Biochemistry (Moscow)

, Volume 83, Issue 1, pp 1–12 | Cite as

Recombinant monoclonal antibodies for rabies post-exposure prophylaxis

  • E. N. IlinaEmail author
  • M. V. Larina
  • T. K. Aliev
  • D. A. Dolgikh
  • M. P. Kirpichnikov


Rabies virus is a prototypical neurotropic virus that causes one of the most dangerous zoonotic diseases in humans. Humanized or fully human monoclonal antibodies (mAb) that neutralize rabies virus would be the basis for powerful post-exposure prophylaxis of rabies in humans, having several significant benefits in comparison with human or equine rabies polyclonal immunoglobulins. The most advanced antibodies should broadly neutralize natural rabies virus isolates, bind with conserved antigenic determinants of the rabies virus glycoprotein, and show high neutralizing potency in assays in vivo. The antibodies should recognize nonoverlapping epitopes if they are used in combination. This review focuses on basic requirements for anti-rabies therapeutic antibodies. The urgency in the search for novel rabies post-exposure prophylaxis and methods of development of anti-rabies human mAb cocktail are discussed. The rabies virus structure and pathways of its penetration into the nervous system are also briefly described.


human monoclonal antibodies rabies virus glycoprotein G antigenic site post-exposure prophylaxis rabies immunoglobulin 



antigenic site


Chinese hamster ovary tumor cells


equine rabies immunoglobulin


(human) rabies immunoglobulin




mono-clonal antibodies


nicotine acetylcholine receptor (n-cholinoreceptor)


Negri bodies


neuronal cell adhesion molecule

NGFR or p75NTR

nerve growth factor (p75 neutrophin receptor)


