Biochemistry (Moscow)

, Volume 83, Issue 2, pp 87–97 | Cite as

Activation of Yeast Mitochondrial Translation: Who Is in Charge?

  • K. S. Derbikova
  • S. A. Levitsky
  • I. V. Chicherin
  • E. N. Vinogradova
  • P. A. KamenskiEmail author


Mitochondrial genome has undergone significant reduction in a course of evolution; however, it still contains a set of protein-encoding genes and requires translational machinery for their expression. Mitochondrial translation is of the prokaryotic type with several remarkable differences. This review is dedicated to one of the most puzzling features of mitochondrial protein synthesis, namely, the system of translational activators, i.e., proteins that specifically regulate translation of individual mitochondrial mRNAs and couple protein biosynthesis with the assembly of mitochondrial respiratory chain complexes. The review does not claim to be a comprehensive analysis of all published data; it is rather focused on the idea of the “core component” of the translational activator system.


mitochondria ribosomes translation mRNA translational activators complex assembly 



cryo-electron microscopy


pentatricopeptide repeat


untranslated region


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Martin, W. F., Garg, S., and Zimorski, V. (2015) Endosymbiotic theories for eukaryote origin, Philos. Trans. R. Soc. Lond. B. Biol. Sci., 370, 20140330.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Straub, S. P., Stiller, S. B., Wiedemann, N., and Pfanner, N. (2016) Dynamic organization of the mitochondrial protein import machinery, Biol. Chem., 397, 1097–1114.CrossRefPubMedGoogle Scholar
  3. 3.
    Bjorkholm, P., Harish, A., Hagstrom, E., Ernst, A. M., and Andersson, S. G. (2015) Mitochondrial genomes are retained by selective constraints on protein targeting, Proc. Natl. Acad. Sci. USA, 112, 10154–10161.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Wallace, D. C. (2007) Why do we still have a maternally inherited mitochondrial DNA? Insights from evolutionary medicine, Annu. Rev. Biochem., 76, 781–821.CrossRefPubMedGoogle Scholar
  5. 5.
    Patrushev, M. V., Kamenski, P. A., and Mazunin, I. O. (2014) Mutations in mitochondrial DNA and approaches for their correction, Biochemistry (Moscow), 79, 1151–1160.CrossRefGoogle Scholar
  6. 6.
    Kuzmenko, A. V., Levitskii, S. A., Vinogradova, E. N., Atkinson, G. C., Hauryliuk, V., Zenkin, N., and Kamenski, P. A. (2013) Protein biosynthesis in mitochondria, Biochemistry (Moscow), 78, 855–866.CrossRefGoogle Scholar
  7. 7.
    Greber, B. J., Bieri, P., Leibundgut, M., Leitner, A., Aebersold, R., Boehringer, D., and Ban, N. (2015) Ribosome. The complete structure of the 55S mammalian mitochondrial ribosome, Science, 348, 303–308.CrossRefPubMedGoogle Scholar
  8. 8.
    Amunts, A., Brown, A., Toots, J., Scheres, S. H., and Ramakrishnan, V. (2015) Ribosome. The structure of the human mitochondrial ribosome, Science, 348, 95–98.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Desai, N., Brown, A., Amunts, A., and Ramakrishnan, V. (2017) The structure of the yeast mitochondrial ribosome, Science, 355, 528–531.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ott, M., Amunts, A., and Brown, A. (2016) Organization and regulation of mitochondrial protein synthesis, Annu. Rev. Biochem., 85, 77–101.CrossRefPubMedGoogle Scholar
  11. 11.
    Greber, B. J., and Ban, N. (2016) Structure and function of the mitochondrial ribosome, Annu. Rev. Biochem., 85, 103–132.CrossRefPubMedGoogle Scholar
  12. 12.
    Khalimonchuk, O., Bird, A., and Winge, D. R. (2007) Evidence for a pro-oxidant intermediate in the assembly of cytochrome oxidase, J. Biol. Chem., 282, 17442–17449.CrossRefPubMedGoogle Scholar
  13. 13.
    Bonnefoy, N., and Fox, T. D. (2007) Directed alteration of Saccharomyces cerevisiae mitochondrial DNA by biolistic transformation and homologous recombination, Methods Mol. Biol., 372, 153–166.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Foury, F., Roganti, T., Lecrenier, N., and Purnelle, B. (1998) The complete sequence of the mitochondrial genome of Saccharomyces cerevisiae, FEBS Lett., 440, 325–331.CrossRefPubMedGoogle Scholar
  15. 15.
    Faye, G., and Simon, M. (1983) Analysis of a yeast nuclear gene involved in the maturation of mitochondrial pre-messenger RNA of the cytochrome oxidase subunit I, Cell, 32, 77–87.CrossRefPubMedGoogle Scholar
  16. 16.
    Faye, G., and Simon, M. (1983) Processing of the oxi-3 pre-messenger RNA in yeast, in Mitochondria 1983: Nucleo–Mitochondrial Interactions, pp. 433–439.Google Scholar
  17. 17.
    Groot, G. S., Flavell, R. A., Van Ommen, G. J., and Grivell, L. A. (1974) Yeast mitochondrial RNA does not contain poly(A), Nature, 252, 167–169.CrossRefPubMedGoogle Scholar
  18. 18.
    Hofmann, T. J., Min, J., and Zassenhaus, H. P. (1993) Formation of the 3′-end of yeast mitochondrial mRNAs occurs by site-specific cleavage two bases downstream of a conserved dodecamer sequence, Yeast, 9, 1319–1330.CrossRefPubMedGoogle Scholar
  19. 19.
    Green-Willms, N. S., Fox, T. D., and Costanzo, M. C. (1998) Functional interactions between yeast mitochondrial ribosomes and mRNA 5′-untranslated leaders, Mol. Cell. Biol., 18, 1826–1834.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Mai, N., Chrzanowska-Lightowlers, Z. M., and Lightowlers, R. N. (2017) The process of mammalian mitochondrial protein synthesis, Cell Tissue Res., 367, 5–20.CrossRefPubMedGoogle Scholar
  21. 21.
    Herrmann, J. M., Woellhaf, M. W., and Bonnefoy, N. (2013) Control of protein synthesis in yeast mitochondria: the concept of translational activators, Biochim. Biophys. Acta, 1833, 286–294.CrossRefPubMedGoogle Scholar
  22. 22.
    Atkinson, G. C., Kuzmenko, A., Kamenski, P., Vysokikh, M. Y., Lakunina, V., Tankov, S., Smirnova, E., Soosaar, A., Tenson, T., and Hauryliuk, V. (2012) Evolutionary and genetic analyses of mitochondrial translation initiation factors identify the missing mitochondrial IF3 in S. cerevisiae, Nucleic Acids Res., 40, 6122–6134.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Krause-Buchholz, U., Barth, K., Dombrowski, C., and Rodel, G. (2004) Saccharomyces cerevisiae translational activator Cbs2p is associated with mitochondrial ribosomes, Curr. Genet., 46, 20–28.CrossRefPubMedGoogle Scholar
  24. 24.
    Krause-Buchholz, U., Schobel, K., Lauffer, S., and Rodel, G. (2005) Saccharomyces cerevisiae translational activator Cbs1p is associated with translationally active mitochondrial ribosomes, Biol. Chem., 386, 407–415.CrossRefPubMedGoogle Scholar
  25. 25.
    Naithani, S., Saracco, S. A., Butler, C. A., and Fox, T. D. (2003) Interactions among COX1, COX2, and COX3 mRNA-specific translational activator proteins on the inner surface of the mitochondrial inner membrane of Saccharomyces cerevisiae, Mol. Biol. Cell, 14, 324–333.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Watson, K. (1972) The organization of ribosomal granules within mitochondrial structures of aerobic and anaerobic cells of Saccharomyces cerevisae, J. Cell. Biol., 55, 721–726.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Marykwas, D. L., and Fox, T. D. (1989) Control of the Saccharomyces cerevisiae regulatory gene PET494: transcriptional repression by glucose and translational induction by oxygen, Mol. Cell. Biol., 9, 484–491.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Couvillion, M. T., Soto, I. C., Shipkovenska, G., and Churchman, L. S. (2016) Synchronized mitochondrial and cytosolic translation programs, Nature, 533, 499–503.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Caballero, A., Ugidos, A., Liu, B., Oling, D., Kvint, K., Hao, X., Mignat, C., Nachin, L., Molin, M., and Nystrom, T. (2011) Absence of mitochondrial translation control proteins extends life span by activating sirtuin-dependent silencing, Mol. Cell, 42, 390–400.CrossRefPubMedGoogle Scholar
  30. 30.
    Mick, D. U., Vukotic, M., Piechura, H., Meyer, H. E., Warscheid, B., Deckers, M., and Rehling, P. (2010) Coa3 and Cox14 are essential for negative feedback regulation of COX1 translation in mitochondria, J. Cell. Biol., 191, 141–154.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Mick, D. U., Wagner, K., van der Laan, M., Frazier, A. E., Perschil, I., Pawlas, M., Meyer, H. E., Warscheid, B., and Rehling, P. (2007) Shy1 couples Cox1 translational regulation to cytochrome c oxidase assembly, EMBO J., 26, 4347–4358.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Costanzo, M. C., Bonnefoy, N., Williams, E. H., Clark-Walker, G. D., and Fox, T. D. (2000) Highly diverged homologs of Saccharomyces cerevisiae mitochondrial mRNA-specific translational activators have orthologous functions in other budding yeasts, Genetics, 154, 999–1012.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Kuzmenko, A., Atkinson, G. C., Levitskii, S., Zenkin, N., Tenson, T., Hauryliuk, V., and Kamenski, P. (2014) Mitochondrial translation initiation machinery: conservation and diversification, Biochimie, 100, 132–140.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Wang, Y., Yan, J., Zhang, Q., Ma, X., Zhang, J., Su, M., Wang, X., and Huang, Y. (2017) The Schizosaccharomyces pombe PPR protein Ppr10 associates with a novel protein Mpa1 and acts as a mitochondrial translational activator, Nucleic Acids Res., 45, 3323–3340.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Weraarpachai, W., Antonicka, H., Sasarman, F., Seeger, J., Schrank, B., Kolesar, J. E., Lochmuller, H., Chevrette, M., Kaufman, B. A., Horvath, R., and Shoubridge, E. A. (2009) Mutation in TACO1, encoding a translational activator of COX I, results in cytochrome c oxidase deficiency and late-onset Leigh syndrome, Nat. Genet., 41, 833–837.CrossRefPubMedGoogle Scholar
  36. 36.
    Mick, D. U., Dennerlein, S., Wiese, H., Reinhold, R., Pacheu-Grau, D., Lorenzi, I., Sasarman, F., Weraarpachai, W., Shoubridge, E. A., Warscheid, B., and Rehling, P. (2012) MITRAC links mitochondrial protein translocation to respiratory-chain assembly and translational regulation, Cell, 151, 1528–1541.CrossRefPubMedGoogle Scholar
  37. 37.
    Rodel, G. (1986) Two yeast nuclear genes, CBS1 and CBS2, are required for translation of mitochondrial transcripts bearing the 5′-untranslated COB leader, Curr. Genet., 11, 41–45.CrossRefPubMedGoogle Scholar
  38. 38.
    Rodel, G., and Fox, T. D. (1987) The yeast nuclear gene CBS1 is required for translation of mitochondrial mRNAs bearing the cob 5′-untranslated leader, Mol. Gen. Genet., 206, 45–50.CrossRefPubMedGoogle Scholar
  39. 39.
    Rodel, G., Korte, A., and Kaudewitz, F. (1985) Mitochondrial suppression of a yeast nuclear mutation which affects the translation of the mitochondrial apocytochrome b transcript, Curr. Genet., 9, 641–648.CrossRefPubMedGoogle Scholar
  40. 40.
    Mittelmeier, T. M., and Dieckmann, C. L. (1995) In vivo analysis of sequences required for translation of cytochrome b transcripts in yeast mitochondria, Mol. Cell. Biol., 15, 780–789.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Dieckmann, C. L., Pape, L. K., and Tzagoloff, A. (1982) Identification and cloning of a yeast nuclear gene (CBP1) involved in expression of mitochondrial cytochrome b, Proc. Natl. Acad. Sci. USA, 79, 1805–1809.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Dieckmann, C. L., and Mittelmeier, T. M. (1987) Nuclearly-encoded CBP1 interacts with the 5′-end of mitochondrial cytochrome b pre-mRNA, Curr. Genet., 12, 391–397.CrossRefPubMedGoogle Scholar
  43. 43.
    Krause, K., Lopes de Souza, R., Roberts, D. G., and Dieckmann, C. L. (2004) The mitochondrial message-specific mRNA protectors Cbp1 and Pet309 are associated in a high-molecular weight complex, Mol. Biol. Cell, 15, 2674–2683.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Gruschke, S., Kehrein, K., Rompler, K., Grone, K., Israel, L., Imhof, A., Herrmann, J. M., and Ott, M. (2011) Cbp3–Cbp6 interacts with the yeast mitochondrial ribosomal tunnel exit and promotes cytochrome b synthesis and assembly, J. Cell. Biol., 193, 1101–1114.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Gruschke, S., Rompler, K., Hildenbeutel, M., Kehrein, K., Kuhl, I., Bonnefoy, N., and Ott, M. (2012) The Cbp3–Cbp6 complex coordinates cytochrome b synthesis with bc1 complex assembly in yeast mitochondria, J. Cell. Biol., 199, 137–150.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Manthey, G. M., and McEwen, J. E. (1995) The product of the nuclear gene PET309 is required for translation of mature mRNA and stability or production of intron-containing RNAs derived from the mitochondrial COX1 locus of Saccharomyces cerevisiae, EMBO J., 14, 4031–4043.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Roloff, G. A., and Henry, M. F. (2015) Mam33 promotes cytochrome c oxidase subunit I translation in Saccharomyces cerevisiae mitochondria, Mol. Biol. Cell, 26, 2885–2894.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Manthey, G. M., Przybyla-Zawislak, B. D., and McEwen, J. E. (1998) The Saccharomyces cerevisiae Pet309 protein is embedded in the mitochondrial inner membrane, Eur. J. Biochem., 255, 156–161.CrossRefPubMedGoogle Scholar
  49. 49.
    Zamudio-Ochoa, A., Camacho-Villasana, Y., Garcia-Guerrero, A. E., and Perez-Martinez, X. (2014) The Pet309 pentatricopeptide repeat motifs mediate efficient binding to the mitochondrial COX1 transcript in yeast, RNA Biol., 11, 953–967.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Tavares-Carreon, F., Camacho-Villasana, Y., Zamudio-Ochoa, A., Shingu-Vazquez, M., Torres-Larios, A., and Perez-Martinez, X. (2008) The pentatricopeptide repeats present in Pet309 are necessary for translation but not for stability of the mitochondrial COX1 mRNA in yeast, J. Biol. Chem., 283, 1472–1479.CrossRefPubMedGoogle Scholar
  51. 51.
    De Silva, D., Poliquin, S., Zeng, R., Zamudio-Ochoa, A., Marrero, N., Perez-Martinez, X., Fontanesi, F., and Barrientos, A. (2017) The DEAD-box helicase Mss116 plays distinct roles in mitochondrial ribogenesis and mRNA-specific translation, Nucleic Acids Res., 45, 6628–6643.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Perez-Martinez, X., Broadley, S. A., and Fox, T. D. (2003) Mss51p promotes mitochondrial Cox1p synthesis and interacts with newly synthesized Cox1p, EMBO J., 22, 5951–5961.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Perez-Martinez, X., Butler, C. A., Shingu-Vazquez, M., and Fox, T. D. (2009) Dual functions of Mss51 couple synthesis of Cox1 to assembly of cytochrome c oxidase in Saccharomyces cerevisiae mitochondria, Mol. Biol. Cell, 20, 4371–4380.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Shingu-Vazquez, M., Camacho-Villasana, Y., Sandoval-Romero, L., Butler, C. A., Fox, T. D., and Perez-Martinez, X. (2010) The carboxyl-terminal end of Cox1 is required for feedback assembly regulation of Cox1 synthesis in Saccharomyces cerevisiae mitochondria, J. Biol. Chem., 285, 34382–34389.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Garcia-Villegas, R., Camacho-Villasana, Y., Shingu-Vazquez, M. A., Cabrera-Orefice, A., Uribe-Carvajal, S., Fox, T. D., and Perez-Martinez, X. (2017) The Cox1 carboxyl-terminal domain is a central regulator of cytochrome c oxidase biogenesis in yeast mitochondria, J. Biol. Chem., 292, 10912–10925.CrossRefPubMedGoogle Scholar
  56. 56.
    Soto, I. C., Fontanesi, F., Myers, R. S., Hamel, P., and Barrientos, A. (2012) A heme-sensing mechanism in the translational regulation of mitochondrial cytochrome c oxidase biogenesis, Cell Metab., 16, 801–813.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Khalimonchuk, O., Bestwick, M., Meunier, B., Watts, T. C., and Winge, D. R. (2010) Formation of the redox cofactor centers during Cox1 maturation in yeast cytochrome oxidase, Mol. Cell. Biol., 30, 1004–1017.CrossRefPubMedGoogle Scholar
  58. 58.
    Soto, I. C., and Barrientos, A. (2016) Mitochondrial cytochrome c oxidase biogenesis is regulated by the redox state of a heme-binding translational activator, Antioxid. Redox Signal., 24, 281–298.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Mulero, J. J., and Fox, T. D. (1993) PET111 acts in the 5′-leader of the Saccharomyces cerevisiae mitochondrial COX2 mRNA to promote its translation, Genetics, 133, 509–516.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Mulero, J. J., and Fox, T. D. (1993) Alteration of the Saccharomyces cerevisiae COX2 mRNA 5′-untranslated leader by mitochondrial gene replacement and functional interaction with the translational activator protein PET111, Mol. Biol. Cell, 4, 1327–1335.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Dunstan, H. M., Green-Willms, N. S., and Fox, T. D. (1997) In vivo analysis of Saccharomyces cerevisiae COX2 mRNA 5′-untranslated leader functions in mitochondrial translation initiation and translational activation, Genetics, 147, 87–100.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Bonnefoy, N., Bsat, N., and Fox, T. D. (2001) Mitochondrial translation of Saccharomyces cerevisiae COX2 mRNA is controlled by the nucleotide sequence specifying the pre-Cox2p leader peptide, Mol. Cell. Biol., 21, 2359–2372.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Fiori, A., Perez-Martinez, X., and Fox, T. D. (2005) Overexpression of the COX2 translational activator, Pet111p, prevents translation of COX1 mRNA and cytochrome c oxidase assembly in mitochondria of Saccharomyces cerevisiae, Mol. Microbiol., 56, 1689–1704.CrossRefPubMedGoogle Scholar
  64. 64.
    Costanzo, M. C., and Fox, T. D. (1988) Specific translational activation by nuclear gene products occurs in the 5′-untranslated leader of a yeast mitochondrial mRNA, Proc. Natl. Acad. Sci. USA, 85, 2677–2681.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Brown, N. G., Costanzo, M. C., and Fox, T. D. (1994) Interactions among three proteins that specifically activate translation of the mitochondrial COX3 mRNA in Saccharomyces cerevisiae, Mol. Cell. Biol., 14, 1045–1053.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Kaspar, B. J., Bifano, A. L., and Caprara, M. G. (2008) A shared RNA-binding site in the Pet54 protein is required for translational activation and group I intron splicing in yeast mitochondria, Nucleic Acids Res., 36, 2958–2968.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Costanzo, M. C., and Fox, T. D. (1995) A point mutation in the 5′-untranslated leader that affects translational activation of the mitochondrial COX3 mRNA, Curr. Genet., 28, 60–66.CrossRefPubMedGoogle Scholar
  68. 68.
    Costanzo, M. C., and Fox, T. D. (1993) Suppression of a defect in the 5′-untranslated leader of mitochondrial COX3 mRNA by a mutation affecting an mRNA-specific translational activator protein, Mol. Cell. Biol., 13, 4806–4813.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    McMullin, T. W., Haffter, P., and Fox, T. D. (1990) A novel small-subunit ribosomal protein of yeast mitochondria that interacts functionally with an mRNA-specific translational activator, Mol. Cell. Biol., 10, 4590–4595.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Haffter, P., McMullin, T. W., and Fox, T. D. (1990) A genetic link between an mRNA-specific translational activator and the translation system in yeast mitochondria, Genetics, 125, 495–503.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Zeng, X., Hourset, A., and Tzagoloff, A. (2007) The Saccharomyces cerevisiae ATP22 gene codes for the mitochondrial ATPase subunit 6-specific translation factor, Genetics, 175, 55–63.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Ellis, T. P., Helfenbein, K. G., Tzagoloff, A., and Dieckmann, C. L. (2004) Aep3p stabilizes the mitochondrial bicistronic mRNA encoding subunits 6 and 8 of the H+-translocating ATP synthase of Saccharomyces cerevisiae, J. Biol. Chem., 279, 15728–15733.CrossRefPubMedGoogle Scholar
  73. 73.
    Barros, M. H., and Tzagoloff, A. (2017) Aep3p-dependent translation of yeast mitochondrial ATP8, Mol. Biol. Cell, 28, 1426–1434.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Ziaja, K., Michaelis, G., and Lisowsky, T. (1993) Nuclear control of the messenger RNA expression for mitochondrial ATPase subunit 9 in a new yeast mutant, J. Mol. Biol., 229, 909–916.CrossRefPubMedGoogle Scholar
  75. 75.
    Ellis, T. P., Lukins, H. B., Nagley, P., and Corner, B. E. (1999) Suppression of a nuclear aep2 mutation in Saccharomyces cerevisiae by a base substitution in the 5′-untranslated region of the mitochondrial oli1 gene encoding subunit 9 of ATP synthase, Genetics, 151, 1353–1363.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Rak, M., and Tzagoloff, A. (2009) F1-dependent translation of mitochondrially encoded Atp6p and Atp8p subunits of yeast ATP synthase, Proc. Natl. Acad. Sci. USA, 106, 18509–18514.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Rak, M., Su, C. H., Xu, J. T., Azpiroz, R., Singh, A. M., and Tzagoloff, A. (2016) Regulation of mitochondrial translation of the ATP8/ATP6 mRNA by Smt1p, Mol. Biol. Cell, 27, 919–929.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Herrmann, J. M., Stuart, R. A., Craig, E. A., and Neupert, W. (1994) Mitochondrial heat shock protein 70, a molecular chaperone for proteins encoded by mitochondrial DNA, J. Cell Biol., 127, 893–902.CrossRefPubMedGoogle Scholar
  79. 79.
    Schulz, C., Schendzielorz, A., and Rehling, P. (2015) Unlocking the presequence import pathway, Trends Cell Biol., 25, 265–275.CrossRefPubMedGoogle Scholar
  80. 80.
    Schagger, H., and Pfeiffer, K. (2000) Supercomplexes in the respiratory chains of yeast and mammalian mitochondria, EMBO J., 19, 1777–1783.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Guo, R., Gu, J., Wu, M., and Yang, M. (2016) Amazing structure of respirasome: unveiling the secrets of cell respiration, Protein Cell, 7, 854–865.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Mayorga, J. P., Camacho-Villasana, Y., Shingu-Vazquez, M., Garcia-Villegas, R., Zamudio-Ochoa, A., Garcia-Guerrero, A. E., Hernandez, G., and Perez-Martinez, X. (2016) A novel function of Pet54 in regulation of Cox1 synthesis in Saccharomyces cerevisiae mitochondria, J. Biol. Chem., 291, 9343–9355.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Su, C. H., McStay, G. P., and Tzagoloff, A. (2014) Assembly of the rotor component of yeast mitochondrial ATP synthase is enhanced when Atp9p is supplied by Atp9p–Cox6p complexes, J. Biol. Chem., 289, 31605–31616.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Kehrein, K., Schilling, R., Moller-Hergt, B. V., Wurm, C. A., Jakobs, S., Lamkemeyer, T., Langer, T., and Ott, M. (2015) Organization of mitochondrial gene expression in two distinct ribosome-containing assemblies, Cell Rep., doi: 10.1016/j.celrep.2015.01.012.Google Scholar
  85. 85.
    Ostojic, J., Panozzo, C., Bourand-Plantefol, A., Herbert, C. J., Dujardin, G., and Bonnefoy, N. (2016) Ribosome recycling defects modify the balance between the synthesis and assembly of specific subunits of the oxidative phosphorylation complexes in yeast mitochondria, Nucleic Acids Res., 44, 5785–5797.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Fontanesi, F., Soto, I. C., Horn, D., and Barrientos, A. (2010) Mss51 and Ssc1 facilitate translational regulation of cytochrome c oxidase biogenesis, Mol. Cell. Biol., 30, 245–259.CrossRefPubMedGoogle Scholar
  87. 87.
    Woellhaf, M. W., Sommer, F., Schroda, M., and Herrmann, J. M. (2016) Proteomic profiling of the mitochondrial ribosome identifies Atp25 as a composite mitochondrial precursor protein, Mol. Biol. Cell, 27, 3031–3039.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Teyssier, E., Hirokawa, G., Tretiakova, A., Jameson, B., Kaji, A., and Kaji, H. (2003) Temperature-sensitive mutation in yeast mitochondrial ribosome recycling factor (RRF), Nucleic Acids Res., 31, 4218–4226.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Pel, H. J., and Grivell, L. A. (1993) The biology of yeast mitochondrial introns, Mol. Biol. Rep., 18, 1–13.CrossRefPubMedGoogle Scholar
  90. 90.
    Barros, M. H., Myers, A. M., Van Driesche, S., and Tzagoloff, A. (2006) COX24 codes for a mitochondrial protein required for processing of the COX1 transcript, J. Biol. Chem., 281, 3743–3751.CrossRefPubMedGoogle Scholar
  91. 91.
    Hess, D. C., Myers, C. L., Huttenhower, C., Hibbs, M. A., Hayes, A. P., Paw, J., Clore, J. J., Mendoza, R. M., Luis, B. S., Nislow, C., Giaever, G., Costanzo, M., Troyanskaya, O. G., and Caudy, A. A. (2009) Computationally driven, quantitative experiments discover genes required for mitochondrial biogenesis, PLoS Genet., 5, e1000407.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Kuzmenko, A., Derbikova, K., Salvatori, R., Tankov, S., Atkinson, G. C., Tenson, T., Ott, M., Kamenski, P., and Hauryliuk, V. (2016) Aim-less translation: loss of Saccharomyces cerevisiae mitochondrial translation initiation factor mIF3/Aim23 leads to unbalanced protein synthesis, Sci. Rep., 6, 18749.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Bonitz, S. G., Homison, G., Thalenfeld, B. E., Tzagoloff, A., and Nobrega, F. G. (1982) Assembly of the mitochondrial membrane system. Processing of the apocytochrome b precursor RNAs in Saccharomyces cerevisiae D273-10B, J. Biol. Chem., 257, 6268–6274.PubMedGoogle Scholar
  94. 94.
    Simon, M., and Faye, G. (1984) Steps in processing of the mitochondrial cytochrome oxidase subunit I pre-mRNA affected by a nuclear mutation in yeast, Proc. Natl. Acad. Sci. USA, 81, 8–12.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Bordonne, R., Dirheimer, G., and Martin, R. P. (1988) Expression of the oxi1 and maturase-related RF1 genes in yeast mitochondria, Curr. Genet., 13, 227–233.CrossRefPubMedGoogle Scholar
  96. 96.
    Wiesenberger, G., Costanzo, M. C., and Fox, T. D. (1995) Analysis of the Saccharomyces cerevisiae mitochondrial COX3 mRNA 5′-untranslated leader: translational activation and mRNA processing, Mol. Cell. Biol., 15, 3291–3300.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Simon, M., and Faye, G. (1984) Organization and processing of the mitochondrial oxi3/oli2 multigenic transcript in yeast, Mol. Gen. Genet., 196, 266–274.CrossRefPubMedGoogle Scholar
  98. 98.
    Zassenhaus, H. P., Martin, N. C., and Butow, R. A. (1984) Origins of transcripts of the yeast mitochondrial var1 gene, J. Biol. Chem., 259, 6019–6027.PubMedGoogle Scholar
  99. 99.
    Smooker, P. M., Wright, J. F., Linnane, A. W., and Lukins, H. B. (1988) A mitochondrial intergenic mutation affecting processing of specific yeast mitochondrial transcripts, Nucleic Acids Res., 16, 9081–9095.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • K. S. Derbikova
    • 1
  • S. A. Levitsky
    • 1
  • I. V. Chicherin
    • 1
  • E. N. Vinogradova
    • 1
  • P. A. Kamenski
    • 1
    • 2
    Email author
  1. 1.Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Institute of Living SystemsImmanuel Kant Baltic Federal UniversityKaliningradRussia

Personalised recommendations