Advertisement

Biochemistry (Moscow)

, Volume 82, Issue 12, pp 1529–1537 | Cite as

Heterologous expression and isolation of influenza A virus nuclear export protein NEP

  • A. O. Golovko
  • O. N. KorolevaEmail author
  • V. L. Drutsa
Regular Article

Abstract

Influenza A virus nuclear export protein NEP (NS2, 14.4 kDa) plays a key role in various steps of the virus life cycle. Highly purified protein preparations are required for structural and functional studies. In this study, we designed a series of Escherichia coli plasmid constructs for highly efficient expression of the NEP gene under control of the constitutive trp promoter. An efficient method for extraction of NEP from inclusion bodies based on dodecyl sulfate treatment was developed. Preparations of purified NEP with either N-or C-terminal (His)6-tag were obtained using Ni-NTA agarose affinity chromatography with yield of more than 20 mg per liter of culture. According to CD data, the secondary structure of the proteins matched that of natural NEP. A high propensity of NEP to aggregate over a wide range of conditions was observed.

Keywords

influenza A virus nuclear export protein (NEP) affinity chromatography protein aggregation 

Abbreviations

a.a.

amino acid residue

bp

base pairs

IPTG

isopropyl-β-D-thiogalactopyranoside

NEP

nuclear export protein

NEP-C

NEP with C-terminal (His)6-tag

NEP-N

NEP with N-terminal (His)6-tag

PCR

polymerase chain reaction

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Darapaneni, V., Prabhaker, V. K., and Kukol, A. (2009) Large-scale analysis of influenza A virus sequences reveals potential drug target sites of non-structural proteins, J. Gen. Virol., 90, 2124–2133.CrossRefPubMedGoogle Scholar
  2. 2.
    Manz, B., Schwemmle, M., and Brunotte, L. (2013) Adaptation of avian influenza A virus polymerase in mammals to overcome the host species barrier, J. Virol., 87, 7200–7209.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Odagiri, T., and Tobita, K. (1990) Mutation in NS2, a nonstructural protein of influenza A virus, extragenically causes aberrant replication and expression of the PA gene and leads to generation of defective interfering particles, Proc. Natl. Acad. Sci. USA, 87, 5988–5992.PubMedGoogle Scholar
  4. 4.
    Yasuda, J., Nakada, S., Kato, A., Toyoda, T., and Ishihama, A. (1993) Molecular assembly of influenza virus: association of the NS2 protein with virion matrix, Virology, 196, 249–255.CrossRefPubMedGoogle Scholar
  5. 5.
    Iwatsuki-Horimoto, K., Horimoto, T., Fujii, Y., and Kawaoka, Y. (2004) Generation of influenza A virus NS2 (NEP) mutants with an altered nuclear export signal sequence, J. Virol., 78, 10149–10155.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Brunotte, L., Flies, J., and Bolte, H. (2014) The nuclear export protein of H5N1 influenza A viruses recruits matrix 1 (M1) protein to the viral ribonucleoprotein to mediate nuclear export, J. Biol. Chem., 289, 20067–20077.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Watanabe, K., Shimizu, T., Noda, S., Tsukahara, F., Maru, Y., and Kobayashi, N. (2014) Nuclear export of the influenza virus ribonucleoprotein complex: interaction of Hsc70 with viral proteins M1 and NS2, FEBS Open Bio, 4, 683–688.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Gorai, T., Goto, H., Noda, T., Watanabe, T., KozukaHata, H., Oyama, M., Takano, R., Neumann, G., Watanabe, S., and Kawaoka, Y. (2012) F1Fo-ATPase, Ftype proton-translocating ATPase, at the plasma membrane is critical for efficient influenza virus budding, Proc. Natl. Acad. Sci. USA, 109, 4615–4620.Google Scholar
  9. 9.
    Akarsu, H., Burmeister, W. P., Petosa, C., Petit, I., Muller, C. W., Ruigrok, R. W., and Baudin, F. (2003) Crystal structure of the M1 protein-binding domain of the influenza A virus nuclear export protein (NEP/NS2), EMBO J., 22, 4646–4655.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Akarsu, H., Iwatsuki-Horimoto, K., Noda, T., Kawakami, E., Katsura, H., Baudin, F., Horimoto, T., and Kawaoka, Y. (2011) Structure-based design of NS2 mutants for attenuated influenza A virus vaccines, Virus Res., 155, 240–248.CrossRefPubMedGoogle Scholar
  11. 11.
    Lommer, B. S., and Luo, M. (2002) Structural plasticity in influenza virus protein NS2 (NEP), J. Biol. Chem., 277, 7108–7117.CrossRefPubMedGoogle Scholar
  12. 12.
    Salahuddin, P., and Khan, A. U. (2010) Structural and functional analysis of NS1 and NS2 proteins of H1N1 subtype, Genomics Prot. Bioinform., 8, 190–199.CrossRefGoogle Scholar
  13. 13.
