Biochemistry (Moscow)

, Volume 83, Issue 2, pp 107–118 | Cite as

Influence of a Single Point Mutation in the Constant Domain of the Bence-Jones Protein BIF on Its Aggregation Properties

  • M. A. TimchenkoEmail author
  • A. A. Timchenko


Multiple myeloma nephropathy occurs due to the aggregate formation by monoclonal immunoglobulin light chains (Bence-Jones proteins) in kidneys of patients with multiple myeloma. The mechanism of amyloid deposit formation is still unclear. Earlier, the key role in the fibril formation has been assigned to the variable domains that acquired amyloidogenic properties as a result of somatic mutations. However, fibril formation by the Bence-Jones protein BIF was found to be the function of its constant domain. The substitution of Ser177 by Asn in the constant domain of the BIF protein is most likely an inherited than a somatic mutation. To study the role of this mutation in amyloidogenesis, the recombinant Bence-Jones protein BIF and its mutant with the N177S substitution typical for the known immunoglobulin Cκ allotypes Km1, Km1,2, and Km3 were isolated. The morphology of aggregates formed by the recombinant proteins under conditions similar to those occurring during the protein transport in bloodstream and its filtration into the renal glomerulus, in the distal tubules, and in the proximal renal tubules was analyzed by atomic force microscopy. The nature of the aggregates formed by BIF and its N177S mutant during incubation for 14 days at 37°C strongly differed and depended on both pH and the presence of a reducing agent. BIF formed fibrils at pH 7.2, 6.5, and 10.1, while the N177S mutant formed fibrils only at alkaline pH 10.1. The refolding of both proteins in the presence of 5 mM dithiothreitol resulted in the formation of branched structures.


Bence-Jones proteins myeloma aggregation atomic force microscopy 



atomic force microscopy

BJ myeloma

Bence-Jones myeloma


Bence-Jones proteins (Ig light chains)


