Advertisement

Biochemistry (Moscow)

, Volume 83, Issue 1, pp 13–25 | Cite as

The role of interleukin-33 in pathogenesis of bronchial asthma. New experimental data

  • M. R. Khaitov
  • A. R. Gaisina
  • I. P. ShilovskiyEmail author
  • V. V. Smirnov
  • G. V. Ramenskaia
  • A. A. Nikonova
  • R. M. Khaitov
Review

Abstract

Interleukin-33 (IL-33) belongs to the IL-1 cytokine family and plays an important role in modulating immune system by inducing Th2 immune response via the ST2 membrane receptor. Epithelial cells are the major producers of IL-33. However, IL-33 is also secreted by other cells, e.g., bone marrow cells, dendritic cells, macrophages, and mast cells. IL-33 targets a broad range of cell types bearing the ST2 surface receptor. Many ST2-positive cells, such as Th2 cells, mast cells, basophils, and eosinophils, are involved in the development of allergic bronchial asthma (BA). This suggests that IL-33 directly participates in BA pathogenesis. Currently, the role of IL-33 in pathogenesis of inflammatory disorders, including BA, has been extensively investigated using clinical samples collected from patients, as well as asthma animal models. In particular, numerous studies on blocking IL-33 and its receptor by monoclonal antibodies in asthma mouse model have been performed over the last several years; IL-33-and ST2-deficient transgenic mice have also been generated. In this review, we summarized and analyzed the data on the role of IL-33 in BA pathogenesis and the prospects for creating new treatments for BA.

Keywords

cytokine interleukin-33 bronchial asthma mouse model 

Abbreviations

a.a.

amino acid residue

BA

bronchial asthma

BAL

bronchoalveolar lavage

bp

base pair

Ig

immunoglobulin

IL

interleukin

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Onda, H., Kasuya, H., Takakura, K., Hori, T., Imaizumi, T., Takeuchi, T., Inoue, I., and Takeda, J. (1999) Identification of genes differentially expressed in canine vasospastic cerebral arteries after subarachnoid hemorRhage, J. Cereb. Blood Flow Metab., 19, 1279–1288.CrossRefPubMedGoogle Scholar
  2. 2.
    Baekkevold, E. S., Roussigne, M., Yamanaka, T., Johansen, F.-E., Jahnsen, F. L., Amalric, F., Brandtzaeg, P., Erard, M., Haraldsen, G., and Girard, J.-P. (2003) Molecular characterization of NF-HEV, a nuclear factor preferentially expressed in human high endothelial venules, Am. J. Pathol., 163, 69–79.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Schmitz, J., Owyang, A., Oldham, E., Song, Y., Murphy, E., McClanahan, T. K., Zurawski, G., Moshrefi, M., Qin, J., Li, X., Gorman, D. M., and Bazan, J. F. (2005) IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines, Immunity, 23, 479–490.CrossRefPubMedGoogle Scholar
  4. 4.
    Sims, J. E., Pan, Y., Smith, D. E., Nicklin, M. J. H., Barton, J. L., Bazan, J. F., Kastelein, R. A., Busfield, S. J., Ford, J. E., Lin, H., Mulero, J. J., Kumar, S., Pan, J., and Young, P. R. (2001) A new nomenclature for IL-1-family genes, Trends Immunol., 22, 536–537.CrossRefPubMedGoogle Scholar
  5. 5.
    Dinarello, C., Arend, W., Sims, J., Smith, D., Blumberg, H., O’Neill, L., Goldbach-Mansky, R., Pizarro, T., Hoffman, H., Bufler, P., Nold, M., Ghezzi, P., Mantovani, A., Garlanda, C., Boraschi, D., Rubartelli, A., Netea, M., van der Meer, J., Joosten, L., Mandrup-Poulsen, T., Donath, M., Lewis, E., Pfeilschifter, J., Martin, M., Kracht, M., Muehl, H., Novick, D., Lukic, M., Conti, B., Solinger, A., Kelk, P., Peyman, K., van de Veerdonk, F., and Gabel, C. (2010) IL-1 family nomenclature, Nat. Immunol., 11, 973.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Lingel, A., Weiss, T. M., Niebuhr, M., Pan, B., Appleton, B. A., Wiesmann, C., and Bazan, J. F. (2009) Structure of IL-33 and its interaction with the ST2 and IL-1 RAcP receptors–insight into heterotrimeric IL-1 signaling complexes, Structure, 17, 1398–1410.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Liu, X., Hammel, M., He, Y., Tainer, J. A., Jeng, U. S., Zhang, L., Wang, S., and Wang, X. (2013) Structural insights into the interaction of IL-33 with its receptors, Proc. Natl. Acad. Sci. USA, 110, 14918–14923.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Arend, W. P., Palmer, G., and Gabay, C. (2008) IL-1, IL-18, and IL-33 families of cytokines, Immunol. Rev., 223, 20–38.CrossRefPubMedGoogle Scholar
  9. 9.
    Barksby, H. E., Lea, S. R., Preshaw, P. M., and Taylor, J. J. (2007) The expanding family of interleukin-1 cytokines and their role in destructive inflammatory disorders, Clin. Exp. Immunol., 149, 217–225.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Dinarello, C. A. (1994) The biological properties of interleukin-1, Eur. Cytokine Netw., 5, 517–531.PubMedGoogle Scholar
  11. 11.
    Dinarello, C. A. (2009) Immunological and inflammatory functions of the interleukin-1 family, Annu. Rev. Immunol., 27, 519–550.CrossRefPubMedGoogle Scholar
  12. 12.
    Thornberry, N. A., Bull, H. G., Calaycay, J. R., Chapman, K. T., Howard, A. D., Kostura, M. J., Miller, D. K., Molineaux, S. M., Weidner, J. R., and Aunins, J. (1992) A novel heterodimeric cysteine protease is required for interleukin-1β processing in monocytes, Nature, 356, 768–774.CrossRefPubMedGoogle Scholar
  13. 13.
    Cayrol, C., and Girard, J.-P. (2009) The IL-1-like cytokine IL-33 is inactivated after maturation by caspase-1, Proc. Natl. Acad. Sci. USA, 106, 9021–9026.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Luthi, A. U., Cullen, S. P., McNeela, E. A., Duriez, P. J., Afonina, I. S., Sheridan, C., Brumatti, G., Taylor, R. C., Kersse, K., Vandenabeele, P., Lavelle, E. C., and Martin, S. J. (2009) Suppression of interleukin-33 bioactivity through proteolysis by apoptotic caspases, Immunity, 31, 84–98.CrossRefPubMedGoogle Scholar
  15. 15.
    Kakkar, R., Hei, H., Dobner, S., and Lee, R. T. (2012) Interleukin 33 as a mechanically responsive cytokine secreted by living cells, J. Biol. Chem., 287, 6941–6948.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Carriere, V., Roussel, L., Ortega, N., Lacorre, D.-A., Americh, L., Aguilar, L., Bouche, G., and Girard, J.-P. (2007) IL-33, the IL-1-like cytokine ligand for ST2 receptor, is a chromatin-associated nuclear factor in vivo, Proc. Natl. Acad. Sci. USA, 104, 282–287.CrossRefPubMedGoogle Scholar
  17. 17.
    Hayakawa, M., Hayakawa, H., Matsuyama, Y., Tamemoto, H., Okazaki, H., and Tominaga, S. (2009) Mature interleukin-33 is produced by calpain-mediated cleavage in vivo, Biochem. Biophys. Res. Commun., 387, 218–222.CrossRefPubMedGoogle Scholar
  18. 18.
    Lefrancais, E., Roga, S., Gautier, V., Gonzalez-de-Peredo, A., Monsarrat, B., Girard, J. P., and Cayrol, C. (2012) IL-33 is processed into mature bioactive forms by neutrophil elastase and cathepsin G, Proc. Natl. Acad. Sci. USA, 109, 1673–1678.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Dunne, A., and O’Neill, L. A. (2003) The interleukin-1 receptor/Toll-like receptor superfamily: signal transduction during inflammation and host defense, Sci. STKE, re3.Google Scholar
  20. 20.
    Chackerian, A. A., Oldham, E. R., Murphy, E. E., Schmitz, J., Pflanz, S., and Kastelein, R. A. (2007) IL-1 receptor accessory protein and ST2 comprise the IL-33 receptor complex, J. Immunol., 179, 2551–2555.CrossRefPubMedGoogle Scholar
  21. 21.
    Kakkar, R., and Lee, R. T. (2008) The IL-33/ST2 pathway: therapeutic target and novel biomarker, Nat. Rev. Drug Discov., 7, 827–840.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Lloyd, C. M. (2010) IL-33 family members and asthma–bridging innate and adaptive immune responses, Curr. Opin. Immunol., 22, 800–806.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Oboki, K., Ohno, T., Kajiwara, N., Saito, H., and Nakae, S. (2010) IL-33 and IL-33 receptors in host defense and diseases, Allergol. Int., 59, 143–160.CrossRefPubMedGoogle Scholar
  24. 24.
    Miller, A. M. (2011) Role of IL-33 in inflammation and disease, J. Inflamm. (Lond.), 8, 22.CrossRefGoogle Scholar
  25. 25.
    Iikura, M., Suto, H., Kajiwara, N., Oboki, K., Ohno, T., Okayama, Y., Saito, H., Galli, S. J., and Nakae, S. (2007) IL-33 can promote survival, adhesion and cytokine production in human mast cells, Lab. Invest., 87, 971–978.CrossRefPubMedGoogle Scholar
  26. 26.
    Hudson, C. A., Christophi, G. P., Gruber, R. C., Wilmore, J. R., Lawrence, D. A., and Massa, P. T. (2008) Induction of IL-33 expression and activity in central nervous system glia, J. Leukoc. Biol., 84, 631–643.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Ohno, T., Oboki, K., Morita, H., Kajiwara, N., Arae, K., Tanaka, S., Ikeda, M., Iikura, M., Akiyama, T., Inoue, J., Matsumoto, K., Sudo, K., Azuma, M., Okumura, K., Kamradt, T., Saito, H., and Nakae, S. (2011) Paracrine IL-33 stimulation enhances lipopolysaccharide-mediated macrophage activation, PLoS One, 6, e18404.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Hayakawa, H., Hayakawa, M., Kume, A., and Tominaga, S. I. (2007) Soluble ST2 blocks interleukin-33 signaling in allergic airway inflammation, J. Biol. Chem., 282, 26369–26380.CrossRefPubMedGoogle Scholar
  29. 29.
    Palmer, G., Talabot-Ayer, D., Lamacchia, C., Toy, D., Seemayer, C. A., Viatte, S., Finckh, A., Smith, D. E., and Gabay, C. (2009) Inhibition of interleukin-33 signaling attenuates the severity of experimental arthritis, Arthritis Rheum., 60, 738–749.CrossRefPubMedGoogle Scholar
  30. 30.
