endogenous Escherichia coli proteins aggregated intracellularly by heat shock, Biochimie, 78, 117–122.CrossRefPubMedGoogle Scholar
  32. 32.
    Unden, G., and Schirawski, J. (1997) The oxygenresponsive transcriptional regulator FNR of Escherichia coli: the search for signals and reactions, Mol. Microbiol., 25, 205–210.CrossRefPubMedGoogle Scholar
  33. 33.
    Maciag, A., Peano, C., Pietrelli, A., Egli, T., De Bellis, G., and Landini, P. (2011) in vitro transcription profiling of the sS subunit of bacterial RNA polymerase: redefinition of the sS regulon and identification of sS–specific promoter sequence elements, Nucleic Acids Res., 39, 5338–5355.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Gralla, J. D. (2005) Escherichia coli ribosomal RNA transcription: regulatory roles for ppGpp, NTPs, architectural proteins and a polymerase–binding protein, Mol. Microbiol., 55, 973–977.CrossRefPubMedGoogle Scholar
  35. 35.
    Wiriyathanawudhiwong, N., Ohtsu, I., Li, Z. D., Mori, H., and Takagi, H. (2009) The outer membrane TolC is involved in cysteine tolerance and overproduction in Escherichia coli, Appl. Microbiol. Biotech., 81, 903–913.CrossRefGoogle Scholar
  36. 36.
    Hammar, M., Arnqvist, A., Bian, Z., Olsen, A., and Normark, S. (1995) Expression of two csg operons is required for production of fibronectin–and Congo Red–binding curli polymers in Escherichia coli K–12, Mol. Microbiol., 18, 661–670.CrossRefGoogle Scholar
  37. 37.
    Roth, J. R., Lawrence, J. G., and Bobik, T. A. (1996) Cobalamin (coenzyme B12): synthesis and biological significance, Annu. Rev. Microbiol., 50, 137–181.CrossRefPubMedGoogle Scholar
  38. 38.
    Liu, A., Tran, L., Becket, E., Lee, K., Chinn, L., Park, E., Tran, K., and Miller, J. H. (2010) Antibiotic sensitivity profiles determined with an Escherichia coli gene knockout collection: generating an antibiotic bar code, Antimicrob. Agents Chemother., 54, 1393–1403.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Bush, K. (2012) Antimicrobial agents targeting bacterial cell walls and cell membranes, Rev. Sci. Tech., 31, 43–56.CrossRefPubMedGoogle Scholar
  40. 40.
    Barreteau, H., Kovac, A., Boniface, A., Sova, M., Gobec, S., and Blanot, D. (2008) Cytoplasmic steps of peptidogly–can biosynthesis, FEMS Microbiol. Rev., 32, 168–207.CrossRefPubMedGoogle Scholar
  41. 41.
    Awano, N., Wada, M., Kohdoh, A., Oikawa, T., Takagi, H., and Nakamori, S. (2005) Effect of cysteine desulfhydrase gene disruption on L–cysteine overproduction in Escherichia coli, Appl. Microbiol. Biotech., 62, 239–243.CrossRefGoogle Scholar
  42. 42.
    De Biase, D., Tramonti, A., John, R. A., and Bossa, F. (1996) Isolation, overexpression, and biochemical characterization of the two isoforms of glutamic acid decarboxylase from Escherichia coli, Protein Expr. Purif., 8, 430–438.CrossRefPubMedGoogle Scholar
  43. 43.
    Juarez–Rodriguez, M. D., Torres–Escobar, A., and Demuth, D. R. (2013) ygiW and qseBC are coexpressed in Aggregatibacter actinomycetemcomitans and regulate biofilm growth, Microbiology, 159, 989–1001.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Moreira, C. G., Herrera, C. M., Needham, B. D., Parker, C. T., Libby, S. J., Fang, F. C., Trent, M. S., and Sperandio, V. (2013) Virulence and stress–related periplasmic protein (VisP) in bacterial/host associations, Proc. Natl. Acad. Sci. USA, 110, 1470–1475.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Bernal–Cabas, M., Ayala, J. A., and Raivio, T. L. (2015) The Cpx envelope stress response modifies peptidoglycan cross–linking via the L,D–transpeptidase LdtD and the novel protein YgaU, J. Bacteriol., 197, 603–614.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Vollmer, W., and Bertsche, U. (2008) Murein (peptidogly–can) structure, architecture and biosynthesis in Escherichia coli, Biochim. Biophys. Acta, 1778, 1714–1734.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • O. V. Sergeeva
    • 1
    • 2
    Email author
  • D. O. Bredikhin
    • 2
  • M. V. Nesterchuk
    • 1
  • M. V. Serebryakova
    • 2
  • P. V. Sergiev
    • 1
    • 2
  • O. A. Dontsova
    • 1
    • 2
  1. 1.Skolkovo Institute of Science and TechnologySkolkovo, Moscow RegionRussia
  2. 2.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations