Biochemistry (Moscow)

, Volume 83, Issue 3, pp 259–269 | Cite as

Expression of Soluble Active Interferon αA in Escherichia coli Periplasm by Fusion with Thermostable Lichenase Using the Domain Insertion Approach

  • A. A. Tyurin
  • K. V. Kabardaeva
  • O. N. Mustafaev
  • O. S. Pavlenko
  • N. S. Sadovskaya
  • V. S. Fadeev
  • E. A. Zvonova
  • I. V. Goldenkova-PavlovaEmail author


A recombinant DNA in which the interferon αA (IFN–αA) gene sequence is integrated into a loop region of the gene coding thermostable lichenase was constructed. This approach of insertion fusion with thermostable lichenase is advantageous in terms of increasing the solubility, stability, and production of the fusion partner in soluble form in general and in the periplasm of bacterial cells in particular. Thus, the insertion of IFN–αA into the loop (53 a.a.) of thermostable lichenase from Clostridium thermocellum resulted in effective expression of the soluble form of the recombinant protein in the periplasm of Escherichia coli without any compromise in biological activity of IFN–αA, while the thermostable lichenase retained its ability for functional folding without dramatic loss of its basic activity and thermostability.


interferon αA thermostable lichenase domain insertion expression solubility biological activity 



cytopathogenic effect


fetal bovine serum




thermostable lichenase


maltose–binding protein


protein preparation after ethanol precipitation


purified protein


total protein lysate


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pestka, S., and Baron, S. (1981) Definition and classification of the interferons, Methods Enzymol., 78, 3–14.CrossRefPubMedGoogle Scholar
  2. 2.
    Pestka, S., Langer, J. A., Zoon, K. C., and Samuel, C. E. (1987) Interferons and their actions, Annu. Rev. Biochem., 56, 727–777.CrossRefPubMedGoogle Scholar
  3. 3.
    Borden, E. C., Sen, G. C., Uze, G., Silverman, R. H., Ransohoff, R. M., and Foster, G. R. (2007) Interferons at age 50: past, current and future impact on biomedicine, Nat. Rev. Drug Discov., 6, 975–990.CrossRefPubMedGoogle Scholar
  4. 4.
    Gutterman, J. U. (1994) Cytokine therapeutics: lessons from interferon alpha, Proc. Natl. Acad. Sci. USA, 91, 1198–1205.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Peciak, K., Tommasi, R., Choi, J., Brocchini, S., and Laurine, E. (2014) Expression of soluble and active interferon consensus in SUMO fusion expression system in E. coli, Protein Expr. Purif., 99, 18–26.CrossRefPubMedGoogle Scholar
  6. 6.
    Clark, E. D. (2001) Protein refolding for industrial processes, Curr. Opin. Biotechnol., 12, 202–207.CrossRefPubMedGoogle Scholar
  7. 7.
    Middelberg, A. P. J. (2002) Preparative protein refolding, Trends Biotechnol., 20, 437–443.CrossRefPubMedGoogle Scholar
  8. 8.
    Cabrita, L. D., Dai, W., and Bottomley, S. P. (2006) A family of E. coli expression vectors for laboratory scale and high throughput soluble protein production, BMC Biotechnol., 6,12.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Weickert, M. J., Doherty, D. H., Best, E. A., and Olins, P. O. (1996) Optimization of heterologous protein production in Escherichia coli, Curr. Opin. Biotechnol., 7, 494–499.CrossRefPubMedGoogle Scholar
  10. 10.
    Burgess–Brown, N. A., Sharma, S., Sobott, F., Loenarz, C., Oppermann, U., and Gileadi, O. (2008) Codon opti–mization can improve expression of human genes in Escherichia coli: a multi-gene study, Protein Expr. Purif., 59, 94–102.CrossRefPubMedGoogle Scholar
  11. 11.
    Yang, H., Liu, L., and Xu, F. (2016) The promises and challenges of fusion constructs in protein biochemistry and enzymology, Appl. Microbiol. Biotechnol., 100, 8273–8281.CrossRefPubMedGoogle Scholar
  12. 12.
    Kapust, R. B., and Waugh, D. S. (1999) Escherichia coli maltose–binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused, Protein Sci., 8, 1668–1674.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Rabhi–Essafi, I., Sadok, A., Khalaf, N., and Fathallah, D. M. (2007) A strategy for high–level expression of soluble and functional human interferon alpha as a GST–fusion protein in E. coli, Protein Eng. Des. Sel., 20, 201–209.CrossRefPubMedGoogle Scholar
  14. 14.
    Smith, D. B., and Johnson, K. S. (1988) Single–step purification of polypeptides expressed in Escherichia coli as fusions with glutathione Stransferase, Gene, 67, 31–40.CrossRefPubMedGoogle Scholar
  15. 15.
    De Marco, V., Stier, G., Blandin, S., and de Marco, A. (2004) The solubility and stability of recombinant proteins are increased by their fusion to NusA, Biochem. Biophys. Res. Commun., 322, 766–771.CrossRefPubMedGoogle Scholar
  16. 16.
    Butt, T. R., Edavettal, S. C., Hall, J. P., and Mattern, M. R. (2005) SUMO fusion technology for difficult–to–express proteins, Protein Expr. Purif., 43, 1–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Zhu, F., Wang, Q., Pu, H., Gu, S., Luo, L., and Yin, Z. (2013) Optimization of soluble human interferonc production in Escherichia coli using SUMO fusion partner, World J. Microbiol. Biotechnol., 29, 319–325.CrossRefPubMedGoogle Scholar
  18. 18.
    Betton, J. M., Jacob, J. P., Hofnung, M., and Broome–Smith, J. K. (1997) Creating a bifunctional protein by insertion of betalactamase into the maltodextrin–binding protein, Nat. Biotechnol., 15, 1276–1279.CrossRefPubMedGoogle Scholar
  19. 19.
    Doi, N., and Yanagawa, H. (1999) Insertional gene fusion technology, FEBS Lett., 457, 1–4.CrossRefPubMedGoogle Scholar
  20. 20.
    Ay, J., Gotz, F., Borriss, R., and Heinemann, U. (1998) Structure and function of the Bacillus hybrid enzyme GluXyn–1: native–like jellyroll fold preserved after insertion of autonomous globular domain, Proc. Natl. Acad. Sci. USA, 95, 6613–6618.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Collinet, B., Herve, M., Pecorari, F., Minard, P., Eder, O., and Desmadril, M. (2000) Functionally accepted insertions of proteins within protein domains, J. Biol. Chem., 275, 17428–17433.CrossRefPubMedGoogle Scholar
  22. 22.
    Yu, K., Liu, C., Kim, B. G., and Lee, D. Y. (2015) Synthetic fusion protein design and applications, Biotechnol. Adv., 33, 155–164.CrossRefPubMedGoogle Scholar
  23. 23.
    Elleuche, S. (2015) Bringing functions together with fusion enzymes from Nature’s inventions to biotechnological applications, Appl. Microbiol. Biotechnol., 99, 1545–1556.CrossRefPubMedGoogle Scholar
  24. 24.
    Tyurin, A. A., Sadovskaya, N. S., Nikiforova, K. R., Mustafaev, O. N., Komakhin, R. A., Fadeev, V. S., and Goldenkova–Pavlova, I. V. (2015) Clostridium thermocellum thermostable lichenase with circular permutations and modifications in the N-terminal region retains its activity and thermostability, Biochim. Biophys. Acta, 1854, 10–19.CrossRefGoogle Scholar
  25. 25.
    Musiychuk, K. A., Goldenkova, I. V., Abdeev, R. M., Kobets, N. S., and Piruzian, E. S. (2000) Preparation and properties of Clostridium thermocellum lichenase deletion variants and their use for construction of bifunctional hybrid proteins, Biochemistry (Moscow), 65, 1397–1402.CrossRefGoogle Scholar
  26. 26.
    Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, Cold Spring Harbor Laboratory Press, N. Y.Google Scholar
  27. 27.
    Wood, T. M., and Bhat, K. M. (1988) Methods for measuring cellulase activities, Methods Enzymol., 160, 87–112.CrossRefGoogle Scholar
  28. 28.
    Bradford, M. A. (1976) Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72, 248–254.CrossRefPubMedGoogle Scholar
  29. 29.
    Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227, 680–685.CrossRefPubMedGoogle Scholar
  30. 30.
    Mosmann, T. (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays, J. Immunol. Methods, 65, 55–63.CrossRefPubMedGoogle Scholar
  31. 31.
    Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., and Zhang, Y. (2015) The I–TASSER Suite: protein structure and function prediction, Nat. Methods, 12, 7–8.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Hirose, S., Kawamura, Y., Yokota, K., Kuroita, T., Natsume, T., Komiya, K., Tsutsumi, T., Suwa, Y., Isogai, T., Goshima, N., and Noguchi, T. (2011) Statistical analysis of features associated with protein expression/solubility in an in vivo Escherichia coli expression system and a wheat germ cell–free expression system, J. Biochem., 150, 73–81.CrossRefPubMedGoogle Scholar
  33. 33.
    Smialowski, P., Doose, G., Torkler, P., Kaufmann, S., and Frishman, D. (2012) PROSO II–a new method for protein solubility prediction, FEBS J., 279, 2192–2200.CrossRefPubMedGoogle Scholar
