Biochemistry (Moscow)

, Volume 83, Issue 2, pp 168–183 | Cite as

Myoglobin: Oxygen Depot or Oxygen Transporter to Mitochondria? A Novel Mechanism of Myoglobin Deoxygenation in Cells (review)

  • G. B. PostnikovaEmail author
  • E. A. Shekhovtsova


In this review, we shortly summarize the data of our studies (and also corresponding studies of other authors) on the new mechanism of myoglobin (Mb) deoxygenation in a cell, according to which Mb acts as an oxygen transporter, and its affinity for the ligand, like in other transporting proteins, is regulated by the interaction with the target, in our case, mitochondria (Mch). We firstly found that contrary to previously formulated and commonly accepted concepts, oxymyoglobin (MbO2) deoxygenation occurs only via interaction of the protein with respiring mitochondria (low \({p_{{O_2}}}\) values are necessary but not sufficient for this process to proceed). Detailed studies of the mechanism of Mb–Mch interaction by various physicochemical methods using natural and artificial bilayer phospholipid membranes showed that: (i) the rate of MbO2 deoxygenation in the presence of respiring Mch fully coincides with the rate of O2 uptake by mitochondria from a solution irrespectively of their state (native coupled, freshly frozen, or FCCP-uncoupled), i.e. it is determined by the respiratory activity of Mch; (ii) Mb nonspecifically binds to membrane phospholipids of the outer mitochondrial membrane, while any Mb-specific protein or phospholipid sites on it are lacking; (iii) oxygen uptake by Mch from a solution and the uptake of Mb-bound oxygen are two different processes, as their rates are differently affected by proteins (e.g. lysozyme) that compete with MbO2 for binding to the mitochondrial membrane; (iv) electrostatic forces significantly contribute to the Mb–membrane interactions; the dependence of these interactions on ionic strength is provided by the local electrostatic interactions between anionic groups of phospholipids (the heads) and invariant Lys and Arg residues near the Mb heme pocket; (v) interactions of Mb with phospholipid membranes promote conformational changes in the protein, primarily in its heme pocket, without significant alterations in the protein secondary and tertiary structures; and (vi) Mb–membrane interactions lead to decrease in the affinity of myoglobin for O2, which could be monitored by the increase in the MbO2 autooxidation rate under aerobic conditions and under anaerobic ones, by the shift in the MbO2/Mb(2) equilibrium towards the ligand-free protein. The decrease in the affinity of Mb for the ligand should facilitate O2 dissociation from MbO2 at physiological \({p_{{O_2}}}\) values in cells.


myoglobin mitochondria spatial structure deoxygenation mechanism 

Abbreviation (biaoti)




bilayer lipid membranes


bovine serum albumin


Mb diffusion coefficient






guanidine chloride


complex–ligand equilibrium dissociation constant


Mb binding constant to mitochondria


MbO2 autooxidation rate constant


merocyanine 540












oxygen partial pressure

p50, \({p_{{O_2}}}\)

value at which Mb(2) is half-oxygenated (myoglobin affinity for oxygen)




reactive oxygen species


extent of myoglobin saturation with oxygen.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hill, R. L. (1933) Oxygen affinity of muscle haemoglobin, Nature, 132, 897–898.CrossRefGoogle Scholar
  2. 2.
    Millikan, G. A. (1939) Muscle hemoglobin, Physiol. Rev., 19, 503–523.CrossRefGoogle Scholar
  3. 3.
    Kendrew, J. C., Dickerson, R. T., Strandberg, B. E., Hart, R. G., Davis, D. R., Phillips, D. C., and Shore, V. C. (1960) Structure of myoglobin. A three-dimensional Fourier synthesis at 2 Å resolution, Nature (London), 185, 422–427.CrossRefGoogle Scholar
  4. 4.
    Antonini, E., and Brunori, M. (1971) Hemoglobin and Myoglobin in Their Reactions with Ligands, Front Biology, Amsterdam-London.Google Scholar
  5. 5.
    Starodub, R. F., Korobov, V. N., and Nazarenko, V. I. (1992) Myoglobin: Structure, Properties, Synthesis, and Biological Role [in Russian], Naukova Dumka, Kiev.Google Scholar
  6. 6.
    Garry, D. J., and Mammen, P. P. (2007) Molecular insights into the functional role of myoglobin, Adv. Exp. Med. Biol., 618, 181–193.CrossRefPubMedGoogle Scholar
  7. 7.
    Wittenberg, J. B. (1970) Myoglobin facilitated oxygen diffusion and the role of myoglobin in oxygen entry into muscle, Physiol. Rev., 50, 559–636.CrossRefPubMedGoogle Scholar
  8. 8.
    Wittenberg, B. A., Wittenberg, J. B., and Caldwell, P. R. B. (1975) Role of myoglobin in the oxygen supply to red skeletal muscle, J. Biol. Chem., 250, 9038–9043.PubMedGoogle Scholar
  9. 9.
    Wittenberg, J. B., and Wittenberg, B. A. (1981) Facilitated diffusion by oxygen carriers, in Oxygen and Living Processes (Gilbert, D. L., ed.) Springer, New York, pp. 177–199.CrossRefGoogle Scholar
  10. 10.
    Wittenberg, B. A., and Wittenberg, J. B. (1989) Transport of oxygen in muscle, Ann. Rev. Physiol., 51, 857–878.CrossRefGoogle Scholar
  11. 11.
    Fletcher, J. E. (1980) On facilitated oxygen diffusion in muscle tissues, Biophys. J., 29, 437–458.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Jones, D. P., and Kennedy, F. G. (1982) Intracellular O2 gradients in cardiac myocytes. Lack of a role for myoglobin in facilitation of intracellular O2 diffusion, Biochem. Biophys. Res. Comm., 105, 419–424.CrossRefPubMedGoogle Scholar
  13. 13.
    Jelicks, I. A., and Wittenberg, B. A. (1995) 1H nuclear magnetic resonance studies of sarcoplasmic oxygenation in the red cell-perfused rat heart, Biophys. J., 68, 2129–2136.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Jurgens, K. D., Papadopoulos, S., Peters, T., and Gross, G. (2000) Myoglobin: just an oxygen store or also an oxygen transporter, News Physiol. Sci., 15, 269–274.PubMedGoogle Scholar
  15. 15.
    Whiteley, J. P., Gavaghan, D. J., and Hahn, C. E. W. (2002) Mathematical modeling of oxygen transport to tissue, J. Math. Biol., 44, 503–522.CrossRefPubMedGoogle Scholar
  16. 16.
    Wittenberg, J. B., and Wittenberg, B. A. (2003) Myoglobin function reassessed, J. Exp. Biol., 206, 2011–2020.CrossRefPubMedGoogle Scholar
  17. 17.
    Tilakaratne, H. K., Hunter, S. K., and Rodgers, V. G. J. (2002) Mathematical modeling of myoglobin facilitated transport of oxygen in devices containing myoglobin–expressing cells, Math. Biosci., 176, 253–267.CrossRefPubMedGoogle Scholar
  18. 18.
    Chung, Y., and Jue, Th. (1999) Regulation of respiration in myocardium in the transient and steady state, Am. J. Physiol. Heart Circ. Physiol., 277, 1410–1417.CrossRefGoogle Scholar
  19. 19.
    Sharonov, Yu. A., and Sharonova, N. A. (1975) Structure and function of hemoglobin, Mol. Biol. (Moscow), 9, 145–172.Google Scholar
  20. 20.