    Pushparaj, P. N., Tay, H. K., H’ng, S. C., Pitman, N., Xu, D., McKenzie, A., Liew, F. Y., and Melendez, A. J. (2009) The cytokine interleukin-33 mediates anaphylactic shock, Proc. Natl. Acad. Sci. USA, 106, 9773–9778.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Bartunek, J., Delrue, L., Van Durme, F., Muller, O., Casselman, F., De Wiest, B., Croes, R., Verstreken, S., Goethals, M., De Raedt, H., Sarma, J., Joseph, L., Vanderheyden, M., and Weinberg, E. O. (2008) Nonmyocardial production of ST2 protein in human hypertrophy and failure is related to diastolic load, J. Am. Coll. Cardiol., 52, 2166–2174.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Chapuis, J., Hot, D., Hansmannel, F., Kerdraon, O., Ferreira, S., Hubans, C., Maurage, C. A., Huot, L., Bensemain, F., Laumet, G., Ayral, A. M., Fievet, N., Hauw, J. J., DeKosky, S. T., Lemoine, Y., Iwatsubo, T., Wavrant-Devrieze, F., Dartigues, J. F., Tzourio, C., Buee, L., Pasquier, F., Berr, C., Mann, D., Lendon, C., Alperovitch, A., Kamboh, M. I., Amouyel, P., and Lambert, J. C. (2009) Transcriptomic and genetic studies identify IL-33 as a candidate gene for Alzheimer’s disease, Mol. Psychiatry, 14, 1004–1016.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Kurowska-Stolarska, M., Kewin, P., Murphy, G., Russo, R. C., Stolarski, B., Garcia, C. C., Komai-Koma, M., Pitman, N., Li, Y., Niedbala, W., McKenzie, A. N., Teixeira, M. M., Liew, F. Y., and Xu, D. (2008) IL-33 induces antigen-specific IL-5+ T cells and promotes aller-gic-induced airway inflammation independent of IL-4, J. Immunol., 181, 4780–4790.CrossRefPubMedGoogle Scholar
  34. 34.
    Prefontaine, D., Lajoie-Kadoch, S., Foley, S., Audusseau, S., Olivenstein, R., Halayko, A. J., Lemiere, C., Martin, J. G., and Hamid, Q. (2009) Increased expression of IL-33 in severe asthma: evidence of expression by airway smooth muscle cells, J. Immunol., 183, 5094–5103.CrossRefPubMedGoogle Scholar
  35. 35.
    Piedimonte, G. (2013) Respiratory syncytial virus and asthma: speed-dating or long-term relationship? Curr. Opin. Pediatr., 25, 344–349.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Thomsen, S. F., van der Sluis, S., Stensballe, L. G., Posthuma, D., Skytthe, A., Kyvik, K. O., Backer, V., and Bisgaard, H. (2009) Exploring the association between severe respiratory syncytial virus infection and asthma, Am. J. Respir. Crit. Care Med., 179, 1091–1097.CrossRefPubMedGoogle Scholar
  37. 37.
    Jackson, D. J., Makrinioti, H., Rana, B. M., Shamji, B. W., Trujillo-Torralbo, M. B., Footitt, J., Jerico, Del-Rosario, Telcian, A. G., Nikonova, A., Zhu, J., Aniscenko, J., Gogsadze, L., Bakhsoliani, E., Traub, S., Dhariwal, J., Porter, J., Hunt, D., Hunt, T., Hunt, T., Stanciu, L. A., Khaitov, M., Bartlett, N. W., Edwards, M. R., Kon, O. M., Mallia, P., Papadopoulos, N. G., Akdis, C. A., Westwick, J., Edwards, M. J., Cousins, D. J., Walton, R. P., and Johnston, S. L. (2014) IL-33-dependent type 2 inflammation during rhinovirus-induced asthma exacerbations in vivo, Am. J. Respir. Crit. Care Med., 190, 1373–1382.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Hsu, C. L., Neilsen, C. V., and Bryce, P. J. (2010) IL-33 is produced by mast cells and regulates IgE-dependent inflammation, PLoS One, 5, e11944.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Ngoc, P. L., Gold, D. R., Tzianabos, A. O., Weiss, S. T., and Celedon, J. C. (2005) Cytokines, allergy, and asthma, Curr. Opin. Allergy Clin. Immunol., 5, 161–166.CrossRefPubMedGoogle Scholar
  40. 40.
    Shilovskiy, I. P., Eroshkina, D. V., Babakhin, A. A., and Khaitov, M. R. (2017) Anticytokine therapy of allergic asthma, Mol. Biol., 51, 1–13.CrossRefGoogle Scholar
  41. 41.
    Lohning, M., Stroehmann, A., Coyle, A. J., Grogan, J. L., Lin, S., Gutierrez-Ramos, J. C., Levinson, D., Radbruch, A., and Kamradt, T. (1998) T1/ST2 is preferentially expressed on murine Th2 cells, independent of interleukin 4, interleukin 5, and interleukin 10, and important for Th2 effector function, Proc. Natl. Acad. Sci. USA, 95, 6930–6935.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Nakae, S., Iwakura, Y., Suto, H., and Galli, S. J. (2007) Phenotypic differences between Th1 and Th17 cells and negative regulation of Th1 cell differentiation by IL-17, J. Leukoc. Biol., 81, 1258–1268.CrossRefPubMedGoogle Scholar
  43. 43.
    Hoshino, K., Kashiwamura, S., Kuribayashi, K., Kodama, T., Tsujimura, T., Nakanishi, K., Matsuyama, T., Takeda, K., and Akira, S. (1999) The absence of interleukin 1 receptor-related T1/ST2 does not affect T helper cell type 2 development and its effector function, J. Exp. Med., 190, 1541–1548.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Townsend, M. J., Fallon, P. G., Matthews, D. J., Jolin, H. E., and McKenzie, A. N. (2000) T1/ST2-deficient mice demonstrate the importance of T1/ST2 in developing primary T helper cell type 2 responses, J. Exp. Med., 191, 1069–1076.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Smithgall, M. D., Comeau, M. R., Yoon, B. R., Kaufman, D., Armitage, R., and Smith, D. E. (2008) IL-33 amplifies both Th1-and Th2-type responses through its activity on human basophils, allergen-reactive Th2 cells, iNKT and NK cells, Int. Immunol., 20, 1019–1030.CrossRefPubMedGoogle Scholar
  46. 46.
    Moulin, D., Donze, O., Talabot-Ayer, D., Mezin, F., Palmer, G., and Gabay, C. (2007) Interleukin (IL)-33 induces the release of pro-inflammatory mediators by mast cells, Cytokine, 40, 216–225.CrossRefPubMedGoogle Scholar
  47. 47.
    Allakhverdi, Z., Comeau, M. R., Smith, D. E., Toy, D., Endam, L. M., Desrosiers, M., Liu, Y. J., Howie, K. J., Denburg, J. A., Gauvreau, G. M., and Delespesse, G. (2009) CD34+ hemopoietic progenitor cells are potent effectors of allergic inflammation, J. Allergy Clin. Immunol., 123, 472–478.CrossRefPubMedGoogle Scholar
  48. 48.
    Silver, M. R., Margulis, A., Wood, N., Goldman, S. J., Kasaian, M., and Chaudhary, D. (2010) IL-33 synergizes with IgE-dependent and IgE-independent agents to promote mast cell and basophil activation, Inflamm. Res., 59, 207–218.CrossRefPubMedGoogle Scholar
  49. 49.
    Suzukawa, M., Iikura, M., Koketsu, R., Nagase, H., Tamura, C., Komiya, A., Nakae, S., Matsushima, K., Ohta, K., Yamamoto, K., and Yamaguchi, M. (2008) An IL-1 cytokine member, IL-33, induces human basophil activation via its ST2 receptor, J. Immunol., 181, 5981–5989.CrossRefPubMedGoogle Scholar
  50. 50.
    Pelaia, G., Vatrella, A., Busceti, M. T., Gallelli, L., Calabrese, C., Terracciano, R., and Maselli, R. (2015) Cellular mechanisms underlying eosinophilic and neutrophilic airway inflammation in asthma, Mediators Inflamm., 2015, 879783.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Cherry, W. B., Yoon, J., Bartemes, K. R., Iijima, K., and Kita, H. (2008) A novel IL-1 family cytokine, IL-33, potently activates human eosinophils, J. Allergy Clin. Immunol., 121, 1484–1490.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Dyer, K. D., Percopo, C. M., and Rosenberg, H. F. (2013) IL-33 promotes eosinophilia in vivo and antagonizes IL-5-dependent eosinophil hematopoiesis ex vivo, Immunol. Lett., 150, 41–47.CrossRefPubMedGoogle Scholar
  53. 53.
    Besnard, A. G., Togbe, D., Guillou, N., Erard, F., Quesniaux, V., and Ryffel, B. (2011) IL-33-activated den-dritic cells are critical for allergic airway inflammation, Eur. J. Immunol., 41, 1675–1686.CrossRefPubMedGoogle Scholar
  54. 54.
    Rank, M. A., Kobayashi, T., Kozaki, H., Bartemes, K. R., Squillace, D. L., and Kita, H. (2009) IL-33-activated den-dritic cells induce an atypical TH2-type response, J. Allergy Clin. Immunol., 123, 1047–1054.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Martin, F., and Kearney, J. F. (2000) B-cell subsets and the mature preimmune repertoire. Marginal zone and B1 B cells as part of a “natural immune memory”, Immunol. Rev., 175, 70–79.CrossRefPubMedGoogle Scholar
  56. 56.
    Komai-Koma, M., Gilchrist, D. S., McKenzie, A. N., Goodyear, C. S., Xu, D., and Liew, F. Y. (2011) IL-33 acti-vates B1 cells and exacerbates contact sensitivity, J. Immunol., 186, 2584–2591.CrossRefPubMedGoogle Scholar
  57. 57.
    Kusano, S., Kukimoto-Niino, M., Hino, N., Ohsawa, N., Ikutani, M., Takaki, S., Sakamoto, K., Hara-Yokoyama, M., Shirouzu, M., Takatsu, K., and Yokoyama, S. (2012) Structural basis of interleukin-5 dimer recognition by its α receptor, Protein Sci., 21, 850–864.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Oshikawa, K., Yanagisawa, K., Tominaga, S. I., and Sugiyama, Y. (2002) ST2 protein induced by inflammatory stimuli can modulate acute lung inflammation, Biochem. Biophys. Res. Commun., 299, 18–24.CrossRefPubMedGoogle Scholar
  59. 59.