post-exposure prophylaxis


rabies virus


rabies immunoglobulin


transcription factor


toll-like receptors.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Banyard, A. C., Horton, D. L., Freuling, C., Muller, T., and Fooks, A. R. (2013) Control and prevention of canine rabies: the need for building laboratory-based surveillance capacity, Antiviral Res., 98, 357–364.CrossRefPubMedGoogle Scholar
  2. 2.
    Baltimore, D. (1971) Expression of animal virus genomes, Bacteriol. Rev., 35, 235–241.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Johnson, N., Vos, A., Freuling, C., Tordo, N., Fooks, A. R., and Muller, T. (2010) Human rabies due to lyssavirus infection of bat origin, Vet. Microbiol., 142, 151–159.CrossRefPubMedGoogle Scholar
  4. 4.
    Dietzgen, R. G., Calisher, C. H., Kurath, G., Kuzmin, I. V., Rodriguez, L. L., Stone, D. M., Tesh, R. B., Tordo, N., Walker, P. J., Wetzel, T., and Whitfield, A. E. (2011) Rhabdoviridae, in Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses (King, A. M. Q., Adams, M. J., Carstens, E. B., and Lefkowitz, E. J., eds.) Elsevier, Oxford, pp. 686-714.Google Scholar
  5. 5.
    Lafon, M. (2005) Rabies virus receptors, J. Neurovirol., 11, 82–87.CrossRefPubMedGoogle Scholar
  6. 6.
    Wunner, W. H., Reagan, K. J., and Koprowski, H. (1984) Characterization of saturable binding sites for rabies virus, J. Virol., 50, 691–697.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Cox, J. H., Dietzschold, B., and Schneider, L. G. (1977) Rabies virus glycoprotein: II. Biological and serological characterization, Infect. Immun., 16, 754–759.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Celis, E., Ou, D., Dietzschold, B., and Koprowski, H. (1988) Recognition of rabies and rabies-related viruses by T cells derived from human vaccine recipients, J. Virol., 62, 3128–3134.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Shakin-Eshleman, S. H., Remaley, A. T., Eshleman, J. R., Wunner, W. H., and Spitalnik, S. L. (1992) N-linked glycosylation of rabies virus glycoprotein. Individual sequons differ in their glycosylation efficiencies and influence on cell surface expression, J. Biol. Chem., 267, 10690–10698.PubMedGoogle Scholar
  10. 10.
    Gaudin, Y., Tuffereau, C., Benmansour, A., and Flamand, A. (1991) Fatty-acylation of rabies virus proteins, Virology, 184, 441–444.CrossRefPubMedGoogle Scholar
  11. 11.
    Marissen, W. E., Kramer, R. A., Rice, A., Weldon, W. C., Niezgoda, M., Faber, M., Slootstra, J. W., Meloen, R. H., Clijsters-van der Horst, M., Visser, T. J., Jongeneelen, M., Thijsse, S., Throsby, M., De Kruif, J., Rupprecht, C. E., Dietzschold, B., Goudsmit, J., and Bakker, A. B. (2005) Novel rabies virus-neutralizing epitope recognized by human monoclonal antibody: fine mapping and escape mutant analysis, J. Virol., 79, 4672–4678.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Prehaud, C., Coulon, P., Lafay, F., Thiers, C., and Flamand, A. (1988) Antigenic site II of the rabies virus glycoprotein: structure and role in viral virulence, J. Virol., 62, 1–7.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Benmansour, A., Leblois, H., Coulon, P., Tuffereau, C., Gaudin, Y., Flamand, A., and Lafay, F. (1991) Antigenicity of rabies virus glycoprotein, J. Virol., 65, 4198–4203.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Broughan, J. H., and Wunner, W. H. (1995) Characterization of protein involvement in rabies virus binding to BHK-21 cells, Arch. Virol., 140, 75–93.CrossRefPubMedGoogle Scholar
  15. 15.
    Chen, J. F., Mandel, E. M., Thomson, J. M., Wu, Q., Callis, T. E., Hammond, S. M., Conlon, F. L., and Wang, D. Z. (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation, Nat. Genet., 38, 228–233.CrossRefPubMedGoogle Scholar
  16. 16.
    Ugolini, G. (2011) Rabies virus as a transneuronal tracer of neuronal connections, Adv. Virus Res., 79, 165–202.CrossRefPubMedGoogle Scholar
  17. 17.
    Ugolini, G. (2008) Use of rabies virus as a transneuronal tracer of neuronal connections: implications for the understanding of rabies pathogenesis, Dev. Biol. (Basel), 131, 493–506.Google Scholar
  18. 18.
    Lewis, P., Fu, Y., and Lentz, T. L. (2000) Rabies virus entry at the neuromuscular junction in nerve muscle cocultures, Muscle Nerve, 23, 720–730.CrossRefPubMedGoogle Scholar
  19. 19.
    Lentz, T. L., Hawrot, E., and Wilson, P. T. (1987) Synthetic peptides corresponding to sequences of snake venom neurotoxins and rabies virus glycoprotein bind to the nicotinic acetylcholine receptor, Proteins, 2, 298–307.CrossRefPubMedGoogle Scholar
  20. 20.
    Langevin, C., Jaaro, H., Bressanelli, S., Fainzilber, M., and Tuffereau, C. (2002) Rabies virus glycoprotein (RVG) is a trimeric ligand for the N-terminal cysteine-rich domain of the mammalian p75 neurotrophin receptor, J. Biol. Chem., 277, 37655–37662.CrossRefPubMedGoogle Scholar
  21. 21.
    Superti, F., Hauttecoeur, B., Morelec, M. J., Goldoni, P., Bizzini, B., and Tsiang, H. (1986) Involvement of gangliosides in rabies virus infection, J. Gen. Virol., 67, 47–56.CrossRefPubMedGoogle Scholar
  22. 22.
    Hornung, V., Ellegast, J., Kim, S., Brzozka, K., Jung, A., Kato, H., Poeck, H., Akira, S., Conzelmann, K. K., Schlee, M., Endres, S., and Hartmann, G. (2006) 5′-Triphosphate RNA is the ligand for RIG-I, Science, 314, 994–997.CrossRefPubMedGoogle Scholar
  23. 23.
    Rieder, M., and Conzelmann, K. K. (2011) Interferon in rabies virus infection, Adv. Virus. Res., 79, 91–114.CrossRefPubMedGoogle Scholar
  24. 24.
    Lahaye, X., Vidy, A., Pomier, C., Obiang, L., Harper, F., Gaudin, Y., and Blondel, D. (2009) Functional characterization of Negri bodies (NBs) in rabies virus-infected cells: evidence that NBs are sites of viral transcription and replication, J. Virol., 83, 7948–7958.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Menager, P., Roux, P., Megret, F., Bourgeois, J. P., Le Sourd, A. M., Danckaert, A., Lafage, M., Prehaud, C., and Lafon, M. (2009) Toll-like receptor 3 (TLR3) plays a major role in the formation of rabies virus Negri bodies, PLOS Pathog., 5.Google Scholar
  26. 26.
    Vidy, A., El Bougrini, J., Chelbi-Alix, M. K., and Blondel, D. J. (2007) The nucleocytoplasmic rabies virus P protein counteracts interferon signaling by inhibiting both nuclear accumulation and DNA binding of STAT1, J. Virol., 81, 4255–4263.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lafon, M. (2008) Immune evasion, a critical strategy for rabies virus, Dev. Biol. Stand., 131, 413–419.Google Scholar
  28. 28.
    Warrell, M. J. (2012) Current rabies vaccines and prophylaxis schedules: preventing rabies before and after exposure, Travel Med. Infect. Dis., 10, 1–15.CrossRefPubMedGoogle Scholar
  29. 29.
    Faber, M. (2014) Recombinant rabies virus vaccines, in Current Laboratory Techniques in Rabies Diagnosis, Research and Prevention (Rupprecht, C. E., and Nagarajan, T., eds.) Elsevier Inc., Vol. 1, pp. 255-263.Google Scholar
  30. 30.
    Yusibov, V., Modelska, A., Steplewski, K., Agadjanyan, M., Weiner, D., Hooper, D. C., and Koprowski, H. (1997) Antigens produced in plants by infection with chimeric plant viruses immunize against rabies virus and HIV-1, Proc. Natl. Acad. Sci. USA, 94, 5784–5788.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Montgomery, D. L., and Prather, K. J. (2006) Design of plasmid DNA constructs for vaccines, Methods Mol. Med., 127, 11–22.PubMedGoogle Scholar
  32. 32.
    Both, L., Banyard, A. C., Van Dolleweerd, C., Horton, D. L., Ma, J. K., and Fooks, A. R. (2012) Passive immunity in the prevention of rabies, Lancet Infect. Dis., 12, 397–407.CrossRefPubMedGoogle Scholar
  33. 33.
    Fernandes, A., Kaundinya, J. O., Daftary, G., Saxena, L., Banerjee, S., and Pattnaik, P. (2008) Chromatographic purification of equine immunoglobulin G F(ab′)2 from plasma, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 876, 109–115.CrossRefPubMedGoogle Scholar
  34. 34.
    Meslin, F. X., Fishbein, D. B., and Matter, H. C. (1994) Rationale and prospects for rabies elimination in developing countries, Curr. Top. Microbiol. Immunol., 187, 1–26.PubMedGoogle Scholar
  35. 35.
    McKay, N., and Wallis, L. (2005) Rabies: a review of UK management, J. Emerg. Med., 22, 316–321.CrossRefGoogle Scholar
  36. 36.
    World Health Organization (2013) WHO expert consultation on rabies: second report, World Health Organ. Tech. Rep. Ser., 982, 1–139.Google Scholar
  37. 37.
    Goudsmit, J., Marissen, W. E., Weldon, W. C., Niezgoda, M., Hanlon, C. A., Rice, A. B., Kruif, Jd., Dietzschold, B., Bakker, A. B., and Rupprecht, C. E. (2006) Comparison of an anti-rabies human monoclonal antibody combination with human polyclonal anti-rabies immune globulin, J. Infect. Dis., 193, 796–801.CrossRefPubMedGoogle Scholar
  38. 38.
    Dietzschold, B., Gore, M., Casali, P., Ueki, Y., Rupprecht, C. E., Notkins, A. L., and Koprowski, H. (1990) Biological characterization of human monoclonal antibodies to rabies virus, J. Virol., 64, 3087–3090.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Both, L., Van Dolleweerd, C., Wright, E., Banyard, A. C., Bulmer-Thomas, B., Selden, D., Altmann, F., Fooks, A. R., and Ma, J. K. (2013) Production, characterization, and antigen specificity of recombinant 62-71-3, a candidate monoclonal antibody for rabies prophylaxis in humans, FASEB J., 27, 2055–2065.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    De Benedictis, P., Minola, A., Rota Nodari, E., Aiello, R., Zecchin, B., Salomoni, A., Foglierini, M., Agatic, G., Vanzetta, F., Lavenir, R., Lepelletier, A., Bentley, E., Weiss, R., Cattoli, G., Capua, I., Sallusto, F., Wright, E., Lanzavecchia, A., Bourhy, H., and Corti, D. (2016) Development of broad-spectrum human monoclonal antibodies for rabies post-exposure prophylaxis, EMBO Mol. Med., 8, 407–421.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Tsekoa, T. L., Lotter-Stark, T., Buthelezi, S., Chakauya, E., Stoychev, S. H., Sabeta, C., Shumba, W., Phahladira, B., Hume, S., Morton, J., Rupprecht, C. E., Steinkellner, H., Pauly, M., Zeitlin, L., Whaley, K., and Chikwambaet, R. (2016) Efficient in vitro and in vivo activity of glyco-engineered plant-produced rabies monoclonal antibodies E559 and 62-71-3, PLoS One, 11, 1–15.CrossRefGoogle Scholar
  42. 42.
    Matsumoto, T., Yamada, K., Noguchi, K., Nakajima, K., Takada, K., Khawplod, P., and Nishizono, A. (2010) Isolation and characterization of novel human monoclonal antibodies possessing neutralizing ability against rabies virus, Microbiol. Immunol., 54, 673–683.CrossRefPubMedGoogle Scholar
  43. 43.
    Kramer, R. A., Marissen, W. E., Goudsmit, J., Visser, T. J., Clijsters-Van der Horst, M., Bakker, A. Q., De Jong, M., Jongeneelen, M., Thijsse, S., Backus, H. H., Rice, A. B., Weldon, W. C., Rupprecht, C. E., Dietzschold, B., Bakker, A. B., and De Kruif, J. (2005) The human antibody repertoire specific for rabies virus glycoprotein as selected from immune libraries, Eur. J. Immunol., 35, 2131–2145.CrossRefPubMedGoogle Scholar
  44. 44.
    Sloan, S. E., Hanlon, C., Weldon, W., Niezgoda, M., Blanton, J., Self, J., Rowley, K. J., Mandell, R. B., Babcock, G. J., Thomas, W. D., Jr., Rupprecht, C. E., and Ambrosino, D. M. (2007) Identification and characterization of a human monoclonal antibody that potently neutralizes a broad panel of rabies virus isolates, Vaccine, 25, 2800–2810.CrossRefPubMedGoogle Scholar
  45. 45.
    Zhao, X. L., Yin, J., Chen, W. Q., Jiang, M., Yang, G., and Yang, Z. H. (2008) Generation and characterization of human monoclonal antibodies to G5, a linear neutralization epitope on glycoprotein of rabies virus, by phage display technology, Microbiol. Immunol., 52, 89–93.CrossRefPubMedGoogle Scholar
  46. 46.
    Lafon, M., Wiktor, T. J., and Macfarlan, R. I. (1983) Antigenic sites on the CVS rabies virus glycoprotein: analysis with monoclonal antibodies, J. Gen. Virol., 64, 843–851.CrossRefPubMedGoogle Scholar
  47. 47.
    Muller, T., Dietzschold, B., Ertl, H., Fooks, A. R., Freuling, C., Fehlner-Gardiner, C., Kliemt, J., Meslin, F. X., Franka, R., Rupprecht, C. E., Tordo, N., Wanderler, A. I., and Kieny, M. P. (2009) Development of a mouse monoclonal antibody cocktail for post-exposure rabies prophylaxis in humans, PLoS Negl. Trop. Dis., 3, e542.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Kuzmina, N. A., Kuzmin, I. V., Ellison, J. A., and Rupprecht, Ch. E. (2013) Conservation of binding epitopes for monoclonal antibodies on the rabies virus glycoprotein, J. Antivir. Antiretrovir., 5, 37–43.CrossRefGoogle Scholar
  49. 49.
    Kohler, G., and Milstein, C. (1975) Continuous cultures of fused cells secreting antibodies of predetermined specificity, Nature, 256, 495–497.CrossRefPubMedGoogle Scholar
  50. 50.
    Benevolensky, S. V., Zatsepin, S. S., Klyachko, E. V., Morozkina, E. V., Pozdnyakova, L. P., Sveshnikov, P. G., Solopova, O. N., Shemchukova, O. B., and Yagudin, O. B. (2012) The humanized antigen-binding fragments (Fab) against the rabies virus, the isolated DNA fragment encoding Fab against the rabies virus, the yeast cell transformed by the DNA fragment, and the method of obtaining Fab against the rabies virus using yeast, Patent No. RU2440412 (C2).Google Scholar
  51. 51.
    Crucell Holland BV. A Randomized Phase II Trial to Compare the Safety and Neutralizing Activity of CL184 in Combination with Rabies Vaccine vs. HRIG or Placebo in Combination with Rabies Vaccine in Healthy Adult Subjects (, registered on September 2011.Google Scholar
  52. 52.
    Crucell Holland BV. Randomized Phase II Trial on Safety and Neutralizing Activity of CL184 and Rabies Vaccine versus Human Rabies Immune Globulin (HRIG) and Rabies Vaccine in Children and Adolescents (https://, registered on March 2012.Google Scholar
  53. 53.
    Crucell Holland BV. Rabies Virus Neutralizing Activity and Safety of CL184, a Monoclonal Antibody Cocktail, in Simulated Rabies Post-exposure Prophylaxis in Healthy Adults (, registered on April 2013.Google Scholar
  54. 54.
    Serum Institute of India Ltd. A Phase II/III, Randomized, Multi-Centric, Comparator-Controlled Study of the Safety and Neutralizing Activity of a Human Monoclonal Antibody to Rabies (SII RMAb) Administered in Conjunction with Rabies Vaccine for Post-exposure Prophylaxis in Patients Following Potential Rabies Exposure, CTRI/2012/05/002709 ( Clinicaltrials/pmaindet2.php?trialid=4191), registered on November 2012.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. N. Ilina
    • 1
    Email author
  • M. V. Larina
    • 2
  • T. K. Aliev
    • 3
  • D. A. Dolgikh
    • 1
    • 2
  • M. P. Kirpichnikov
    • 1
    • 2
  1. 1.Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Shemyakin−Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
  3. 3.Faculty of ChemistryLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations