Advertisement

Biochemistry (Moscow)

, Volume 83, Issue 1, pp 69–75 | Cite as

Interaction between RAD51 and MCM complex is essential for RAD51 foci forming in colon cancer HCT116 cells

  • Jun Huang
  • Hong-Liang Luo
  • Hua Pan
  • Cheng Qiu
  • Teng-Fei Hao
  • Zheng-Ming ZhuEmail author
Article
  • 51 Downloads

Abstract

Colon cancer remains one of the most common digestive system malignancies in the World. This study investigated the possible interaction between RAD51 and minichromosome maintenance proteins (MCMs) in HCT116 cells, which can serve as a model system for forming colon cancer foci. The interaction between RAD51 and MCMs was detected by mass spectrometry. Silenced MCM vectors were transfected into HTC116 cells. The expressions of RAD51 and MCMs were detected using Western blotting. Foci forming and chromatin fraction of RAD51 in HCT116 cells were also analyzed. The results showed that RAD51 directly interacted with MCM2, MCM3, MCM5, and MCM6 in colon cancer HTC116 cells. Suppression of MCM2 or MCM6 by shRNA decreased the chromatin localization of RAD51 in HTC116 cells. Moreover, silenced MCM2 or MCM6 decreased the foci forming of RAD51 in HTC116 cells. Our study suggests that the interaction between MCMs and RAD51 is essential for the chromatin localization and foci forming of RAD51 in HCT116 cell DNA damage recovery, and it may be a theoretical basis for analysis of RAD51 in tumor samples of colon cancer patients.

Keywords

colon cancer HTC116 cells RAD51 MCM complex homologous recombination 

Abbreviations

DSBs

DNA double-stranded breaks

HR

homologous recombination

MCM

minichromosome maintenance (proteins)

shRNA

short hairpin RNA

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kim, E. Y., Kwon, K. A., Choi, I. J., Ryu, J. K., and Hahm, K. B. (2014) International Digestive Endoscopy Network 2014: turnpike to the future, Clin. Endosc., 47, 371–382.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Bakker, I. S., Snijders, H. S., Grossmann, I., Karsten, T. M., Havenga, K., and Wiggers, T. (2016) High mortality rates after non-elective colon cancer resection: results of a national audit, Col. Dis., 18, 612–621.CrossRefGoogle Scholar
  3. 3.
    Yuriko, T., Sachiko, I., Reina, O., Nana, C., Naomi, N., and Ken-Ichi, I. (2015) Effects of growth arrest and DNA damage-inducible protein 34 (GADD34) on inflammation-induced colon cancer in mice, Br. J. Cancer, 113, 669–679.CrossRefGoogle Scholar
  4. 4.
    Hochster, H. S., and Sargent, D. J. (2016) One good DNA-damage deserves another: oxaliplatin in MSI-high colon cancer, J. Natl. Cancer Inst., 108, doi: 10.1093/jnci/ djw011.Google Scholar
  5. 5.
    Seiwert, N., Neitzel, C., Stroh, S., Frisan, T., Audebert, M., Toulany, M., Kaina, B., and Fahrer, J. (2017) AKT2 suppresses pro-survival autophagy triggered by DNA dou-ble-strand breaks in colorectal cancer cells, Cell Death Dis., 8, e3019.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Mahaney, B. L., Katheryn, M., and Lees-Miller, S. P. (2009) Repair of ionizing radiation-induced DNA doublestrand breaks by non-homologous end-joining, Biochem. J., 417, 639650.CrossRefGoogle Scholar
  7. 7.
    Thompson, L. H. (2012) Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radia-tion in mammalian cells: the molecular choreography, Mutat. Res., 751, 158–246.CrossRefPubMedGoogle Scholar
  8. 8.
    Barnard, S., Bouffler, S., and Kai, R. (2013) The shape of the radiation dose response for DNA double-strand break induction and repair, Gen. Integr., 4, 1.CrossRefGoogle Scholar
  9. 9.
    Rong, Y. S., and Golic, K. G. (2004) The homologous chromosome is an effective template for the repair of mitot-ic DNA double-strand breaks in Drosophila, Genetics, 165, 1831–1842.Google Scholar
  10. 10.
    Yi-Hsuan, L., Chia-Ching, C., Chui-Wei, W., and Shu-Chun, T. (2009) Recruitment of Rad51 and Rad52 to short telomeres triggers a Mec1-mediated hypersensitivity to double-stranded DNA breaks in senescent budding yeast, PLoS One, 4, e8224.CrossRefGoogle Scholar
  11. 11.
    Jasin, M. (2001) Double-Strand Break Repair and Homo-logous Recombination in Mammalian Cells, Humana Press.Google Scholar
  12. 12.
    Sharma, A., Singh, K., and Almasan, A. (2012) Histone H2AX phosphorylation: a marker for DNA damage, Methods Mol. Biol., 920, 613–626.CrossRefPubMedGoogle Scholar
  13. 13.
    Kyungsoo, H., Warren, F., Soon, C. D., Srividya, B., Leandro, C., Devaraj, S. G. T., Bhavin, S., Sunil, S., Chang, J. C., and Melnick, A. M. (2014) Histone deacety-lase inhibitor treatment induces “BRCAness” and synergis-tic lethality with PARP inhibitor and cisplatin against human triple negative breast cancer cells, Oncotarget, 5, 5637–5650.Google Scholar
  14. 14.
    Veelen, L. R. V., Essers, J., Van de Rakt, M. W., Odijk, H., Pastink, A., Zdzienicka, M. Z., Paulusma, C. C., and Kanaar, R. (2005) Ionizing radiation-induced foci forma-tion of mammalian Rad51 and Rad54 depends on the Rad51 paralogs, but not on Rad52, Mutat. Res., 574, 34–49.CrossRefPubMedGoogle Scholar
  15. 15.
    Mladenov, E., Anachkova, B., and Tsaneva, I. (2006) Subnuclear localization of Rad51 in response to DNA damage, Genes Cells, 11, 513–524.CrossRefPubMedGoogle Scholar
  16. 16.
    Madalena, T., Derek, D., and West, S. C. (2003) BRCA2-dependent and independent formation of RAD51 nuclear foci, Oncogene, 22, 1115–1123.CrossRefGoogle Scholar
  17. 17.
    Bindra, R. S., Schaffer, P. J., Meng, A., Woo, J., Maseide, K., Roth, M. E., Lizardi, P., Hedley, D. W., Bristow, R. G., and Glazer, P. M. (2004) Down-regulation of Rad51 and decreased homologous recombination in hypoxic cancer cells, Mol. Cell. Biol., 24, 8504–8518.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Lei, M. (2005) The MCM complex: its role in DNA replication and implications for cancer therapy, Curr. Cancer Drug Targets, 5, 365–380.CrossRefPubMedGoogle Scholar
  19. 19.
    Hyrien, O. (2016) How MCM loading and spreading specify eukaryotic DNA replication initiation sites, F1000Res., 5.Google Scholar
  20. 20.
    Shukla, A., Navadgi, V. M., Mallikarjuna, K., and Rao, B. J. (2005) Interaction of hRad51 and hRad52 with MCM complex: a cross-talk between recombination and replication proteins, Biochem. Biophys. Res. Commun., 329, 1240–1245.CrossRefPubMedGoogle Scholar
  21. 21.
    Park, J., Long, D. T., Lee, K. Y., Abbas, T., Shibata, E., Negishi, M., Luo, Y., Schimenti, J. C., Gambus, A., Walter, J. C., and Dutta, A. (2013) The MCM8–MCM9 complex promotes RAD51 recruitment at DNA damage sites to facilitate homologous recombination, Mol. Cell. Biol., 33, 1632–1644.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Xiangzi, H., Aaron, A., Kang, F., Toshiya, T., and Youwei, Z. (2014) The interaction between checkpoint kinase 1 (Chk1) and the minichromosome maintenance (MCM) complex is required for DNA damage-induced Chk1 phosphorylation, J. Biol. Chem., 289, 24716–24723.CrossRefGoogle Scholar
  23. 23.
    Purcell, D. J., Chauhan, S., Jimenez-Stinson, D., Elliott, K. R., Tsewang, T. D., Lee, Y. H., Marples, B., and Lee, D. Y. (2015) Novel CARM1-interacting protein, DZIP3, is a transcriptional coactivator of estrogen receptor-alpha, Mol. Endocrinol., 29, 1708–1719.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Lu, J., Kashaev, N., and Huber, N. (2001) Werner helicase relocates into nuclear foci in response to DNA damaging agents and co-localizes with RPA and Rad51, Genes Cells, 6, 421–430.CrossRefGoogle Scholar
  25. 25.
    Tianju, L., Hong, J., Matthew, U., Biao, H., Naozumi, H., Bethany, M., Andrew, M. K., Lukacs, N. W., and Phan, S. H. (2004) Regulation of found in inflammatory zone 1 expression in bleomycin-induced lung fibrosis: role of IL-4/IL-13 and mediation via STAT-6, J. Immunol., 173, 3425–3431.CrossRefGoogle Scholar
  26. 26.
    Wang, H., Zhang, X., Teng, L., and Legerski, R. J. (2015) DNA damage checkpoint recovery and cancer development, Exp. Cell Res., 334, 350–358.CrossRefPubMedGoogle Scholar
  27. 27.
    Glover, K. P., Markell, L. K., Donner, E. M., and Xan, H. (2014) Protein kinase C-activating tumor promoters modulate the DNA damage response in UVC-irradiated TK6 cells, Toxicol. Lett., 229, 210–219.CrossRefPubMedGoogle Scholar
  28. 28.
    Delmas, S., Shunburne, L., Ngo, H. P., and Allers, T. (2009) Mre11–Rad50 promotes rapid repair of DNA damage in the polyploid archaeon Haloferax volcanii by restraining homologous recombination, PLoS Genet., 5, e1000552.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Gachechiladze, M., Skarda, J., Soltermann, A., and Joerger, M. (2017) RAD51 as a potential surrogate marker for DNA repair capacity in solid malignancies, Int. J. Cancer, 141, 1286–1294.CrossRefPubMedGoogle Scholar
  30. 30.
    Zhao, Q., Guan, J., Zhang, Z., Lv, J., Wang, Y., Liu, L., Zhou, Q., and Mao, W. (2017) Inhibition of Rad51 sensitizes breast cancer cells with wild-type PTEN to olaparib, Biomed. Pharmacother., 94, 165–168.CrossRefPubMedGoogle Scholar
  31. 31.
    Simon, N. E., and Schwacha, A. (2014) The Mcm2-7 replicative helicase: a promising chemotherapeutic target, 549719.Google Scholar
  32. 32.
    Labib, K., Tercero, J. A., and Diffley, J. F. (2000) Uninterrupted MCM2-7 function required for DNA replication fork progression, Science, 288, 1643–1647.CrossRefPubMedGoogle Scholar
  33. 33.
    Liu, Y., He, G., Wang, Y., Guan, X., Pang, X., and Zhang, B. (2013) MCM-2 is a therapeutic target of trichostatin A in colon cancer cells, Toxicol. Lett., 221, 23–30.CrossRefPubMedGoogle Scholar
  34. 34.
    Giaginis, C., Georgiadou, M., Dimakopoulou, K., Tsourouflis, G., Gatzidou, E., Kouraklis, G., and Theocharis, S. (2009) Clinical significance of MCM-2 and MCM-5 expression in colon cancer: association with clinicopathological parameters and tumor proliferative capacity, Dig. Dis. Sci., 54, 282–291.CrossRefPubMedGoogle Scholar
  35. 35.
    Courilleau, C., Chailleux, C., Jauneau, A., Grimal, F., Briois, S., Boutet-Robinet, E., Boudsocq, F., Trouche, D., and Canitrot, Y. (2012) The chromatin remodeler p400 ATPase facilitates Rad51-mediated repair of DNA doublestrand breaks, J. Cell Biol., 199, 1067–1081.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Reh, W. A., Nairn, R. S., Lowery, M. P., and Vasquez, K. M. (2017) The homologous recombination protein RAD51D protects the genome from large deletions, Nucleic Acids Res., 45, 1835–1847.CrossRefPubMedGoogle Scholar
  37. 37.
    Han, X., Aslanian, A., Fu, K., Tsuji, T., and Zhang, Y. (2014) The interaction between checkpoint kinase 1 (Chk1) and the minichromosome maintenance (MCM) complex is required for DNA damage-induced Chk1 phosphorylation, J. Biol. Chem., 289, 24716–24723.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Jun Huang
    • 1
  • Hong-Liang Luo
    • 1
  • Hua Pan
    • 1
  • Cheng Qiu
    • 1
  • Teng-Fei Hao
    • 1
  • Zheng-Ming Zhu
    • 1
    Email author
  1. 1.Department of Gastrointestinal SurgerySecond Affiliated Hospital of Nanchang UniversityNanchangChina

Personalised recommendations