    Kurowska-Stolarska, M., Stolarski, B., Kewin, P., Murphy, G., Corrigan, C. J., Ying, S., Pitman, N., Mirchandani, A., Rana, B., van Rooijen, N., Shepherd, M., McSharry, C., McInnes, I. B., Xu, D., and Liew, F. Y. (2009) IL-33 ampli-fies the polarization of alternatively activated macrophages that contribute to airway inflammation, J. Immunol., 183, 6469–6477.CrossRefPubMedGoogle Scholar
  60. 60.
    Espinassous, Q., Garcia-de-Paco, E., Garcia-Verdugo, I., Synguelakis, M., von Aulock, S., Sallenave, J. M., McKenzie, A. N., and Kanellopoulos, J. (2009) IL-33 enhances lipopolysaccharide-induced inflammatory cytokine produc-tion from mouse macrophages by regulating lipopolysaccha-ride receptor complex, J. Immunol., 183, 1446–1455.CrossRefPubMedGoogle Scholar
  61. 61.
    Neill, D. R., Wong, S. H., Bellosi, A., Flynn, R. J., Daly, M., Langford, T. K., Bucks, C., Kane, C. M., Fallon, P. G., Pannell, R., Jolin, H. E., and McKenzie, A. N. (2010) Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity, Nature, 464, 1367–1370.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Chang, Y. J., Kim, H. Y., Albacker, L. A., Baumgarth, N., McKenzie, A. N., Smith, D. E., Dekruyff, R. H., and Umetsu, D. T. (2011) Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity, Nat. Immunol., 12, 631–638.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Klein Wolterink, R. G., Kleinjan, A., van Nimwegen, M., Bergen, I., De Bruijn, M., Levani, Y., and Hendriks, R. W. (2012) Pulmonary innate lymphoid cells are major produc-ers of IL-5 and IL-13 in murine models of allergic asthma, Eur. J. Immunol., 42, 1106–1116.CrossRefPubMedGoogle Scholar
  64. 64.
    Kim, H. Y., Chang, Y. J., Subramanian, S., Lee, H. H., Albacker, L. A., Matangkasombut, P., Savage, P. B., McKenzie, A. N., Smith, D. E., Rottman, J. B., DeKruyff, R. H., and Umetsu, D. T. (2012) Innate lymphoid cells responding to IL-33 mediate airway hyperreactivity inde-pendently of adaptive immunity, J. Allergy Clin. Immunol., 129, 216–227.CrossRefPubMedGoogle Scholar
  65. 65.
    Barlow, J. L., Bellosi, A., Hardman, C. S., Drynan, L. F., Wong, S. H., Cruickshank, J. P., and McKenzie, A. N. (2012) Innate IL-13-producing nuocytes arise during aller-gic lung inflammation and contribute to airways hyperreac-tivity, J. Allergy Clin. Immunol., 129, 191–198.CrossRefPubMedGoogle Scholar
  66. 66.
    Ohno, T., Morita, H., Arae, K., Matsumoto, K., and Nakae, S. (2012) Interleukin-33 in allergy, Allergy, 67, 1203–1214.CrossRefPubMedGoogle Scholar
  67. 67.
    Liu, X., Li, M., Wu, Y., Zhou, Y., Zeng, L., and Huang, T. (2009) Anti-IL-33 antibody treatment inhibits airway inflammation in a murine model of allergic asthma, Biochem. Biophys. Res. Commun., 386, 181–185.CrossRefPubMedGoogle Scholar
  68. 68.
    Holgate, S. T. (2011) The sentinel role of the airway epithe-lium in asthma pathogenesis, Immunol. Rev., 242, 205–219.CrossRefPubMedGoogle Scholar
  69. 69.
    Virchow, J. C. (2012) Emergency checklist: asthma attack, MMW Fortschr. Med., 154, 55–56.CrossRefPubMedGoogle Scholar
  70. 70.
    Kearley, J., Buckland, K. F., Mathie, S. A., and Lloyd, C. M. (2009) Resolution of allergic inflammation and airway hyperreactivity is dependent upon disruption of the T1/ST2-IL-33 pathway, Am. J. Respir. Crit. Care Med., 179, 772–781.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Jarvis, D., Newson, R., Lotvall, J., Hastan, D., Tomassen, P., Keil, T., Gjomarkaj, M., Forsberg, B., Gunnbjornsdottir, M., Minov, J., Brozek, G., Dahlen, S. E., Toskala, E., Kowalski, M. L., Olze, H., Howarth, P., Kramer, U., Baelum, J., Loureiro, C., Kasper, L., Bousquet, P. J., Bousquet, J., Bachert, C., Fokkens, W., and Burney, P. (2012) Asthma in adults and its association with chronic rhinosinusitis: the GA2LEN survey in Europe, Allergy, 67, 91–98.CrossRefPubMedGoogle Scholar
  72. 72.