constant domain of Ig light chain


multiple myeloma


variable domain of Ig light chain.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Korbet, S. M., and Schwartz, M. M. (2006) Multiple myeloma, J. Am. Soc. Nephrol., 17, 2533–2545.CrossRefPubMedGoogle Scholar
  2. 2.
    Pozzi, C., and Locatelli, F. (2002) Kidney and liver involvement in monoclonal light chain disorders, Semin. Nephrol., 22, 319–330.PubMedGoogle Scholar
  3. 3.
    Solomon, A., Weiss, D. T., Murphy, C. L., Hrncic, R., Wall, J. S., and Schell, M. (1998) Light chain-associated amyloid deposits comprised of a novel kappa constant domain, Proc. Natl. Acad. Sci. USA, 95, 9547–9551.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Mukherjee, S., Pondaven, S. P., and Jaroniec, C. P. (2011) Conformational flexibility of a human immunoglobulin light chain variable domain by relaxation dispersion nuclear magnetic resonance spectroscopy: implications for protein misfolding and amyloid assembly, Biochemistry, 50, 5845–5857.CrossRefPubMedGoogle Scholar
  5. 5.
    Wilkins-Stevens, P., Raffen, R., Hanson, D. K., Deng, Y. L., Berrios-Hammond, M., Westholm, F. A., Murphy, C., Eulitz, M., Wetzel, R., Solomon, A., Schiffer, M., and Stevens, F. J. (1995) Recombinant immunoglobulin variable domains generated from synthetic genes provide a system for in vitro characterization of light-chain amyloid proteins, Protein Sci., 4, 421–432.CrossRefGoogle Scholar
  6. 6.
    Maniatis, T., Fritisch, E. F., and Sambrok, J. (1982) in Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, N. Y.Google Scholar
  7. 7.
    Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227, 680–685.CrossRefPubMedGoogle Scholar
  8. 8.
    Dubnovitsky, A. P., Kravchuk, Z. I., Chumanevich, A. A., Cozzi, A., Arosio, P., and Martsev, S. P. (2000) Expression, refolding, and ferritin-binding activity of the isolated VL-domain of monoclonal antibody F11, Biochemistry (Moscow), 65, 1011–1018.Google Scholar
  9. 9.
    LeVine, H., 3rd. (1993) Thioflavine T interaction with synthetic Alzheimer’s disease beta-amyloid peptides: detection of amyloid aggregation in solution, Protein Sci., 2, 404–410.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Klunk, W. E., Jacob, R. F., and Mason, R. P. (1999) Quantifying amyloid beta-peptide (Abeta) aggregation using the Congo Red-Abeta (CR-abeta) spectrophotometric assay, Anal. Biochem., 266, 66–76.CrossRefPubMedGoogle Scholar
  11. 11.
    Kushnirov, V. V., Alexandrov, I. M., Mitkevich, O. V., Shkundina, I. S., and Ter-Avanesyan, M. D. (2006) Purification and analysis of prion and amyloid aggregates, Methods, 39, 50–55.CrossRefPubMedGoogle Scholar
  12. 12.
    Vishnyakov, I. E., Borchsenius, S. N., Basovskii, Y. I., Levitskii, S. A., Lazarev, V. N., Snigirevskaya, E. S., and Komissarchik, Y. Y. (2009) Localization of the division protein FTSZ in micoplasma cells, Cell Tissue Biol., 3, 254–263.CrossRefGoogle Scholar
  13. 13.
    Schuck, P. (2000) Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling, Biophys. J., 78, 1606–1619.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Timchenko, A., Timchenko, M., Shinjo, M., and Kihara, H. (2015) SAXS study of N177S mutant of Bence-Jones protein BIF, Photon Factory Activity Report, 2014, 32, 366.Google Scholar
  15. 15.
    Pertinhez, T. A., Bouchard, M., Smith, R. A., Dobson, C. M., and Smith, L. J. (2002) Stimulation and inhibition of fibril formation by a peptide in the presence of different concentrations of SDS, FEBS Lett., 529, 193–197.CrossRefPubMedGoogle Scholar
  16. 16.
    Stevens, F. J., Westholm, F. A., Solomon, A., and Schiffer, M. (1980) Self-association of human immunoglobulin kappa I light chains: role of the third hypervariable region, Proc. Natl. Acad. Sci. USA, 77, 1144–1148.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Myatt, E. A., Westholm, F. A., Weiss, D. T., Solomon, A., Schiffer, M., and Stevens, F. J. (1994) Pathogenic potential of human monoclonal immunoglobulin light chains: relationship of in vitro aggregation to in vivo organ deposition, Proc. Natl. Acad. Sci. USA, 91, 3034–3038.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Bliznyukov, O. P., Kozmin, L. D., Vysotskaya, L. L., Golenkov, A. K., Tishchenko, V. M., Samoylovich, M. P., and Klimovich, V. B. (2005) Human immunoglobulin light chains λ form amyloid fibrils and granular aggregates in solution, Biochemistry (Moscow), 70, 458–466.CrossRefGoogle Scholar
  19. 19.
    Zhu, M., Souillac, P. O., Ionescu-Zanetti, C., Carter, S. A., and Fink, A. L. (2002) Surface-catalyzed amyloid fibril formation, J. Biol. Chem., 277, 50914–50922.CrossRefPubMedGoogle Scholar
  20. 20.
    Davis, D. P., Gallo, G., Vogen, S. M., Dul, J. L., Sciarretta, K. L., Kumar, A., Raffen, R., Stevens, F. J., and Argon, Y. (2001) Both the environment and somatic mutations govern the aggregation pathway of pathogenic immunoglobulin light chain, J. Mol. Biol., 313, 1021–1034.CrossRefPubMedGoogle Scholar
  21. 21.
    Kim, Y., Wall, J. S., Meyer, J., Murphy, C., Randolph, T. W., Manning, M. C., Solomon, A., and Carpenter, J. F. (2000) Thermodynamic modulation of light chain amyloid fibril formation, J. Biol. Chem., 275, 1570–1574.CrossRefPubMedGoogle Scholar
  22. 22.
    Jiang, Y., Li, H., Zhu, L., Zhou, J. M., and Perrett, S. (2004) Amyloid nucleation and hierarchical assembly of Ure2p fibrils. Role of asparagine/glutamine repeat and nonrepeat regions of the prion domains, J. Biol. Chem., 279, 3361–3369.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Theoretical and Experimental BiophysicsRussian Academy of SciencesPushchino, Moscow RegionRussia
  2. 2.Institute of Protein ResearchRussian Academy of SciencesPushchino, Moscow RegionRussia

Personalised recommendations