    Papadopoulos, S., Endeward, V., Revesz-Walker, B., Jurgens, K. D., and Gross, G. (2001) Radial and longitudinal diffusion of myoglobin in single living heart and skeletal muscle cells, Proc. Natl. Acad. Sci. USA, 98, 5904–5909.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lin, P.-Ch., Kreutzer, U., and Jue, Th. (2007) Myoglobin translational diffusion in rat myocardium and its implication on intracellular oxygen transport, J. Physiol., 578, 595–603.CrossRefPubMedGoogle Scholar
  22. 22.
    Garry, D. J., Ordway, G. A., Lorenz, J. N., Radford, N. B., Chin, E. R., Grange, R. W., Bassel-Duby, R., and Williams, R. S. (1998) Mice without myoglobin, Nature, 395, 905–908.CrossRefPubMedGoogle Scholar
  23. 23.
    Vinogradov, A. D. (1999) Myoglobin: what is it for, Biochemistry (Moscow), 64, 592–593.Google Scholar
  24. 24.
    Skulachev, V. P. (1999) Comments for the article “Myoglobin: what is it for?” by A. D. Vinogradov, Biochemistry (Moscow), 64, 594.Google Scholar
  25. 25.
    Flogel, U., Merx, M. W., Godecke, A., Decking, U. K., and Shrader, J. (2001) Myoglobin: a scavenger of bioactive NO, Proc. Natl. Acad. Sci. USA, 98, 735–740.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Merx, M. W., Godecke, A., Flogel, U., and Shrader, J. (2005) Oxygen supply and nitric oxide scavenging by myoglobin contribute to exercise endurance and cardiac function, FASEB J., 19, 1015–1017.CrossRefPubMedGoogle Scholar
  27. 27.
    Flogel, U., Godecke, A., Klotz, L. O., and Shrader, J. (2004) Role of myoglobin in the antioxidant defense of the heart, FASEB J., 18, 1156–1158.CrossRefPubMedGoogle Scholar
  28. 28.
    Brunori, M. (2001) Nitric oxide, cytochrome c oxidase and myoglobin, Trends Biochem. Sci., 26, 21–23.CrossRefPubMedGoogle Scholar
  29. 29.
    Doeller, J. E., and Wittenberg, B. A. (1991) Myoglobin function and energy metabolism of isolated cardiac myocytes: effect of sodium nitrite, Am. J. Physiol., 261, 53–62.Google Scholar
  30. 30.
    Jourd’heuil, D., Mills, L., Miles, A. M., and Grisham, M. B. (1998) Effect of nitric oxide on hemoprotein-catalyzed oxidative reactions, Nitric Oxide, 2, 37–44.CrossRefPubMedGoogle Scholar
  31. 31.
    Sievers, G., and Ronnberg, M. (1978) Study of the pseudoper-oxidatic activity of soybean leghemoglobin and sperm whale myoglobin, Biochim. Biophys. Acta, 533, 293–301.CrossRefPubMedGoogle Scholar
  32. 32.
    Shikama, K. (1998) The molecular mechanism of autoxidation for myoglobin and hemoglobin: a venerable puzzle, Chem. Rev., 98, 1357–1373.CrossRefPubMedGoogle Scholar
  33. 33.
    Gunther, M. R., Sampath, V., and Caughey, W. S. (1999) Potential roles of myoglobin autoxidation in myocardial ischemia-reperfusion injury, Free Radic. Biol. Med., 26, 1388–1395.CrossRefPubMedGoogle Scholar
  34. 34.
    Gloster, J., and Harris, P. (1977) Fatty acid binding to cytoplasmic proteins of myocardium and red and white skeletal muscle in the rat. A possible new role for myoglobin, Biochem. Biophys. Res. Comm., 74, 506–513.CrossRefPubMedGoogle Scholar
  35. 35.
    Yackzan, K. S., and Wingo, W. J. (1982) Transport of fatty acids by myoglobin–a hypothesis, Med. Hypotheses, 8, 613–618.CrossRefPubMedGoogle Scholar
  36. 36.
    Gotz, F. M., Hertel, M., and Groschel-Stewart, U. (1994) Fatty acid binding of myoglobin depends on its oxygenation, Biol. Chem. Hoppe Seyler, 375, 387–392.CrossRefPubMedGoogle Scholar
  37. 37.
    Sriram, R., Kreutzer, U., Shih, L., and Jue, T. (2008) Fatty acid binding to myoglobin, FEBS Lett., 582, 3643–3649.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Godecke, A., Flogel, U., Zanger, K., Ding, Zh., Hirchenhain, J., Decking, U. K. M., and Schrader, J. (1999) Disruption of myoglobin in mice induces multiple compensatory mechanisms, Proc. Natl. Acad. Sci. USA, 96, 10495–10500.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Grange, R. W., Meeson, A., Chin, E., Lau, K. S., Stull, J. T., Shelton, J. M., Williams, S. R., and Garry, D. J. (2001) Functional and molecular adaptations in skeletal muscle of myoglobin-mutant mice, Am. J. Physiol. Cell Physiol., 281, 1487–1494.CrossRefGoogle Scholar
  40. 40.
    Meeson, A. P., Radford, N., Shelton, J. M., Mammen, P. P. A., DiMaio, J. M., Hutcheson, K., Kong, Y., Elterman, J., Williams, R. S., and Garry, D. J. (2001) Adaptive mechanisms that preserve cardiac function in mice without myoglobin, Circ. Res., 88, 713–720.CrossRefPubMedGoogle Scholar
  41. 41.
    Schlieper, G., Kim, J.-H., Molojavyi, A., Jacoby, Ch., Laussmann, T., Flogel, U., Godecke, A., and Schrader, J. (2004) Adaptation of the myoglobin knock out mouse to hypoxic stress, Am. J. Physiol. Regul. Integr. Comp. Physiol., 286, 786–792.CrossRefGoogle Scholar
  42. 42.
    Pesce, A., Bolognesi, M., Bocedi, A., Ascenzi, P., Dewide, S., Moens, L., Hankeln, T., and Burmester, T. (2002) Neuroglobin and cytoglobin. Fresh blood for the vertebrate globin family, EMBO Rep., 3, 1146–1151.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Riggs, A. F., and Gorr, T. A. (2006) A globin in every cell? Proc. Natl. Acad. Sci. USA, 103, 2469–2470.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Burmester, T., Gerlach, F., and Hankeln, T. (2007) Regulation and role of neuroglobin and cytoglobin under hypoxia, Adv. Exp. Med. Biol., 618, 169–180.CrossRefPubMedGoogle Scholar
  45. 45.
    Fraser, J., Vieira de Mello, L., Ward, D., Rees, H. H., Williams, D. R., Fang, Y., Brass, A., Gracey, A. Y., and Cossing, A. R. (2006) Hypoxia-inducible myoglobin expression in nonmuscle tissues, Proc. Natl. Acad. Sci. USA, 103, 2977–2981.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Postnikova, G. B., and Tselikova, S. V. (2005) Myoglobin and mitochondria: kinetics of oxymyoglobin deoxygenation in a mitochondrial suspension, Biophysics (Moscow), 50, 284–291.Google Scholar
  47. 47.
    Postnikova, G. B., Tselikova, S. V., and Shekhovtsova, E. A. (2009) Myoglobin and mitochondria: oxymyoglobin interacts with mitochondrial membrane during deoxygenation, Biochemistry (Moscow), 74, 1211–1218.CrossRefGoogle Scholar
  48. 48.
    Postnikova, G. B., and Shekhovtsova, E. A. (2012) Fluorescence studies on the interaction of myoglobin with mitochondria, Biochemistry (Moscow), 77, 280–287.CrossRefGoogle Scholar
  49. 49.
    Grigoriev, P. A., Postnikova, G. B., and Shekhovtsova, E. A. (2012) Study of the interaction of myoglobin with lipid bilayer membranes by potentiodynamic method, Biophysics (Moscow), 57, 55–60.CrossRefGoogle Scholar
  50. 50.
    Postnikova, G. B., and Shekhovtsova, E. A. (2013) Effect of artificial and natural phospholipid membranes on rate of sperm whale oxymyoglobin autooxidation, Biochemistry (Moscow), 78, 267–272.CrossRefGoogle Scholar
  51. 51.
    Postnikova, G. B., and Shekhovtsova, E. A. (2015) The effect of mitochondrial and artificial bilayer phospholipid membranes on conformation of myoglobin and its affinity for oxygen, Am. J. Biol. Chem., 3, 16–32.Google Scholar
  52. 52.
    Postnikova, G. B., Tselikova, S. V., Ignat’ev, D. A., and Kolaeva, S. G. (1997) Seasonal changes in myoglobin content in muscles of hibernating yakutian ground squirrels, Biochemistry (Moscow), 62, 141–144.Google Scholar
  53. 53.
    Postnikova, G. B., Tselikova, S. V., Kolaeva, S. G., and Solomonov, N. G. (1998) Why high muscle myoglobin level is required in hibernating ground squirrels, Dokl. Akad. Nauk, 360, 697–698.PubMedGoogle Scholar
  54. 54.
    Postnikova, G. B., Tselikova, S. V., Kolaeva, S. G., and Solomonov, N. G. (1999) Myoglobin content in skeletal muscles of hibernating ground squirrels rises in autumn and winter, Comp. Biochem. Physiol., Part A, 124, 35–37.CrossRefGoogle Scholar
  55. 55.
    Wittenberg, J. B., and Wittenberg, B. A. (2007) Myoglobin-enhanced oxygen delivery to isolated cardiac mitochondria, J. Exp. Biol., 210, 2082–2090.CrossRefPubMedGoogle Scholar
  56. 56.
    Yamada, T., Furuichi, Y., Takakura, H., Hashimoto, T., Hanai, Y., Jue, Th., and Masuda, K. (2013) Interaction between myoglobin and mitochondria in rat skeletal muscle, J. Appl. Physiol., 114, 490–497.CrossRefPubMedGoogle Scholar
  57. 57.
    Tang, J., Faustman, C., Hoagland, Th. A., Mancini, R. A., Seyfert, M., and Hunt, M. C. (2005) Mitochondrial reduction of metmyoglobin: dependence on the electron transport chain, J. Agric. Food Chem., 53, 5449–5455.CrossRefPubMedGoogle Scholar
  58. 58.
    Shuruta, S. A., Amerkhanov, Z. G., and Postnikova, G. B. (1999) Effect of mitochondria on the redox reaction between oxymyoglobin and ferricytochrome c, Biophysics (Moscow), 44, 1023–1026.Google Scholar
  59. 59.
    Vladimirov, Yu. A., and Dobretsov, G. E. (1980) Fluorescent Probes in the Studies of Biological Membranes [in Russian], Nauka, Moscow.Google Scholar
  60. 60.
    Jensen, L. J., Kuhn, M., Stark, M., Chaffron, S., Creevey, C., Muller, J., Doerks, T., Julien, P., Roth, A., Simonovic, M., Bork, P., and Von Mering, C. (2009) Protein data bank, Nucleic Acids Res., 37, 412–416.CrossRefGoogle Scholar
  61. 61.
    Postnikova, G. B. (1999) Fluorescence study of conformational transitions in the structure of myoglobin, Biochemistry (Moscow), 64, 267–286.Google Scholar
  62. 62.
    Lelkes, P. I., and Miller, I. R. (1980) Perturbations of membrane structure by optical probes: I. Location and structural sensitivity of merocyanine 540 bound to phospholipid membranes, J. Membr. Biol., 52, 1–15.CrossRefPubMedGoogle Scholar
  63. 63.
    Verkman, A. S. (1987) Mechanism and kinetics of merocyanine 540 binding to phospholipid membranes, Biochemistry, 26, 4050–4056.CrossRefPubMedGoogle Scholar
  64. 64.
    Postnikova, G. B., and Shekhovtsova, E. A. (2014) The interaction of myoglobin with neutral and negatively charged artificial bilayer phospholipid membranes. Their effect on conformation of myoglobin and its affinity for oxygen, Physiol. Sci., 1, 1–11.Google Scholar
  65. 65.
    Bychkova, V. E., and Ptitsyn, O. B. (1993) The molten globule in vitro and in vivo, Chemtracts Biochem. Mol. Biol., 4, 133–163.Google Scholar
  66. 66.
    Ptitsyn, O. B. (1995) Molten globule and protein folding, Adv. Protein Chem., 47, 83–229.CrossRefPubMedGoogle Scholar
  67. 67.
    Basova, L. V. (2004) Effects of the Membrane Surface on the Conformational State of Globular Proteins: Ph. D. in Biology Dissertation, Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino.Google Scholar
  68. 68.
    Basova, L. V., Tiktopulo, E. I., Kutyshenko, V. P., Klenin, S. I., Balobanov, V. A., and Bychkova, V. E. (2014) Membrane-induced changes in the holomyoglobin tertiary structure: interplay with function, Eur. Biophys. J., 43, 317–329.CrossRefPubMedGoogle Scholar
  69. 69.
    Brantley, R. E., Smerdon, S. J., Wilkinson, A. J., Singleton, E. W., and Olson, J. S. (1993) The mechanism of autooxidation of myoglobin, J. Biol. Chem., 268, 6995–7010.PubMedGoogle Scholar
  70. 70.
    Postnikova, G. B., and Shekhovtsova, E. A. (2013) Myoglobin and mitochondria: how does the “oxygen store” work, J. Phys. Chem. Biophys., 3, 126.Google Scholar
  71. 71.
    Postnikova, G. B., and Shekhovtsova, E. A. (2014) Myoglobin acts as the oxygen carrier to mitochondria, Physiol. Sci., 1, 12–16.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Cell BiophysicsRussian Academy of SciencesPushchino, Moscow RegionRussia

Personalised recommendations