    Lozano, R., Naghavi, M., Foreman, K., Lim, S., Shibuya, K., Aboyans, V., Abraham, J., Adair, T., Aggarwal, R., Ahn, S. Y., Alvarado, M., Anderson, H. R., Anderson, L. M., Andrews, K. G., Atkinson, C., Baddour, L. M., Barker-Collo, S., Bartels, D. H., Bell, M. L., Benjamin, E. J., Bennett, D., Bhalla, K., Bikbov, B., Bin Abdulhak, A., Birbeck, G., Blyth, F., Bolliger, I., Boufous, S., Bucello, C., Burch, M., Burney, P., Carapetis, J., Chen, H., Chou, D., Chugh, S. S., Coffeng, L. E., Colan, S. D., Colquhoun, S., Colson, K. E., Condon, J., Connor, M. D., Cooper, L. T., Corriere, M., Cortinovis, M., De Vaccaro, K. C., Couser, W., Cowie, B. C., Criqui, M. H., Cross, M., Dabhadkar, K. C., Dahodwala, N., De Leo, D., Degenhardt, L., Delossantos, A., Denenberg, J., Des Jarlais, D. C., Dharmaratne, S. D., Dorsey, E. R., Driscoll, T., Duber, H., Ebel, B., Erwin, P. J., Espindola, P., Ezzati, M., Feigin, V., Flaxman, A. D., Forouzanfar, M. H., Fowkes, F. G., Franklin, R., Fransen, M., Freeman, M. K., Gabriel, S. E., Gakidou, E., Gaspari, F., Gillum, R. F., Gonzalez-Medina, D., Halasa, Y. A., Haring, D., Harrison, J. E., Havmoeller, R., Hay, R. J., Hoen, B., Hotez, P. J., Hoy, D., Jacobsen, K. H., James, S. L., Jasrasaria, R., Jayaraman, S., Johns, N., Karthikeyan, G., Kassebaum, N., Keren, A., Khoo, J. P., Knowlton, L. M., Kobusingye, O., Koranteng, A., Krishnamurthi, R., Lipnick, M., Lipshultz, S. E., Ohno, S. L., Mabweijano, J., MacIntyre, M. F., Mallinger, L., March, L., Marks, G. B., Marks, R., Matsumori, A., Matzopoulos, R., Mayosi, B. M., McAnulty, J. H., McDermott, M. M., McGrath, J., Mensah, G. A., Merriman, T. R., Michaud, C., Miller, M., Miller, T. R., Mock, C., Mocumbi, A. O., Mokdad, A. A., Moran, A., Mulholland, K., Nair, M. N., Naldi, L., Narayan, K. M., Nasseri, K., Norman, P., O’Donnell, M., Omer, S. B., Ortblad, K., Osborne, R., Ozgediz, D., Pahari, B., Pandian, J. D., Rivero, A. P., Padilla, R. P., Perez-Ruiz, F., Perico, N., Phillips, D., Pierce, K., Pope, C. A., 3rd, Porrini, E., Pourmalek, F., Raju, M., Ranganathan, D., Rehm, J. T., Rein, D. B., Remuzzi, G., Rivara, F. P., Roberts, T., De Leon, F. R., Rosenfeld, L. C., Rushton, L., Sacco, R. L., Salomon, J. A., Sampson, U., Sanman, E., Schwebel, D. C., Segui-Gomez, M., Shepard, D. S., Singh, D., Singleton, J., Sliwa, K., Smith, E., Steer, A., Taylor, J. A., Thomas, B., Tleyjeh, I. M., Towbin, J. A., Truelsen, T., Undurraga, E. A., Venketasubramanian, N., Vijayakumar, L., Vos, T., Wagner, G. R., Wang, M., Wang, W., Watt, K., Weinstock, M. A., Weintraub, R., Wilkinson, J. D., Woolf, A. D., Wulf, S., Yeh, P. H., Yip, P., Zabetian, A., Zheng, Z. J., Lopez, A. D., Murray, C. J., AlMazroa, M. A., and Memish, Z. A. (2012) Global and regional mor-tality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010, Lancet, 380, 2095–2128.CrossRefPubMedGoogle Scholar
  73. 73.
    Akdis, C. A., and Akdis, M. (2015) Mechanisms of aller-gen-specific immunotherapy and immune tolerance to allergens, World Allergy Organ. J., 8, 17.CrossRefPubMedGoogle Scholar
  74. 74.
    Boyman, O., Kaegi, C., Akdis, M., Bavbek, S., Bossios, A., Chatzipetrou, A., Eiwegger, T., Firinu, D., Harr, T., Knol, E., Matucci, A., Palomares, O., Schmidt-Weber, C., Simon, H. U., Steiner, U. C., Vultaggio, A., Akdis, C. A., and Spertini, F. (2015) EAACI IG biologicals task force paper on the use of biologic agents in allergic disorders, Allergy, 70, 727–754.CrossRefPubMedGoogle Scholar
  75. 75.
    Shilovskiy, I. P., Babakhin, A. A., Shershakova, N. N., Kamyshnikov, O. Y., Sundukova, M. S., Gaisina, A. R., Laskin, A. A., Buzuk, A. M., Ivanova, A. S., and Khaitov, M. R. (2015) Adjuvant and adjuvant-free protocols produce similar phenotypes of allergic asthma in mice, Curr. Trends Immunol., 16, 79–91.Google Scholar
  76. 76.
    Tashiro, H., Takahashi, K., Hayashi, S., Kato, G., and Kurata, K. (2016) Interleukin-33 from monocytes recruit-ed to the lung contributes to house dust mite-induced air-way inflammation in a mouse model, PLoS One, 11, 1–16.CrossRefGoogle Scholar
  77. 77.
    Yagami, A., Orihara, K., Morita, H., Futamura, K., Hashimoto, N., Matsumoto, K., Saito, H., and Matsuda, A. (2010) IL-33 mediates inflammatory responses in human lung tissue cells, J. Immunol., 185, 5743–5750.CrossRefPubMedGoogle Scholar
  78. 78.
    Bunting, M. M., Shadie, A. M., Flesher, R. P., Nikiforova, V., Garthwaite, L., Tedla, N., Herbert, C., and Kumar, R. K. (2013) Interleukin-33 drives activation of alveolar macrophages and airway inflammation in a mouse model of acute exacerbation of chronic asthma, Biomed. Res. Int., 2013, 250938.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Kondo, Y., Yoshimoto, T., Yasuda, K., Futatsugi-Yumikura, S., Morimoto, M., Hayashi, N., Hoshino, T., Fujimoto, J., and Nakanishi, K. (2008) Administration of IL-33 induces airway hyperresponsiveness and goblet cell hyperplasia in the lungs in the absence of adaptive immune system, Int. Immunol., 20, 791–800.CrossRefPubMedGoogle Scholar
  80. 80.
    Stolarski, B., Kurowska-Stolarska, M., Kewin, P., Xu, D., and Liew, F. Y. (2010) IL-33 exacerbates eosinophil-medi-ated airway inflammation, J. Immunol., 185, 3472–3480.CrossRefPubMedGoogle Scholar
  81. 81.
    Sjoberg, L. C., Nilsson, A. Z., Lei, Y., Gregory, J. A., Adner, M., and Nilsson, G. P. (2017) Interleukin 33 exac-erbates antigen driven airway hyperresponsiveness, inflam-mation and remodeling in a mouse model of asthma, Sci. Rep., 7, 1–10.CrossRefGoogle Scholar
  82. 82.
    Zhiguang, X., Wei, C., Steven, R., Wei, D., Wei, Z., Rong, M., Zhanguo, L., and Lianfeng, Z. (2010) Over-expression of IL-33 leads to spontaneous pulmonary inflammation in mIL-33 transgenic mice, Immunol. Lett., 131, 159–165.CrossRefPubMedGoogle Scholar
  83. 83.
    Han, H., and Zie, S. F. (2017) Intradermal administration of IL-33 induces allergic airway inflammation, Sci. Rep., 7, 1–8.CrossRefGoogle Scholar
  84. 84.
    Coyle, A. J., Lloyd, C., Tian, J., Nguyen, T., Erikkson, C., Wang, L., Ottoson, P., Persson, P., Delaney, T., Lehar, S., Lin, S., Poisson, L., Meisel, C., Kamradt, T., Bjerke, T., Levinson, D., and Gutierrez-Ramos, J. C. (1999) Crucial role of the interleukin 1 receptor family member T1/ST2 in T helper cell type 2-mediated lung mucosal immune responses, J. Exp. Med., 190, 895–902.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Shadie, A. M., Herbert, C., and Kumar, R. K. (2014) Ambient particulate matter induces an exacerbation of air-way inflammation in experimental asthma: role of inter-leukin-33, Clin. Exp. Immunol., 177, 491–499.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Lei, Y., Boinapally, V., Zoltowska, A., Adner, M., and Hellman, L. (2015) Vaccination against IL-33 inhibits air-way hyperresponsiveness and inflammation in a house dust mite model of asthma, PLoS One, 10, 1–15.Google Scholar
  87. 87.
    Mangan, N. E., Dasvarma, A., McKenzie, A. N., and Fallon, P. G. (2007) T1/ST2 expression on Th2 cells nega-tively regulates allergic pulmonary inflammation, Eur. J. Immunol., 37, 1302–1312.CrossRefPubMedGoogle Scholar
  88. 88.
    Zoltowska, A. M., Lei, Y., Fuchs, B., Rask, C., Adner, M., and Nilsson, G. P. (2016) The interleukin-33 receptor ST2 is important for the development of peripheral airway hyperresponsiveness and inflammation in a house dust mite mouse model of asthma, Clin. Exp. Allergy, 46, 479–490.CrossRefPubMedGoogle Scholar
  89. 89.
    Oboki, K., Ohno, T., Kajiwara, N., Arae, K., Morita, H., Ishii, A., Nambu, A., Abe, T., Kiyonari, H., Matsumoto, K., Sudo, K., Okumura, K., Saito, H., and Nakae, S. (2010) IL-33 is a crucial amplifier of innate rather than acquired immunity, Proc. Natl. Acad. Sci. USA, 107, 18581–18586.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Louten, J., Rankin, A. L., Li, Y., Murphy, E. E., Beaumont, M., Moon, C., Bourne, P., McClanahan, T. K., Pflanz, S., and De Waal Malefyt, R. (2011) Endogenous IL-33 enhances Th2 cytokine production and T-cell responses during allergic airway inflammation, Int. Immunol., 23, 307–315.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. R. Khaitov
    • 1
  • A. R. Gaisina
    • 1
  • I. P. Shilovskiy
    • 1
    Email author
  • V. V. Smirnov
    • 1
    • 2
  • G. V. Ramenskaia
    • 2
  • A. A. Nikonova
    • 1
    • 3
  • R. M. Khaitov
    • 1
  1. 1.Institute of ImmunologyFMBA of RussiaMoscowRussia
  2. 2.Sechenov First Moscow State Medical University, Ministry of Health of the Russian FederationMoscowRussia
  3. 3.Mechnikov Research Institute for Vaccines and SeraMoscowRussia

Personalised recommendations