  34. 34.
    Chang, C. C., Li, C., Webb, G. I., Tey, B., Song, J., and Ramanan, R. N. (2016) Periscope: quantitative prediction of soluble protein expression in the periplasm of Escherichia coli, Sci. Rep., 6.Google Scholar
  35. 35.
    Zoldak, G., Carstensen, L., Scholz, C., and Schmid, F. X. (2009) Consequences of domain insertion on the stability and folding mechanism of a protein, J. Mol. Biol., 386, 1138–1152.CrossRefPubMedGoogle Scholar
  36. 36.
    Chen, C. C., Huang, J. W., Zhao, P., Ko, T. P., Huang, C. H., Chan, H. C., Huang, Z., Liu, W., Cheng, Y. S., Liu, J. R., and Guo, R. T. (2015) Structural analyses and yeast production of the beta–1,3–1,4–glucanase catalytic module encoded by the licB gene of Clostridium thermocellum, Enzyme Microb. Technol., 71, 1–7.CrossRefPubMedGoogle Scholar
  37. 37.
    Zverlov, V. V., and Schwarz, W. H. (2008) Bacterial cellu–lose hydrolysis in anaerobic environmental subsystems–Clostridium thermocellum and Clostridium stercorarium, thermophilic plant–fiber degraders, Ann. N.Y. Acad. Sci., 1125, 298–307.CrossRefPubMedGoogle Scholar
  38. 38.
    Edwards, W. R., Williams, A. J., Morris, J. L., Baldwin, A. J., Allemann, R. K., and Jones, D. D. (2010) Regulation of beta–lactamase activity by remote binding of heme: functional coupling of unrelated proteins through domain insertion, Biochemistry, 49, 6541–6549.CrossRefPubMedGoogle Scholar
  39. 39.
    Heinemann, U., Ay, J., Gaiser, O., Muller, J. J., and Ponnuswamy, M. N. (1996) Enzymology and folding of natural and engineered bacterial beta–glucanases studied by X–ray crystallography, Biol. Chem., 377, 447–454.PubMedGoogle Scholar
  40. 40.
    Bloom, J. D., Labthavikul, S. T., Otey, C. R., and Arnold, F. H. (2006) Protein stability promotes evolvability, Proc. Natl. Acad. Sci. USA, 103, 5869–5874.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Segall–Shapiro, T. H., Nguyen, P. Q., Dos Santos, E. D., Subedi, S., Judd, J., Suh, J., and Silberg, J. J. (2011) Mesophilic and hyperthermophilic adenylate kinases differ in their tolerance to random fragmentation, J. Mol. Biol., 406, 135–148.CrossRefPubMedGoogle Scholar
  42. 42.
    Bis, R. L., Stauffer, T. M., Singh, S. M., Lavoie, T. B., and Mallela, K. M. (2014) High yield soluble bacterial expression and streamlined purification of recombinant human interferon a–2a, Protein Expr. Purif., 99, 138–146.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    EL–Baky, N. A., Linjawi, M. H., and Redwan, E. M. (2015) Autoinduction expression of human consensus interferonalpha in Escherichia coli, BMC Biotechnol., 15, 14.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Viguera, A. R., and Serrano, L. (1997) Loop length, intramolecular diffusion and protein folding, Nat. Struct. Biol., 4, 939–946.PubMedGoogle Scholar
  45. 45.
    Kim, C. S., Pierre, B., Ostermeier, M., Looger, L. L., and Kim, J. R. (2009) Enzyme stabilization by domain insertion into a thermophilic protein, Protein Eng., 22, 615–623.CrossRefGoogle Scholar
  46. 46.
    Zhou, H. X. (2004) Loops, linkages, rings, catenanes, cages, and crowders: entropy–based strategies for stabilizing proteins, Acc. Chem. Res., 37, 123–130.PubMedGoogle Scholar
  47. 47.
    Musiychuk, K., Stephenson, N., Bi, H., Farrance, C. E., Orozovic, G., Brodelius, M., Brodelius, P., Horsey, A., Ugulava, N., Shamloul, A. M., Mett, V., Rabindran, S., Streatfield, S. J., and Yusibov, V. (2007) A launch vector for the production of vaccine antigens in plants, Influenza Other Respir. Viruses, 1, 19–25.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. A. Tyurin
    • 1
    • 2
  • K. V. Kabardaeva
    • 1
    • 2
  • O. N. Mustafaev
    • 3
  • O. S. Pavlenko
    • 1
    • 2
  • N. S. Sadovskaya
    • 1
  • V. S. Fadeev
    • 1
  • E. A. Zvonova
    • 2
  • I. V. Goldenkova-Pavlova
    • 1
    Email author
  1. 1.Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussia
  2. 2.Department of Genetics and BiotechnologyRussian State Agrarian University − Moscow Timiryazev Agricultural AcademyMoscowRussia
  3. 3.Department of Biophysics and Molecular BiologyBaku State UniversityBakuAzerbaijan

Personalised recommendations