    Neumann, G., Watanabe, T., Ito, H., Watanabe, S., Goto, H., Gao, P., Hughes, M., Perez, D. R., Donis, R., Hoffmann, E., Hobom, G., and Kawaoka, Y. (1999) Generation of influenza A viruses entirely from cloned cDNAs, Proc. Natl. Acad. Sci. USA, 96, 9345–9350.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ward, A. C., Castelli, L. A., Lucantoni, A. C., White, J. F., Azad, A. A., and Macreadie, I. G. (1995) Expression and analysis of the NS2 protein of influenza A virus, Arch. Virol., 140, 2067–2073.CrossRefPubMedGoogle Scholar
  15. 15.
    Hu, Y., Liu, X., Zhang, A., Zhou, H., Liu, Z., Chen, H., and Jin, M. (2015) CHD3 facilitates vRNP nuclear export by interacting with NES1 of influenza A virus NS2, Cell Mol. Life Sci., 72, 971–982.CrossRefPubMedGoogle Scholar
  16. 16.
    Tawaratsumida, K., Phan, V., Hrincius, E. R., High, A. A., Webby, R., Redecke, V., and Hacker, H. (2014) Quantitative proteomic analysis of the influenza A virus nonstructural proteins NS1 and NS2 during natural cell infection identifies PACT as an NS1 target protein and antiviral host factor, J. Virol., 88, 9038–9048.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Reuther, P., Giese, S., Gotz, V., Kilb, N., Manz, B., Brunotte, L., and Schwemmle, M. (2014) Adaptive mutations in the nuclear export protein of human-derived H5N1 strains facilitate a polymerase activity-enhancing conformation, J. Virol., 88, 263–271.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Shimizu, T., Takizawa, N., Watanabe, K., Nagata, K., and Kobayashi, N. (2011) Crucial role of the influenza virus NS2 (NEP) C-terminal domain in M1 binding and nuclear export of vRNP, FEBS Lett., 585, 41–46.CrossRefPubMedGoogle Scholar
  19. 19.
    Inglis, S. C., Barrett, T., Brown, C. M., and Almond, J. W. (1979) The smallest genome RNA segment of influenza virus contains two genes that may overlap, Proc. Natl. Acad. Sci. USA, 76, 3790–3794.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Greenspan, D., Krystal, M., Nakada, S., Arnheiter, H., Lyles, D. S., and Palese, P. (1985) Expression of influenza virus NS2 nonstructural protein in bacteria and localization of NS2 in infected eucaryotic cells, J. Virol., 54, 833–843.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Koroleva, O. N., Dubrovin, E. V., Yaminsky, I. V., and Drutsa, V. L. (2016) Effect of DNA bending on transcriptional interference in the systems of closely spaced convergent promoters, Biochim. Biophys. Acta, 1860, 2086–2096.CrossRefPubMedGoogle Scholar
  22. 22.
    Koroleva, O. N., Drutsa, V. L., Dolinnaya, N. G., Tsytovich, A. V., and Shabarova, Z. A. (1984) DNA-like duplexes containing repetitive sequences. VII. Chemicoenzymatic synthesis of polymers with fragment of natural promoters, Mol. Biol. (Moscow), 18, 146–160.Google Scholar
  23. 23.
    Maniatis, T., Fritsch E., and Sambroock, J. (1982) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, Cold Spring Harbor Laboratory Press, N.Y.Google Scholar
  24. 24.
    Laemmli, U. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227, 680–685.CrossRefPubMedGoogle Scholar
  25. 25.
    Bornhorst, J. A., and Falke, J. J. (2000) Purification of proteins using polyhistidine affinity tags, Methods Enzymol., 326, 245–254.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Hemsley, A., Arnheim, N., Toney, M. D., Cortopassi, G., and Galas, D. J. (1989) A simple method for site-directed mutagenesis using the polymerase chain reaction, Nucleic Acids Res., 17, 6545–6551.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Sivashanmugam, A., Murray, V., Cui, C., Zhang, Y., Wang, J., and Li, Q. (2009) Practical protocols for production of very high yields of recombinant proteins using Escherichia coli, Protein Sci., 18, 936–948.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Bass, S. H., and Yansura, D. G. (2000) Application of the E. coli trp promoter, Mol. Biotechnol., 16, 253–260.CrossRefPubMedGoogle Scholar
  29. 29.
    Wang, X., Zhou, B., Hu, W., Zhao, Q., and Lin, Z. (2015) Formation of active inclusion bodies induced by hydrophobic self-assembling peptide GFIL8, Microb. Cell Fact., 14,88.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Greenfield, N. J., and Fasman, G. D. (1969) Computed circular dichroism spectra for the evaluation of protein conformation, Biochemistry, 8, 4108–4116.CrossRefPubMedGoogle Scholar
  31. 31.
    Richards, F. M., and Knowles, J. R. (1968) Glutaraldehyde as a protein cross-linkage reagent, J. Mol. Biol., 37, 231–233.CrossRefPubMedGoogle Scholar
  32. 32.
    Kowalczyk, M., and Bardowski, J. (2003) Overproduction and purification of the CcpA protein from Lactococcus lactis, Acta Biochim. Pol., 50, 455–459.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. O. Golovko
    • 1
  • O. N. Koroleva
    • 2
    Email author
  • V. L. Drutsa
    • 3
  1. 1.Lomonosov Moscow State UniversityFaculty of Bioengineering and BioinformaticsMoscowRussia
  2. 2.Lomonosov Moscow State UniversityFaculty of ChemistryMoscowRussia
  3. 3.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations